
XNET: A Reliable Content-Based Publish/Subscribe System

Raphäel Chand
Institut EURECOM, Sophia Antipolis, France

raphael.chand@eurecom.fr

Pascal Felber∗

University of Neucĥatel, Switzerland
pascal.felber@unine.ch

Abstract
Content-based publish/subscribe systems are usually im-

plemented as a network of brokers that collaboratively route
messages from information providers to consumers. A ma-
jor challenge of such middleware infrastructures is their re-
liability and their ability to cope with failures in the system.
In this paper, we present the architecture of theXNET XML
content network and we detail the mechanisms that we im-
plemented to gracefully handle failures and maintain the
system state consistent with the consumer population at all
times. In particular, we propose several approaches to fault
tolerance so that our system can recover from various types
of router and link failures. We analyze the efficiency of our
techniques in a large scale experimental deployment on the
PlanetLab testbed. We show thatXNET does not only of-
fer good performance and scalability with large consumer
populations under normal operation, but can also quickly
recover from system failures.

1. Introduction
Content-based routing differs significantly from tradi-

tional communication, in that messages are routed on the
basis of their content rather than the IP address of their des-
tination. This form of addressing is widely used in event no-
tification or publish/subscribe systems [10] to deliver rele-
vant data to the consumers, according to the interests they
have expressed. By allowing consumers to define the type
of messages they are interested in, producers do not need to
keep track of the consumer population and can simply in-
ject messages in the network. In turn, consumers with scarce
resources (e.g., mobile devices) can restrict the amount of
data that they receive by registering highly-selective sub-
scriptions, and hence limit their incoming network traffic.
The complex task of filtering and routing messages is left
to the network infrastructure, which typically consists of
application-level routers organized in an overlay network.

Our XNET XML content routing network integrates sev-
eral novel technologies to implementefficientandreliable
distribution of structured XML content to very large popu-
lations of consumers. The routing protocol, XROUTE [6],

∗ This work was performed while the author was at Institut EURECOM.

makes extensive use of subscription aggregation to limit
the size of routing tables while ensuring perfect routing
(i.e., minimizing inter-router traffic). The filtering engine,
XTRIE [5], uses a sophisticated algorithm to match in-
coming XML documents against large populations of tree-
structured subscriptions, while the XSEARCH subscription
management algorithm [7] enables the system to efficiently
manage large and highly dynamic consumer populations.

In this paper, we specifically address the issue ofre-
liability in our XML content network. We propose sev-
eral schemes that are based on different strategies and ap-
proaches to fault tolerance. Their common goal is to ensure
that the shared state of the system (i.e., all registered sub-
scriptions) is consistent with the actual consumer popula-
tion at all times. The network can recover from router or
link failures by using the most appropriate scheme depend-
ing on various factors, such as the expected duration of the
outage or application-specific availability requirements. We
have performed an extensive performance evaluation of our
system by deploying it on the nodes of a real Internet-wide
network, with realistic content and subscription workloads.
We have evaluated the overall performance of XNET as well
as its ability to cope with system failures.

The rest of this paper is organized as follows: We first
discuss related work in Section 2, and we give an overview
of our XNET system in Section 3. In Section 4, we focus
on the mechanisms that we implemented in our system to
achieve reliability. Section 5 presents results from experi-
mental evaluation. Finally, Section 6 concludes the paper.

2. Related Work
Several publish/subscribe systems support content-based

routing (see [10] for a survey), but few of them guarantee re-
liable delivery in the presence of link or server failures.

IBM Gryphon [1] uses a set of networked brokers to dis-
tribute events from publishers to consumers. It uses a dis-
tributed filtering algorithm based on parallel search trees
maintained on each of the brokers to efficiently determine
where to route the messages. The authors do not discuss
how to update the parallel search trees (and thus ensure re-
liable delivery) in the case of link failures or router crashes.

Siena [2] also uses a network of event servers for
content-based event distribution, and relies upon a rout-

ing protocol most similar to ours, but with limited
support for subscription cancellation. In a recent pa-
per [3], the authors of Siena introduce a novel routing
scheme for content-based networking based on a com-
bination of broadcast and selective routing. The system
handles subscription cancellations by having routers peri-
odically request the routing table of other routers. However,
it does not guarantee perfect routing in the sense that con-
sumers may receive messages that they are not interested
in. Also, the authors do not explicitly address the is-
sue of fault tolerance in the system.

In [16], the authors propose an approach for content-
based routing of XML data in mesh-based overlay net-
works. They introduce a routing protocol that reassembles
data streams sent over redundant paths to tolerate some
node or link failures. Their approach provides a high level
of availability but it is not clear how reliability is guaran-
teed during the addition and removal of subscriptions.

Rebeca [11, 12] is a prototype notification service that
incorporates several routing strategies. Its topology is very
similar to ours, i.e., a tree of brokers with a single root called
the “root router.” Rebeca also distinguishes between bro-
kers that have local clients and those that do not. The sys-
tem implements a self-stabilization algorithm based on sub-
scription leasing. Routing table entries are valid as long as
the lease of the corresponding subscription has not expired.
This may lead to consumers receiving out-of-interest noti-
fications. Also, this approach requires that consumers reg-
ularly renew their leases by resubscribing, making the sys-
tem potentially unscalable to large consumer populations.

Jedi [9] relies upon a network of event servers organized
in an arbitrary tree; subscriptions are propagated upward the
tree, and messages are propagated both upward and down-
ward to the children that have matching subscriptions. In a
recent work [14], the authors discuss how to adapt the be-
havior of a publish/subscribe system to dynamic topology
reconfiguration. Their work is based on the “strawman ap-
proach” [2] and aims at reducing overhead, notably by mini-
mizing the repropagation of subscription information, while
tolerating frequent reconfigurations.

3. System Overview
This section gives an overview of the XNET content

routing network. We also briefly describe the most essen-
tial features of the routing protocol, which are relevant for
the rest of the paper. More details can be found in [6].

System Model and Definitions.XNET, like most content-
based publish/subscribe systems, is implemented as an
overlay network of routing brokers. Messages (or events)
are propagated through the nodes of the network, ac-
cording to the messages’ content and the subscriptions
registered by the consumers. Each data consumer and pro-
ducer is connected to some node at the edge of the network;

we call such nodesconsumerand producer nodes. The
other nodes are calledrouting nodes. For the sake of sim-
plicity, we consider a network with a single data source al-
though our protocol supports multiple producers. The con-
sumer population can be highly dynamic and does not
need to be known a priori. Messages flow along a span-
ning tree, rooted at the producer node, whose leaves are
the consumer nodes. For a given node, we denote by “up-
stream” and “downstream” the paths toward the producer
and consumers, respectively.

Each routing broker has a set oflinks, or interfaces, that
connect the node to its direct neighbors. We assume that
there exists exactly one interface per neighbor (we ignore
redundant links connecting two neighbors). Nodes commu-
nicate using reliable point-to-point communication and are
equipped with failure detectors that eventually detect the
failure of their communication links and neighbors but may
make mistakes. As will become clear later, if a node incor-
rectly suspects its upstream neighbor to have failed, it might
take unnecessary recovery actions that, although time con-
suming, do not adversely affect the consistency of the global
state of the system. We assume a crash-recover model with
transient link and router failures (although the duration of
failures is unbounded).

XNET was designed to deal with XML data, thede facto
interchange language on the Internet. Producers can define
custom data types and generate arbitrary semi-structured
events, as long as they are well-formed XML documents.
Consumer interests are expressed using a subscription lan-
guage. Subscriptions allow to specify predicates on the set
of valid events for a given consumer. XNET uses a signifi-
cant subset of the standard XPath language to specify com-
plex subscriptions [17] adapted to the semi-structured na-
ture of events.More details about the subscription manage-
ment techniques of XNET can be found in [4, 5, 7].

We say that a subscriptionS1 coversanother subscrip-
tionS2, denoted byS1 ⊇ S2, if and only if any event match-
ing S2 also matchesS1, i.e.,matches(S2) ⇒ matches(S1).
The covering relationship defines a partial order on the set
of all subscriptions.

The Routing Protocol.The XROUTE content-based routing
protocol has been designed to achieve several goals: to im-
plement perfect routing, i.e., a message traverses a commu-
nication link only if there is some consumer downstream
that is interested in that message; to be optimal in the sense
that the link cost of routing an event is no more than that
of sending the event along a multicast tree spanning all the
consumers interested in the event; to maintain the size of the
routing tables as small as possible by detecting and elim-
inating subscription redundancies; and to efficiently sup-
port dynamic registration and cancellation of consumer sub-
scriptions.

Routing works in a distributed manner. Each node in the

network contains in its routing table a set of entries that rep-
resent the distinct subscriptions that its neighbor nodes are
interested in. For each subscriptionS, nodeN maintains
some information in its routing table indicating to which
neighbors it should forward an event matchingS. The pro-
cess starts when a publisher produces an event at its pub-
lisher node and ends when all the consumer nodes interested
in that event have received it. Figure 1(a) shows the path
that evente1, published byP1 and matching subscription
S, will follow (subscriptions are represented underneath the
consumers that registered them and routing table entries are
listed next to the node they are associated with).

N1

P1

P2

C1 C2
C3

N2

N3

N4

S S

e1

S N4

S N3

S N1 , N2

S N3

S C3S C2

e1

e1

e1

e1

e1

e1

(a)

N1

P1

P2

C1 C2
C3

N2

N3

N4

S1

Reg(S2)

Reg(S1)

Reg(S1)

Reg(S1)

Reg(S1)

Reg(S2)

(b)
Figure 1. (a) Events flow from the producer
towards consumers. (b) Subscription regis-
trations (“Reg”) are propagated upward from
the consumers to the publishers (S1 ⊇ S2).

When some consumer registers or cancels a subscription,
the nodes of the overlay must update their routing tables ac-
cordingly; to do so, they exchange pieces of information
that we calladvertisements. An advertisement carries a sub-
scription, and corresponds either to a registration or a can-
cellation. From the point of view of nodeN , an advertise-
ment for subscriptionS received from a neighbor nodeN ′

indicates that a consumer atN ′ or downstream fromN ′ has
registered or canceled subscriptionS.

The subscription algorithm works by propagating ad-
vertisements recursively across the overlay, from the con-
sumers towards the producers, as illustrated in Figure 1(b).
Subscriptions may be transformed along the propagation
path due toaggregation, which is a key technique to mini-
mize the size of the routing tables by eliminating redundan-
cies between subscriptions, and consequently to improve
the routing performance. For instance, at nodeN1 in Fig-
ure 1(b), two subscriptionsS1 andS2 have been registered
by consumer nodesC1 andC2, respectively. From the point
of view of nodeN3, this means that some consumers down-
streamN1 are interested in receiving events matchingS1 or
S2. Now, assume thatS1 ⊇ S2, that is, any event matching
S2 also matchesS1. The mechanism of subscription aggre-

gation is based on the following observation: when an event
e arrives at nodeN3, it is only necessary to teste againstS1,
because, by definition, any event matchingS2 also matches
S1, and any event that does not matchS1 does not matchS2

either. An IP networking analogy would be that of network
prefixes, whereS1 is a prefix ofS2. Because of that prop-
erty, S2 becomes redundant and can be “aggregated” with
S1 (in particular,S2 does not need to be propagated up-
stream fromN1 to N3).

4. Fault Tolerance in XNET

We have implemented several mechanisms to ensure re-
liable operation of our XNET system despite the occur-
rence of router or link failures. The primary objective of
these mechanisms is to maintain aconsistent shared statein
the system, i.e., to preserve correct producers-to-consumers
routing paths that reflect all the subscriptions registered
by the consumers despite transient failures (note that, be-
cause of aggregation, each router has only partial knowl-
edge of the subscriptions of its downstream consumers). A
secondary goal is to ensure reliable delivery of producer
messages; although desirable, this feature is of lesser im-
portance because undelivered messages have no impact on
the consistency of the content routing system.

The mechanisms described in this section take different
approaches to failure recovery and offer various tradeoffs
in terms of cost and benefits. They are also complemen-
tary in that they can be easily combined within the same
network. We present two recovery-based approaches to re-
liability, which strive to maintain a consistent global state
upon failure. We then discuss a third approach, orthogonal
to the other two, which uses redundancy tomaskproblems
and provide continuous service despite failures.

Note that, given a spanning tree rooted at a producer, the
failure of a router directly affects the neighboring routers
downstream from the failed node as they cannot anymore
propagate subscription registrations and cancellations to-
wards the producer at the root of the tree. In contrast, the
failure of a link only affects the router downstream from
the failed link; we can therefore consider router failure as
a generalization of link failures, and we will only consider
the former type of failures in the rest of the paper.

Also, we only focus on the case ofrouting node failures
that can be dealt with transparently by the infrastructure.
The failure of a producer node will prevent the distribution
of events and force the publisher application to switch over
to another node. Similarly, the failure of a consumer node
will affect all the attached consumers and must be handled
explicitly by the subscriber application.

4.1. TheCrash/RecoverScheme
The Crash/Recoverscheme has been designed to cope

efficiently and locally with temporary router or link failures.
It relies on the assumption that a faulty link or router will

recover after a short time. During the downtime period, the
producers and consumers can still publish and subscribe to
events, i.e., the failure is transparent. After the faulty router
or link recovers, the system must reach the same consistent
state as if no failure had occurred.

TheCrash/Recoverscheme relies upon a few key mech-
anisms to cope with transient failures. First, a recovery
database is maintained in stable storage on each router.
When the router fails, it can recover its state before the
crash. Second, the use of the TCP protocol ensures the reli-
able and ordered delivery of subscriptions and documents.
Third, a retransmission buffer coupled with a selective pos-
itive acknowledgment scheme is implemented between a
routerR and its upstream routerU . Its purpose is to save
the changes that occurred during the downtime ofU so that,
when it recovers, it can catch up and “roll forward” to a con-
sistent state that corresponds to the current consumer popu-
lation. Finally, sequence numbers are embedded in all mes-
sages to detect duplicates upon recovery and guarantee rout-
ing table consistency.

Algorithm 1 On receivingAdv(sn) from interfacei
1: if 0 < sn ≤ hri then {Duplicate advertisement}
2: SendAck(sn) down interfacei
3: else ifsn = hri + 1 then {Expected advertisement}
4: hs← hs + 1
5: Update routing table withXRoute and generateAdvout(hs)
6: hri ← hri + 1

7: RetrBuf
append←− Advout(hs)

8: Backup log and routing table in recovery database
9: SendAck(sn) down interfacei

10: SendAdvout(hs) upstream
11: end if

Algorithm 2 On receivingAck(sn) from upstream
1: if Advout(sn) is found inRetrBuf then
2: RemoveAdvout(sn) from log
3: Backup log in recovery database
4: end if

Algorithm 3 On receivingBack from upstream
1: SendRetrBuf upstream

The pseudo-code of theCrash/Recoverprotocol is given
in Algorithms 1, 2, 3, and 4. Consider routerR with n
downstream interfaces. LetDi be the router downstream in-
terfacei. Each timeDi sends an advertisement to router
R, it includes in it a strictly increasing sequence number
(unique betweenR andDi). Lethri be the highest sequence
number received fromDi, i.e.,R has received fromDi all
the advertisements with sequence numbersn ≤ hri. Simi-
larly, hs is the highest sequence number that routerR sent
to its upstream router. Sequence numbers are used for the
positive acknowledgment mechanism and to filter out du-
plicate advertisements that may be received after a link or
router failure.

Each routerR maintains alog that stores the latest non-
acknowledged advertisements sent to its upstream router, as
well as the current values ofhs andhr1 · · ·hrn. The log
and the routing table of routerR are backed up in arecov-
ery database(see Figure 2), which is written atomically to

stable storage as soon as its state is updated (line8 in Algo-
rithm 1 and line3 in Algorithm 2).

Algorithm 4 On recovering from failure
1: Recover routing table and log from recovery database
2: SendRetrBuf upstream
3: SendBack downstream all interfaces

hr1 ... hri ... hrn
hs
Adv(sn1)

Adv(snj)

Adv(snk)

...

Routing table

Log

Retransmission buffer

Recovery database

...

Figure 2. Format of the recovery database.

When routerR receives an advertisementAdv(sn) from
interfacei, it first checks if the advertisement is a duplicate
by comparingsn with hri (lines1 and3 in Algorithm 1). If
that is the case,R sends an acknowledgment toDi and ig-
nores the advertisement. Otherwise, we havesn = hri + 1
and we process the advertisement (it is trivial to see from
the algorithm and the FIFO ordering property of TCP that
we cannot havesn > hri + 1). R updates its routing ta-
ble, generates an outgoing advertisement for its upstream
router, incrementshs andhri, and sends an acknowledg-
mentDi only after local updates have been saved on stable
storage (lines4–9 in Algorithm 1); this guarantees thatDi

will resend its advertisement in caseR fails before the re-
covery database has been updated.

The retransmission buffer is a stack of advertise-
ments. Each time routerR is about to send an advertise-
ment Advout(sn) to its upstream routerU , it appends
Advout(sn) to its retransmission buffer (line7 in Algo-
rithm 1). WhenU has received itand has updated its rout-
ing table accordingly, it sends an acknowledgment for it
back to routerR (lines 2 or 9 in Algorithm 1), which re-
movesAdvout(sn) from its retransmission buffer (line2 in
Algorithm 2).

If routerR crashes, the advertisements that it should have
received during the crash duration are not acknowledged
and are thus stacked in its downstream routers’ retransmis-
sion buffer. WhenR recovers, it first restores its state from
the recovery database (line1 in Algorithm 4). Then, it sends
aBack message to its downstream routers, (line3 in Algo-
rithm 4) to trigger the delivery of the advertisements that
were stacked in their logs (Algorithm 3). From the point of
view of routerR and the routers upstream, everything looks
as ifR had never failed, except that the “missed” advertise-
ments are received in bursts. After a certain period of time,
which we refer to as therecovery delay, those routers have
updated their routing table and the global system state re-
flects again the current consumer population.

The fact that the retransmission buffer is backed up in the
recovery database and is retransmitted upon recovery be-
fore sending theBack message (line2 in algorithm 4) han-
dles the case when one ofR’s downstream router,Di, fails
while R is down. When recovering,Di must first send to
R the advertisements stored in its retransmission buffer be-
fore processing those received from its downstream routers,
so as to preserve consistent ordering of the advertisements
sent toR.

4.2. TheCrash/FailoverScheme
The Crash/Recoverscheme was based on the assump-

tion that a failed routerR will recover after a reasonably
short period of time, during which its downstream routers
are buffering advertisements. However, the downtime dura-
tion of routerR may be very long, causing buffers to grow
huge or overflow. WhenR eventually recovers, many adver-
tisements will transit along the paths fromR’s downstream
routers to the producer nodes, potentially creating bottle-
necks and delaying system recovery.

TheCrash/Failoverscheme is based on the principle that
the downstream routers of a crashed routerR do not wait
for its recovery, but instead reconnect to another router and
bring back their routing tables to a consistent state. Thus
we make the assumption that every routerR in the net-
work knows at least one additional router other than its di-
rect neighbors, to which it can connect if its upstream router
fails. This scheme is very similar to primary/backup repli-
cation [13] and we will refer to the additional router as the
R’s backuprouter, denoted byBR. Note that, obviously,
BR cannot be located downstream fromR with respect to
the producer as we must maintain a valid spanning tree af-
ter reconnection.

TheCrash/Failoverprotocol relies on the fact that every
routerR has a precise summary of all the subscriptions that
its downstream neighbors are interested in. It can thus reg-
ister/cancel any of these subscriptions at any time by send-
ing an advertisement to its upstream routerU , which see the
advertisement as if it were the result of a consumer register-
ing/canceling the subscription.

Consider a routerR, its upstream routerU linked to R
via interfaceI, the set ofR’s downstream routers{Di}i≤n

and their respective backup routers{BDi
}. When a down-

stream routerDi detects that its upstream routerR has
failed and is unlikely to recover soon (e.g., after a reason-
ably long timeout), it switches over to its backup router
BDi

as new upstream router and registers all the subscrip-
tions stored in its routing table, as if they had just origi-
nated from “real” consumers. Note that there are typically
far less subscriptions than consumers downstream fromDi

because of subscription aggregation, and only the subscrip-
tions that have not been aggregated need to be registered.
Once every routerDi has reconnected toBDi

, U can can-
cel all the subscriptions that were registered through inter-

faceI from its routing table to reestablish perfect routing on
the path from the producer toU . Clearly, after the recovery
procedure has completed, the system state is again consis-
tent with the consumer population. Note that, ifDi has in-
correctly suspectedR to have failed (e.g., because of a link
failure) and has switched over toBDi , R will cancel all the
subscriptions that were registered byDi.

S1,S2U

AS3

S2S1 D2D1

S3

S1 S2

U

AS3

S3

Can(S1)
Can(S2)

S2

S1

D2

D1

Reg(S2)

Reg(S1)

BD2

BD1R

Figure 3. Recovering from the crash of router
R with the Crash/Failover scheme.

Figure 3 illustrates a simpleCrash/Failoverscenario (the
subscriptions that each node is interested in are represented
next to the interface they came from; the state before the
failure is represented on the left and recovery phase on the
right). RoutersD1 andD2 are interested in subscriptions
S1 andS2 respectively, while routerA is interested inS3.
WhenR crashes, routersD1 andD2 connect to their backup
routerBD1 andBD2 and register their subscriptionS1 and
S2 (“Reg” messages). Thereafter,U can remove all sub-
scriptions previously registered byR from its routing ta-
ble and propagate the changes upstream (“Can” messages).

The Crash/Failover protocol can be advantageously
combined with theCrash/Recoverprotocol to deal with
temporary link of node failures. If the failure dura-
tion reaches a predefined threshold, then the affected
routers will switch over to a backup. The subscriptions re-
ceived from downstream routers are buffered and pro-
cessed after completion of the reconnection phase. Note
that, in the case of simulataneous failures, it might not
be possible to use theCrash/Failoverprotocol (e.g., be-
cause backup routers have also failed) and the system has
to wait for some of the crashed routers to recover.

4.3. Masking Failures withRedundant Paths
TheCrash/Recoverand theCrash/Failoverschemes suf-

fer from two major drawbacks. First, the service is inter-
rupted for the duration of the failure or until the overlay
network has reconfigured. Second, they generate upon re-
covery an upstream traffic of advertisements that can be
important, which each advertisement involving routing ta-
ble updates at the traversed routers. To alleviate these draw-
backs, we can combine these schemes with a masking strat-
egy based onRedundant Paths, which improves availabil-
ity by providing uninterrupted service despite failures. In
particular, events can be delivered reliably and timely even
though some of the routers fail.

TheRedundant Pathsstrategy is based on the same prin-
ciple as active replication [13]. It makes the assumption that
each routerR has at least one alternate route to the pro-
ducer. The routing information that corresponds to routerR
is replicated in the routing tables of the alternate routes. The
implementation of theRedundant Pathsstrategy does not
require other modifications to the XROUTE protocol than
sending advertisements to all upstream routers (rather than
a single one).

If routerR hasn alternate routes to the producer, it is re-
silient to the failure of at leastn−1 upstream routers (in the
case of multiple producers,R should haven alternate routes
to each producer, but those routes may share common sub-
paths). When some routers on a route fail, the routers on the
other routes are still consistent with the consumer popula-
tion andR will keep receiving documents from those routes.

S1

To producer

e

e
e

C

A1

B2

R

B1 S1

S1

S1

S1

e

e

Figure 4. The Redundant Paths strategy.

As previously mentioned, it is important to note that
the Redundant Pathsstrategy increases the availabil-
ity (liveness) of the system, but does not deal with re-
covery. It should be combined with theCrash/Recover
or Crash/Failover protocols to ensure consistent recov-
ery from a failure. The major drawback of theRedun-
dant Pathsstrategy is that every subscription and event
will be sent over multiple routes and thus increase band-
width utilization. Further, routers and consumers must
detect and filter out duplicate events.

Figure 4 shows an example of theRedundant Pathstrat-
egy. RouterR has two routes to the producer: via routersA1

andC, and via routersB1, B2 andC (the remaining part is
common to the two routes and is not shown in the exam-
ple). RouterR is resilient to the failure of routerA1, and to
the simultaneous failures of routersB1 andB2. In the ex-
ample, routerB1 crashes andR still received evente via the
routeC → A1 → R.

4.4. Reliability of Published Events
Under normal operation, the reliable delivery of pub-

lished events is ensured by TCP. Guaranteed delivery in
the case of failures can be implemented in the same man-
ner as subscriptions in theCrash/Recoverscheme, by us-
ing acknowledgments in combination with a retransmission
buffer and a persistent data storage. However, this approach

has a high cost in terms of memory and bandwidth require-
ments as the event publishing rate is typically much higher
than the subscription registration rate. Further, events pub-
lished in content-based networks often need to be delivered
timely or not at all, and buffering them is essentially useless;
in such cases, one should use theRedundant Pathsstrategy
to ensure timely event delivery despite failures. Note again
that events do not modify the shared state of the system and
the loss of some of them only affects the quality of service
experienced by the consumers.

5. Performance evaluation
A major part of our efforts were devoted to building

working prototypes and conducting extensive experimental
evaluation of our XML content routing network and its var-
ious components. We deployed application-level routers on
the PlanetLab global distributed platform [15] to simulate a
realistic content based network overlay at Internet scale. We
conducted extensive performance evaluation of our XNET

system to test its efficiency and reliability. The resource uti-
lization of the various components of XNET has been stud-
ied in [5, 6, 7].

5.1. Experimental setup.

Network topology.The network topology consists of
21 machines of the PlanetLab network, an open dis-
tributed platform for developing, deploying, and access-
ing planetary-scale network services. PlanetLab was the
testbed of choice for us, as it enabled us to experiment
with the real conditions of the Internet, especially its un-
predictability. Although we had only22 nodes in our over-
lay, results are representative of larger networks: As a router
only knows its direct neighbors, scalability does not di-
rectly depends on the number of routers, but on the
consumer population. The machines used in the experi-
ments were running a customized version of Linux. They
all had at least512 MB of memory and a1.2 GHz pro-
cessor, but they were used concurrently by several users
running similar experiments and their load was very un-
even. In practice, as the processing and memory require-
ments of XNET are moderate, application-layer routers can
be easily deployed on low-end machines with limited re-
sources. Each of the21 PlanetLab machine was hosting a
router. As illustrated in Figure 5,12 of the routers are con-
sumer nodes (boxes),1 is a producer node (hexagon),
and the remaining9 are routing nodes (circles). The ex-
tension of the country where the machine is located is
indicated under the node numbers and the average mea-
sured link delays are indicated next to every link (upstream
delay above, downstream delay below). The routers are or-
ganized in a spanning tree rooted at the producer. Each
node implements the protocols of our XNET system, that
is: the XROUTE routing protocol, the XSEARCH sub-

scription management protocol, and the XTRIE filtering
algorithm.

52
50

37
39

2
us

3
us

6
ch

122
1248.5

8.8
5
us

4
uk

83
84

10
dk

9
nl

11
pl

16
16

80
8053

53
12
us

13
us

63
55

70
68

14
fr

15
fr

42
44

44
44

8
us

7
us

16
us

17
us

50
50

72
70

18
us

24
14

63
70

75
73

0.4
1.4

19
us

20
us

21
us

64
66

74
64

1
us

Figure 5. Experimental network topology.

Overlay statistics.Table 1 provides some network statistics
about our experimental overlay. All measures are averages
over several runs executed at different times. The link de-
lay was measured as the round-trip time to send a packet
to a machine and receive a reply over TCP (it does not in-
clude the TCP connection establishment time as we are us-
ing persistent connections).

Metrics Value
Average link delay 54.135 ms

Standard deviation of link delays 28.18 ms
Maximal link delay 6→ 2: 123.67 ms
Minimal link delay 2→ 5: 8.47 ms

Average minimal routing delay 160.63 ms
Average minimal update delay (consumer→ producer) 169.64 ms
Maximal producer throughput (“single-element” docs) 53.13 docs/s

Maximal producer throughput (“normal-size” docs) 30.28 docs/s
Maximal upstream (consumer) throughput 18.56 sub/s

Table 1. Overlay statistics.

The average minimal routing delay was computed by in-
jecting at the producer an XML document with a single
“wildcard” element matching all consumer subscriptions.
Consequently, the document was forwarded to all the con-
sumers with minimal process time at the routers. We mea-
sured the delay experienced by each consumer to receive
the document and we computed the average over all con-
sumers and over1, 000 runs. This measure gives a lower
bound on the routing delay.

We computed the average minimal update delay as the
time necessary to propagate a “wildcard” subscription (re-
quiring negligible process time at the routers) from the con-
sumer to the producer. We computed the average over100
runs at each consumer and over all consumers. The result-
ing value gives a lower bound of the update time of the net-
work when a new consumer subscribes to the system.

The maximal producer throughput was computed by
sending a burst of1, 000 documents and measuring the de-
lay between the time the first document was sent until the
last document was received by the last consumer. We ran

the test both with minimal “single-element” documents and
with “normal-size” documents containing22 tag pairs. The
first measure corresponds to the maximal network through-
put at the producer, while the second gives an upper bound
of the producer rate with realistic event workloads.

We finally computed the average upstream throughput in
the same way as we did for the maximal producer through-
put: for each consumer, we registered100 “single-element”
subscriptions in a burst and measured the delay until the net-
work has been updated. We then computed the average over
all the consumers. This value gives an upper bound of the
consumers’ arrival rate.

Parameter Value
Subscription h = 10, p∗ = 0.1, p// = 0.05, pλ = 0.1, θ = 1

Document Size 22 tag pairs
Documents arrival rate Poisson with rateλdoc = 1/s
Consumers arrival rate Poisson with rateλsub = 1/s
Consumer population P = 1, 000 to 50, 000

Crash duration D = 1 to 10 min
Faulty router 2 and19; 8

Backup routers 3; 2 and7

Table 2. Parameters of the experiments.

Parameters of the experiments.The parameters of our ex-
periments are summarized in Table 2. We generated tree-
structured subscriptions and XML events using the custom
generators described in [6]. The subscription parameters
control the maximal height (h) of tree patterns, the prob-
abilities of having wildcard and ancestor-descendant oper-
ators (p∗ andp//) and more than one child (pλ) at a given
node, as well as the skewθ of the Zipf distribution used for
selecting element tag names. The size of documents was set
to 22 tag pairs. We used the NITF (News Industry Text For-
mat) DTD [8] as input to the XPath and XML generators.
This application scenario models a single provider produc-
ing various types of news reports. Subscriptions represent
the interests of individual consumers for some types of doc-
uments (e.g., financial news, sports, stories about a specific
celebrity). For the sake of simplicity, we assume that each
consumer registers only one subscription: a consumer with
two subscriptions is considered as two distinct consumers.

The parametersλdoc and λsub control the arrival rate
of documents and consumers, respectively.P defines the
size of the existing consumer population, i.e., the number
of consumers that are registered in the system when the ex-
periment starts.D controls the duration of a failure before
recovery. Finally, we have simulated the failure of various
routing nodes of the network and experimented with sev-
eral configurations of backup routers.

5.2. Performance Under Normal Operation
Routing delay.We are interested in measuring the average
routing delay, that is, the average time taken by an event
to traverse the network and reach all the consumers that
are interested in that event. The protocol of the experiment

is as follows: we first populate the network with random
subscriptions injected at arbitrary consumer nodes until the
consumer population reachesP . We then inject events at
the producer node at rateλdoc. For each event, we com-
pute the average routing delay (i.e., producer-to-consumer
latency) that was experienced by each consumer node that
received the event. Results are average values of1, 000 runs
and are shown in Figure 6. We can see that the routing de-
lay remains small (less than180 ms) even with large con-
sumer populations. The excellent scalability of the system
is mainly due to the high efficiency of the filtering algorithm
XTRIE. Indeed, the routing delay is very close to the mea-
sured minimal routing delay (Table 1), which indicates that
the delay is essentially due to the link delays and not the
processing time at the routers.

160

180

200

220

240

260

280

300

10000 20000 30000 40000 50000

D
el

ay
(m

s)

Consumer population

Average registration delay
Average cancellation delay

Average routing delay

Figure 6. Routing/subscription delay.

Registration and Cancellation delays.To assess the perfor-
mance of subscription management, we have measured the
average delay experienced by a new consumer registering
a subscription, given a preexisting population of a given
size. This delay corresponds to the time necessary to up-
date all the routers that are affected by the subscription.
Given a prepopulated system withP consumers, we gener-
ated1, 000 random subscriptions (which may contain dupli-
cates to model distinct consumers having the same interests)
and injected each of them in turn at a consumer node cho-
sen uniformly at random, at a rate ofλsub. After injecting a
subscription, we canceled it to maintain a stable consumer
population during the whole experiment. We measured for
each registration the time necessary to update all the rout-
ing tables, and we computed the mean value. To study the
cost of subscription cancellations, we proceeded similarly
except that, for each of the1, 000 measurements, we can-
celed a random subscription. Results are shown in Figure 6.

We observe that the average delay for registering or can-
celing a subscription increases with the size of the consumer
population, but at a moderate rate. Even for large consumer
populations, the average delay for a new registration or can-
cellation remains reasonably small (less than300 ms). The
measured minimal update delay of170 ms (Table 1) indi-

cates that link delays represent more than75% of the over-
all registration or cancellation delay for the considered con-
sumer population sizes. We also observe that the slope of
the two curves decreases with the consumer population.
This can be explained by the fact that, as the consumer
population grows, new subscriptions have higher probabil-
ities of being aggregated and the processing overhead be-
comes smaller. The process of canceling a subscription is
more sensitive to this phenomenon, as can be seen in the
Figure (refer to [7] for mode details).

0

5

10

15

20

20000 40000 60000 80000 100000

P
ro

ce
ss

in
g

Ti
m

e
(m

s)

Consumer population

Average registration process time
Average cancellation process time

Average routing process time

Figure 7. Routing/subscription process time.

Individual Router Performance.Finally, we have measured
the performance of an individual router when dealing with
subscriptions and published events. Experiments in this
paragraph were on a 1.5 GHz Pentium IV machine with 512
MB of main memory running Linux 2.4.18 that was not part
of the PlanetLab network.

Figure 7 shows the average process time for registering
or canceling subscriptions and for routing XML documents,
given existing downstream consumer populations of various
sizes. Each result is the average of1, 000 runs. The results
are consistent with those of Figure 6 and corroborate the as-
sertion that the link delays in PlanetLab are responsible for
the largest portion of the overhead in the registration, can-
cellation, and routing delays.

5.3. Performance of theCrash/RecoverScheme
Under normal operation (with no system failures), we

have just observed that our XNET system is highly efficient
and scalable. We now study its behavior when faults occur.
We first concentrate on theCrash/Recoverscheme.

Consider a routerR that has crashed at timetcrash and
recovered at timetrecovery. We want to measure the recov-
ery delayDrecovery until the whole systemhas recovered.
Indeed, during the downtime of routerR, its downstream
neighbors buffer the advertisements (consumer registrations
or cancellations) that should be sent toR. Upon recovery,
R and its upstream routers must “catch up” by handling all
buffered advertisements. The recovery delay is computed
as the delay between the recovery time ofR (trecovery) and

the time when the whole system has been updated and re-
flects the current consumer population.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10000 20000 30000 40000 50000

Ti
m

e
(m

s)

Consumer population

Recovery delay for router 19 (1 min crash)
Recovery delay for router 19 (5 min crash)

Recovery delay for router 19 (10 min crash)
Recovery delay for router 2 (1 min crash)
Recovery delay for router 2 (5 min crash)

Recovery delay for router 2 (10 min crash)

Figure 8. Recovery delays for routers 2 and
19 after crashes of various durations.

The protocol of the experiment is the following: consid-
ering the system with a preexisting consumer populationP
and under a consumer arrival rate ofλsub, we kill router
Ri at timetcrash and restart it attrecovery. We then mea-
sure the delayDrecovery until the system is up-to-date with
no advertisement in the buffers. We are particularly inter-
ested in the ratio betweenDrecovery and the crash duration
Dcrash = trecovery − tcrash.

We first experimented with the failure of router2 under
various consumer populations and crash durations. We then
repeated the same experiments with the failure of router19.
We chose these routers to figure out if the level of the router
in the tree topology has an impact on the efficiency of the
recovery mechanism.

Figure 8 shows the recovery delays resulting from the
crashes of routers2 and19, for various crash durations and
consumer populations. Table 3 presents the absolute values,
in seconds, of the recovery delayD2 andD19 of routers2
and19, respectively, as well as the ratiosR2 andR19 of the
recovery delay to the crash duration (Ri = Di

Dcrash
).

A first observation is that, independently of the failing
router, the crash duration, or the existing consumer popu-
lation, the system is able to recover in a few seconds (typi-
cally less than10 seconds). We can also note that, unsurpris-
ingly, the recovery delay increases with the crash duration
because the system needs to process more buffered adver-
tisements to catch up; it does not, however, exceeds2% of
the crash duration. The recovery delay also increases with
the consumer population. This is consistent with the obser-
vations made in the failure-free experiments. Finally, we ob-
serve that there is no significant difference between the re-
covery delay for router2 and that for router19. This can be
explained by the fact that router2 is a high level router and
must process more buffered advertisements, but the updates
of its routing table are simpler because subscriptions have
likely already been aggregated along the way. Router19 is

a low level router and must process fewer advertisements,
but it systematically needs to perform more costly aggrega-
tion operations (its downstream routers are consumer nodes
and hence do not aggregate subscriptions). Therefore, it ap-
pears that the distance of the failing router from the pro-
ducer node does not have a strong impact on the recovery
efficiency of the system.

Dcrash P 1, 000 2, 000 5, 000 10, 000 20, 000 50, 000
1 min D2 637 514 757 799 913 778

R2 1.06 .85 1.26 1.33 1.52 1.29
5 min D2 3582 3351 3515 4290 5280 8228

R2 1.19 1.11 1.17 1.43 1.76 2.74
10 min D2 7781 8361 9153 10148 9533 11136

R2 1.29 1.39 1.52 1.69 1.59 1.86
1 min D19 305 374 440 530 681 721

R19 0.51 0.62 0.73 0.88 1.13 1.20
5 min D19 2638 2743 3282 3345 3932 5638

R19 0.88 0.91 1.09 1.12 1.31 1.88
10 min D19 4559 6228 5818 7322 8700 11709

R19 0.76 1.03 0.97 1.22 1.45 1.95

Table 3. Recovery delay as function of the
consumer population and the crash duration.

5.4. Performance of theCrash/FailoverScheme
We finally study the overhead induced by the

Crash/Failover scheme upon the failure of router8,
which represents a medium level router in the tree topol-
ogy. We considered two different scenarios for the recon-
nection of the downstream routers18 and19 to their backup
routers. In the first scenario, the backup router for both
routers18 and19 is router3 (i.e., the closest non-failed up-
stream router). In the second scenario, router18 is redi-
rected to router7 while router19 is redirected to router
2. Figure 9 shows the new network topologies result-
ing from both scenarios.

2
us

3
us

6
ch

5
us

4
uk

10
dk

9
nl

11
pl

12
us

13
us

14
fr

15
fr

7
us

16
us

17
us

18
us

19
us

20
us

21
us

1
us

8
us

Figure 9. New network topologies for scenar-
ios 1 (plain arrows) and 2 (dashed arrows).

The protocol of the experiment is the same for both sce-
narios. We first kill router19 at timetcrash. We then redirect
the downstream routers18 and19 to their backup routers, as
explained in section 4.2. We measure the timetrecover when
the whole system has been updated and reflects the current
consumer population. The recovery delayDrecovery is the
difference betweentrecover andtcrash. For each scenario,

we experimented with preexisting consumer population of
various sizes. Also, all the experiments were conducted un-
der a constant consumer arrival rateλsub. Figure 10 sum-
marizes the results that we obtained.

We observe that the recovery delay for both scenarios re-
mains reasonably small, typically less than1 minute. Also,
we can see that the delay increases with the consumer pop-
ulation. This is explained by the fact that the routing tables
grow with the consumer population and, during the recov-
ery phase, a portion of the routing tables of routers18 and
19 must be registered and a portion of that of router8 must
be canceled. In addition, because of subscription aggrega-
tion, the routing table updates that must be performed upon
recovery are more costly than that of “ordinary” consumer
subscriptions. Finally, we observe that the recovery delay
for scenario1 is significantly higher than that for scenario
2 for most consumer populations. This is due to the con-
tention on router3 and its upstream links, which become
bottlenecks in scenario1; in contrast, the load is split be-
tween distinct routers in scenario2.

0

10

20

30

40

50

60

70

80

10000 20000 30000 40000 50000

D
el

ay
 (s

)

Consumer population

Update delay for scenario 1
Update delay for scenario 2

Figure 10. Update time for scenarios 1 and 2.

By comparing the results obtained with the
Crash/Failover and the Crash/Recover schemes, we
can conclude that the former should be preferred only for
small consumer populations and long crash periods. In sys-
tems with large consumer populations, theCrash/Recover
scheme is more adequate provided that the crashed router
eventually recovers. We do not discuss the performance of
the Redundant Pathsstrategy as it does not introduce re-
covery overhead.

6. Conclusion
Our XNET content-based publish/subscribe system inte-

grates several novel techniques to efficiently deliver mes-
sages to large consumer populations. In this paper, we have
specifically addressed the issue of reliability and evaluated
different approaches to fault tolerance, designed to preserve
global state consistency and recover from router or link
failures. The key principle underlying our recovery mecha-
nisms is that the local state of a router can be reconstructed
from the state of its neighbor routers. We have conducted an

extensive and realistic performance evaluation of our sys-
tem by deploying it on the PlanetLab testbed. Experimen-
tal results demonstrate that XNET does not only offer very
good performance and scalability under normal operation,
but can also quickly recover from system failures.

References

[1] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. InProceedings
of ICDCS, 1999.

[2] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service.ACM Trans-
actions on Computer Systems, 19(3):332–383, 2001.

[3] A. Carzaniga, M. Rutherford, and A. Wolf. A routing scheme
for content-based networking. InProceedings of IEEE IN-
FOCOM 2004, Mar. 2004.

[4] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Ras-
togi. Tree Pattern Aggregation for Scalable XML Data Dis-
semination. InProceedings of VLDB, Aug. 2002.

[5] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Effi-
cient Filtering of XML Documents with XPath Expressions.
VLDB Journal, 11(4):354–379, 2002.

[6] R. Chand and P. Felber. A scalable protocol for content-
based routing in overlay networks. InProceedings of NCA,
Apr. 2003.

[7] R. Chand and P. Felber. Efficient subscription management
in content-based networks. InProceedings of DEBS, May
2004.

[8] I. P. T. Council. News Industry Text Format.
[9] G. Cugola, E. D. Nitto, and A. Fugetta. The JEDI event-

based infrastructure and its application to the development
of the opss wfms.IEEE Transactions on Software Engineer-
ing, 27(9):827–850, Sept. 2001.

[10] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec.
The many faces of publish/subscribe.ACM Computing Sur-
veys, 35(2):114–131, June 2003.

[11] G. Muhl.Large-Scale Content-Based Publish/Subscribe Sys-
tems. PhD thesis, TU Darmstadt, Sept. 2002.

[12] G. Muhl, L. Fiege, and A. Buchmann. Filter similarities in
content-based publish/subscribe systems. InProceedings of
ARCS, 2002.

[13] S. Mullender, editor.Distributed Systems, chapter 7 and 8.
Addison-Wesley, 2nd edition, 1993.

[14] G. Picco, G. Cugola, and A. Murphy. Efficient content-based
event dispatching in the presence of topological reconfigura-
tion. In Proceedings of ICDCS, 2003.

[15] Planetlab. http://www.planet-lab.org.
[16] A. Snoeren, K. Conley, and D. Gifford. Mesh Based Content

Routing using XML. InProceedings of SOSP, Oct. 2001.
[17] W3C. XML Path Language (XPath) 1.0, Nov. 1999.

