
Université de Neuchâtel
Institut d’Informatique

Rapport de Recherche — RR-I-07-02.1

From Causal to z-Linearizable
Transactional Memory

Torvald Riegel, Heiko Sturzrehm, Pascal Felber, Christof Fetzer

February 20, 2007



From Causal to z-Linearizable Transactional Memory

Torvald Riegel1, Heiko Sturzrehm2, Pascal Felber2, Christof Fetzer1

1 Dresden University of Technology, Dresden, Germany
2 University of Neuchâtel, Neuchâtel, Switzerland

Abstract

The current generation of time-based transactional mem-
ories (TMs) has the advantage of being simple and ef-
ficient, and providing strong linearizability semantics.
Linearizability matches well the goal of TM to simplify
the design and implementation of concurrent applica-
tions. However, long transactions can have a much lower
likelihood of committing than smaller transactions be-
cause of the strict ordering constraints imposed by lin-
earizability. In this paper, we investigate the use of
weaker semantics for TM and introduce a new consis-
tency criterion that we call z-linearizability. By com-
bining properties of linearizability and serializability, z-
linearizability provides a good trade-off between strong
semantics and good practical performance even for long
transactions.

1 Introduction

Transactional memory (TM) has been proposed as
a lightweight mechanism to synchronize threads.
It alleviates many of the problems associated with
locking, offering the benefits of transactions with-
out incurring the overhead of a database. It makes
memory, which is shared by threads, act in a trans-
actional way like a database. The main goal is
to simplify the development of concurrent applica-
tions, which are becoming more widespread because
of the increasing shift to multicore processors and
multiprocessor systems.

We refer to a TM that is based on a notion of
time or progress as a time-based transactional mem-
ory (TBTM). Some sort of global time base is used
to reason about the consistency of data accessed by
transactions and about the order in which trans-
actions commit. Typically, TBTMs employ op-
timistic read operations (i.e., read operations are
not visible to other transactions) because invisible

reads are less expensive than visible reads. TBTMs
then guarantee on the basis of their time base that
the snapshot that a transaction takes of the trans-
actional memory at runtime is always consistent.
TBTMs thus have an advantage over TMs that only
ensure the consistency of the transaction at commit
time: transactions that work with inconsistent data
could for instance enter infinite loops or throw un-
expected exceptions. Nevertheless, the per-access
costs of TBTMs are small. Several recent STM de-
signs [8, 2, 10, 13] have evolved to being time-based.
Current TBTMs will be more closely described in
Sections 2 and 3.

o3

o4

TL

T2

T1

real time

1

o2

o

T1 : w(o1)w(o2)

T2 : w(o3)w(o3)

TL : r(o1)r(o2)
r(o3)w(o4)

Figure 1: Linearizability schedules T1 before T2, which
forces long transaction TL to abort (each transaction ex-
ecutes in a separate thread). Serializability would allow
all three transactions to commit.

Problem. TBTMs provide strong semantics (lin-
earizability) and are efficient and scalable. How-
ever, linearizability restricts the concurrency one
can achieve, in particular with long transactions.
Indeed, as they rely on the “first committer wins”
rule, a commit by any concurrent short transaction
may force a long transaction to abort. Further, the
fact that linearizability preserves the real time or-
dering of transactions forbids some schedules valid
for the application (e.g., serializable schedules) that
would let the long transaction commit. Consider

1



for instance the three transactions in Figure 1 ex-
ecuting on three different threads. Filled circles
correspond to write operations (i.e., new versions
that will be visible to other transactions at commit
time) while empty circles represent read operations.
Transaction demarcation is represented by the gray
triangles. Linearizability imposes an ordering of T1

before T2 , which prevents long transaction TL from
committing, even though there is a valid serializa-
tion. Linearizability may thus limit concurrency be-
cause it imposes a total order on transactions even
when they access disjoint object sets and would not
otherwise need to be ordered.

Contributions. In this paper, we investigate
whether the use of semantics weaker than lineariz-
ability can increase the throughput of long trans-
actions. In particular, we consider two consistency
criteria, causal serializability and serializability, and
we show how one can implement them in a TBTM
using vector clocks or plausible clocks.

We then introduce a novel criterion, which we call
z-linearizability, that combines features of lineariz-
ability and serializability and offers a good trade-
off between strong semantics and good performance
even for long transactions. With z-linearizability,
long transactions partition short transactions into
different “time zones”. The set of long transactions
and each set of short transactions within a zone are
linearizable; the set of all transactions is serializ-
able.

Besides being a consistency criterion with se-
mantics sufficiently strong for most applications, z-
linearizability also provides good practical perfor-
mance. Our evaluation shows that the through-
put of long transaction significantly increases with-
out penalizing the overall throughput, unlike ap-
proaches based on vector clocks that suffer from a
non-negligible runtime overhead.

Roadmap. The rest of the paper is organized as
follows. Section 2 gives an overview of time-based
transactional memory. Section 3 discusses related
work. In Section 4, we show how one can use vector
clocks to support (causal) serializability. Section 5
introduces the z-linearizability consistency criterion
and algorithms. Finally, Section 6 concludes.

2 Overview of TBTMs

Current TBTMs execute transactions by perform-
ing two phases. First, a consistent snapshot of ac-
cessed objects is built during an execution of the
transaction. If it is not possible to construct such
a snapshot, then the transaction is aborted. The
snapshot is virtually taken at a certain time of the
global time base, which we call the snapshot time.
This can also be a time interval in some implemen-
tations.

Read-only transactions can commit directly af-
ter the snapshot phase. Update transactions, in
contrast, have to perform additional steps to com-
mit. Updates to shared objects are either held in
a transaction-local storage or are immediately writ-
ten to the objects. Current TBTMs use write locks
or a nonblocking equivalent. Write locks of a trans-
action are released when the transaction aborts or
commits.

When an update transaction tries to commit, it
first sets write locks or activates previously set write
locks. Then, the transaction obtains a commit time
from the global time base. The transaction has to
make sure that all other transactions performing
snapshots at the commit time also have seen the
activated locks. Thus, the update transaction can
either acquire a new commit time, e.g., by incre-
menting a commit time counter, or wait one clock
tick. The commit time is then the time at which
the transaction’s updates become visible.

Before the update transaction can commit, it
must be validated. This checks that the snapshot is
still valid and consistent at the commit time (i.e.,
there have been no concurrent updates to objects
read by the transaction between the snapshot time
and the commit time). This ensures serializability
because the time interval at which write locks are
visible and the validity interval of the snapshot in-
tersect (i.e., it works like two-phase locking). It also
ensures linearizability if the time base is linearizable
and transactions do not take snapshots in the past.

The simplest implementation for a global time
base is a global shared linearizable integer counter.
The current time is obtained by reading the counter.
The counter is atomically incremented whenever a
commit time is acquired (i.e., an update transaction
commits), which models progress in the TBTM.

2



However, such a counter does not scale well in larger
systems because of contention and cache misses. On
the other hand, it has a small space overhead and
integer values are inexpensive to compare.

Using real-time clocks is another option. Per-
fectly synchronized clocks are almost as easy to use
as a shared counter and they scale very well with
the number of cores or processors. However, it is
difficult to perfectly synchronize clocks in software
and it usually requires dedicated hardware (which
we expect systems will have). If hardware support
is not available, internally synchronized real-time
clocks are sufficient to implement TBTM but the
probability of spurious aborts increases with the de-
viation of clocks. Further details about how to im-
plement TBTMs with real-time clocks can be found
in [9].

3 Related Work

The Lazy Snapshot Algorithm (LSA) [8] is an al-
gorithm for TBTMs that support multiple object
versions and uses a shared integer counter as time
base. The algorithm works in the way described
previously and tries to extend the validity interval
of the snapshot if necessary. Transactional Lock-
ing II (TL2) [2] is a TBTM that uses a similar al-
gorithm but is optimized towards providing a lean
STM and decreasing overheads as much as possi-
ble; only one version is maintained per object and
no validity extensions are performed. One further
TBTM is presented in [13]. It uses a single-version
variant of the algorithm described in [8] and per-
forms compiler optimizations.

All these three TBTMs use a shared integer
counter as time base and thus potentially suffer
from contention on the counter. We describe in [9]
how shared counters can be replaced with more scal-
able time bases, namely real-time clocks of arbi-
trary speed and sets of synchronized clocks with
a bounded deviation between the clocks. At least
parts of the overhead of the shared integer counter
are avoided in TL2 [2] by letting transactions share
commit times.

RSTM [10] is an STM that uses a shared inte-
ger counter that counts commits to be able to use
the validation fast path. It reads the counter when
opening a transactional object and skips object-

level validation if there has been no progress in the
system.

Our Z-STM (see Section 5) guarantees z-
linearizability and is based on a combination of an
optimistic time stamp ordering [11] for long trans-
actions together with LSA for short transactions.
Long transactions that violate the timestamp or-
dering rule (i.e., an operation by transaction T1 on
object o is executed before an operation by trans-
action T2 iff T1 has a smaller timestamp than T2)
are aborted. Since we expect long transactions to
interfere very rarely (because most of the executed
transactions are expected to be short), this simple
scheme works very well in practice.

4 A Vector Time Base

A reasonable way to improve the chances for long
transactions to commit is to use weaker semantics
to improve the concurrency of transactions. Some
weaker types of semantics can be implemented with
the help of vector clocks, which have the poten-
tial to increase the concurrency but also produce
higher runtime overheads. One might be able to
cope with these runtime overheads using various
optimizations like plausible clocks (see below). We
show in this section how one can implement STMs
that guarantees causal serializability and serializ-
ability before discussing their effectiveness for deal-
ing with long transactions.

Vector clocks were proposed independently by
Fidge [3] and Mattern [6] as a technique to char-
acterize causality. Each processor maintains a local
monotonically increasing counter that represents its
local time. In a system with n processors, we rep-
resent the global time as a vector of n components,
where the ith element is the local time of processor i.
A processor perceives the local time of another pro-
cessor when communicating via accesses to shared
objects. The perceived global time of a processor is
a vector clock containing its up-to-date local clock
and a stale version of the local clocks of other pro-
cesses. Each time a processor receives a vector clock
from another processor, it updates its perceived lo-
cal time by computing the element-wise maximum
of both vectors.

Vector timestamps are compared using the fol-
lowing rules:

3



(1) ti = tj ⇔ ∀k, ti[k] = tj [k];
(2) ti � tj ⇔ ∀k, ti[k] ≤ tj [k];
(3) ti ≺ tj ⇔ ti � tj ∧ ti 6= tj .
Unlike Lamport’s logical clocks [5], vector clocks

can accurately determine whether two events ei and
ej with distinct vector timestamps ti and tj are
causally related or not:

(1) ei → ej ⇔ ti ≺ tj ;
(2) ei ‖ ej ⇔ ti ⊀ tj ∧ tj ⊀ ti.
Vector clocks can be used as a time base for im-

plementing a TBTM. They offer two attractive fea-
tures. First, unlike time bases implemented with a
single shared counter (see Section 2), vector clocks
do not suffer from contention on the time base be-
cause each thread can have its own component in a
vector clock and timestamps are exchanged between
threads only when they access shared objects. This
loose synchronization can be beneficial when inter-
processor communication delays are not negligible
or contention on the shared counter is high.

Second, vector timestamps allow us to identify
transactions that are not causally related and do
not conflict, for which it is not necessary to deter-
mine a total ordering at commit time.

o3

o4

TL

T2

T1

T3

real time

1

o2

o

T1 : w(o1)w(o2)

T2 : w(o3)w(o3)

T3 : r(o3)w(o2)

TL : r(o1)r(o2)
r(o3)w(o4)

Figure 2: A causally serializable, but not serializ-
able, execution (each transaction executes in a separate
thread).

Consider again Figure 1. In a TBTM that uses
a single clock (e.g., a shared counter), transaction
T1 commits before, and is thus ordered before, T2.
Hence, TL must abort because it reads versions of
o1 and o2 that are not valid anymore at the time
TL commits. This ordering of T1 and T2 is not
necessary because the two transactions access dis-
joint sets of objects. There is a valid serialization
T2 → TL → T1 but one cannot take advantage of it.
The reason is that, without keeping track of causal
relationships, we are not able to determine that T1

and T2 can execute in any order even though the
former commits before the latter in real time.

4.1 Causal Serializability

Moving from single clocks to vector timestamps al-
low us to easily implement causal serializability [7],
a consistency criterion weaker than serializability
but stronger than causal consistency. Informally,
causal consistency allows each processor to have
its own sequential view of the execution as long as
the individual views preserve the causality relation.
Causal serializability adds the additional constraint
that all transactions that update the same object
must be perceived in the same order by all proces-
sors. For instance, the execution shown in Figure 2
is causally serializable: the thread running T3 ob-
serves the sequential execution T1 → T3 → T2 → TL

while the thread running TL observes T2 → TL →
T1 → T3. It has been argued that causal serializ-
ability is a consistency criterion strong enough to
satisfy a wide range of applications [7].

Note that causal serializability provides seman-
tics comparable to snapshot isolation [1], but
whereas the latter requires a snapshot to be ob-
served, the former only requires transactions to ob-
serve causally consistent views.

Algorithm. The pseudo code of the causally se-
rializable STM (CS-STM) is shown in Algorithm 1.
For simplicity, we assume that methods execute
atomically in the pseudo-code. Our implementation
of CS-STM ensures atomicity using an approach
similar to DSTM [4] where shared objects are ac-
cessed indirectly via “locators” and atomic updates
are performed using compare-and-swap operations.

The CS-STM algorithm works as follows: Shared
objects traverse a sequence of versions. Each time a
transaction that has written to a shared object com-
mits, it installs a new version. A vector timestamp
is associated with each object version, correspond-
ing to the commit time of the transaction that last
updated the object. We denote the timestamp of
version vi of an object by vi.ct. The validity of a
version lasts until the start of the next version, i.e.,
the validity of version vi is [vi.ct, vi+1.ct).

A transaction T computes incrementally its com-
mit timestamp T.ct during its execution. Initially,

4



it is set to the timestamp of the transaction that
was last committed by the current thread (line 3).
Thereafter, each time an object is read or writ-
ten, T.ct is updated by computing the element-wise
maximum with the timestamp of the accessed ob-
ject version (line 8). Reads are invisible, i.e., a
transaction does not know which objects have been
read by other transactions. Therefore, read/write
conflicts are not detected before commit time.

Algorithm 1 CS-STM (algorithm of thread p)
1: procedure Start(T ) . Initialize transaction attributes
2: T.state← active
3: T.ct← V Cp . Tentative commit timestamp
4: T.rs← ∅ . Read set (objects read by T )
5: end procedure

6: procedure Open(T, oi, m) . T opens oi in mode m
7: vi ← Current(oi) . Last committed version
8: T.ct← dmax(T.ct, vi.ct) . Element-wise maximum
9: if m = write then . T updates oi

10: if oi.writer 6= null then
11: arbitrate(T , oi.writer) . CM resolves conflict
12: end if
13: oi.writer ← T
14: vi+1 ←Duplicate(vi) . Tentative version
15: return vi+1
16: else . T reads oi

17: return vi

18: end if
19: end procedure

20: procedure Validate(T ) . Validate the read set of T
21: for all vi ∈ T.rs do
22: if ∃vi+1 s.t. vi+1.ct ≺ T.ct then
23: Abort(T ) . Not causally serializable
24: end if
25: end for
26: end procedure

27: procedure Commit(T ) . Try to commit transaction
28: Validate(T ) . Verify causal serializability
29: T.ct[p]← T.ct[p] + 1 . Increment p’s component of VC
30: T.state← committed . Commit tentative versions
31: V Cp ← T.ct . Remember last committed timestamp
32: end procedure

Transactions always read the last committed ver-
sion of an object (hence, old versions do not need to
be kept)1 and a single writer is allowed per shared
object. When two transactions try to update the
same object, only one of them is allowed to pro-
ceed; the other one has to abort or wait. Therefore,
write/write conflicts are prevented by allowing just
a single writer (lines 10–12). Conflict arbitration

1Keeping multiple versions would allow a transaction to
choose the version (line 7) that maximizes the chances of
successful validation and could thus increase concurrency at
the price of a higher space overhead.

is performed by a configurable module called con-
tention manager, which is responsible for the live-
ness of the system.

At commit time, transaction T validates that the
objects it has read are still valid (lines 20–26), i.e.,
it looks for read/write conflicts. To that end, the
transaction verifies that the upper bound of the va-
lidity range of each object version vi in its read set
is not strictly smaller than T.ct, i.e., vi+1.ct ⊀ T.ct.
If validation is successful, the current thread incre-
ment its local component in T.ct (this step is not
necessary if T is a read-only transaction) and com-
mits. Otherwise, T must abort.

Consider again Figure 1. Assuming that trans-
actions T1, T2, and TL execute respectively on
three threads p1, p2, and p3, with an initial vec-
tor clock of [0, 0, 0], we have: T1.ct = [1, 0, 0] and
T2.ct = [0, 1, 1]. As T1.ct ⊀ T2.ct and T2.ct ⊀ T1.ct,
transactions T1 and T2 are not causally ordered.
TL.ct is computed as [0, 1, 1] and upon validation
we have T1.ct ⊀ TL.ct (test on line 22); therefore,
TL can commit.

2

o3

T1 T2

T4
T3

ABORT
1

o

real time

ABORT

o

Figure 3: Transactions T1 and T3 must abort because
they have read object versions that are not valid at com-
mit time.

Consider now Figure 3. Transactions T3 cannot
commit because it has read object versions that
both causally precede and follow T2. Similarly, T1

must abort because the version of o3 that it has read
has been overwritten by causally preceding transac-
tion T2. In both cases, validation fails.

Correctness. To show that the CS-STM algo-
rithm ensures causal serializability, we need to prove
that (1) the individual views of committed transac-
tions at each processor preserve the causality rela-
tion, and (2) all transactions that update the same
object must be perceived in the same order by all
processors.

Condition (1) follows from the construction of

5



timestamps: a committed transaction has a times-
tamp strictly greater than all the object versions
that is has accessed (line 8). Therefore, times-
tamps reflect the causality dependencies between
the transaction that have previously updated the
objects, and the transactions that access them later.
The validation phase (lines 20–26) guarantees that
no transaction can both causally precede and fol-
low another transaction. Indeed, a transaction T
that does not pass the validation phase would see
the transactions that have updated objects from its
read set but have a smaller commit timestamp as
occurring both after and before T and would not
be able to construct a valid serialization. If the
validation phase succeeds, then these transactions
causally follow T in the view of the processor that
executes T (but they may precede it in the view
of other processors as timestamps are not compara-
ble).

Condition (2) trivially follows from the fact that
we only allow a single writer per object. Once a
version has been committed, any transaction that
updated the same object will have a commit times-
tamp strictly greater and will be causally ordered
after the first transaction.

4.2 Serializability

Although causal serializability is sufficient for a
wide range of applications, one also often needs
stronger consistency criteria. Serializability ensures
that the concurrent execution of a set of transac-
tions is equivalent to some sequential execution.
As compared to causal serializability, the additional
constraint is that all update transactions (irrespec-
tive of the objects that update the same object)
must be perceived in the same order by all proces-
sors. Although conceptually simple, this constraint
is surprisingly difficult to deal with if one does not
want to artificially reduce concurrency.

Consider Figure 2. The execution of all four
transactions is clearly not serializable: only one of
TL or T3 can commit without breaking serializabil-
ity as both transaction try to impose a different,
incompatible ordering between events that are not
causally related. Yet, we want to allow either of
these transactions to commit, i.e., we do not want
to order T1 and T2 a priori. The first transaction

of TL or T3 that commits will order T1 and T2; the
other one will abort.

Algorithm. The objective of our algorithm is to
maintain transactions unordered as long as possible
and, once a transaction imposes an order, prevent
any other transaction to change this order. Consid-
ering again Figure 2, assume that T3 commits and
hence orders T1 before T2. Note that T2.ct ‖ T3.ct.
A solution to ensure that this ordering cannot be
changed is to force any transaction accessing ob-
jects updated by T2 after T2 has committed, i.e.,
versions that causally follows T2, to have a commit
timestamp greater than that of T3 (by construction,
the timestamp will also be greater than that of T2).

The general principle of our serializable STM (S-
STM) algorithm is to have object versions keep
track of active transactions that have read past ver-
sions. If such a transaction commits, one must make
sure that the new version of the associated object
has a timestamp strictly greater than that of the
committed reading transaction. Information about
past readers is carried along causal chains.

S-STM works along the same lines as CS-STM,
with the major following differences: First, reads
are visible, i.e., a reading transaction lets other
transactions know that is is reading an object. To
that end, a reading transaction atomically inserts
itself in a “reader list” associated with the read ver-
sion.

Second, timestamps associated with transactions
carry besides their vector clock a list of active trans-
actions that were reading the previous version(s) of
the objects accessed by the transaction at the time
it has committed. This list is constructed at com-
mit time and its size does not exceed the number
of threads as it only needs to hold active transac-
tions. New versions of updated objects hold a refer-
ence to the timestamp of the transaction that wrote
this version, and hence to the list of causally pre-
ceding transactions. This allows us to construct a
partial precedence graph of active transactions at
runtime. At commit time, we make sure that the
timestamp of the transaction is larger than that of
any committed transaction that causally precedes
the timestamp of the objects accessed by the com-
mitting transaction. A conflict occurs if we detect
a cycle, i.e., an active transaction causally precedes

6



another active transaction and conversely. This can
easily be checked at commit time using the lists of
causally preceding transactions.

The algorithm augments CS-STM by preventing
cycles in the precedence graph and, hence, guaran-
tees that the schedule is serializable.

Implementation notes. The details of our im-
plementation are omitted as they are quite intricate,
especially regarding the handling of race conditions
when maintaining the partial precedence graph.
While we do not rely on locks (we use compare-
and-swap operations), we use an additional state
to indicate when transactions are committing. A
transaction that cannot progress because it waits
for the outcome of a committing transaction helps
that transaction commit. This may result in unnec-
essary work but improves liveness and fault toler-
ance in case the committing transaction is delayed
or crashed.

The runtime overhead of managing both vector
timestamps and the partial precedence graphs can
be deemed prohibitive, especially for short trans-
actions. Therefore, this algorithm is mostly useful
when (1) causal serializability is not sufficient for
the considered application, and (2) the increase in
the level of concurrency offered by the algorithm
compensates for the overhead.

4.3 Practical Vector Time using
Plausible Clocks

The main drawbacks of vector clocks are their run-
time and space overheads. Indeed, storing, updat-
ing, and comparing vector timestamps is signifi-
cantly costlier than managing a single counter. Fur-
thermore, their size varies according to the number
of threads, which might not be known a priori (al-
though one would typically like to map only one
thread on each processor or core).

A solution to that problem is to use plausible
clocks [12] instead of vector clocks. They combine
ideas from logical and vector clocks: they have the
same theoretical strength as scalar clocks, but bet-
ter practical accuracy. Plausible clocks can always
determine the order of causally related events cor-
rectly but may order events that are actually con-
current.

Given any two events ei and ej of a global history,
a plausible time sampling system C guarantees that:

(1) ei
C= ej ⇔ ei = ej ;

(2) ei
C→ ej ⇒ (ei → ej) ∨ (ei ‖ ej);

(3) ei
C← ej ⇒ (ei ← ej) ∨ (ei ‖ ej);

(4) ei

C
‖ ej ⇒ ei ‖ ej .

Plausible clocks offer a compromise between ac-
curacy and size. It turns out that our CS-STM and
S-STM algorithms can use plausible clocks instead
of vector clocks with almost no modifications. In-
deed, vector clock comparisons are used to verify
the validity of objects read by a transaction. For
validation to abort, there must be some causal de-
pendencies between the versions read and the com-
mit time. As plausible clocks always report causal
relationships correctly, correctness is not violated.
However, some concurrent events may be reported
as causally related, leading to unnecessary aborts.

We have implemented plausible clocks based on
r-entries vectors (REV), where each timestamp is a
vector of r ≤ n elements for n processors. As there
are fewer entries in the vector than processors, en-
tries are shared. There are many possible mappings
between processors and entries but, in our study, we
only consider the modulo r mapping, where proces-
sor pi uses entry i mod r. Shared entries are incre-
mented atomically using a get-and-increment oper-
ation to avoid that two threads generate the same
timestamp. In the extreme case where r = 1, we
have a single-clock TBTM (see Section 2) whereas,
when r = n, we have classical vector clocks. Note
that there exist other types of plausible clocks [12].

4.4 Discussion

Although weaker semantics like causal serializabil-
ity and serializability can offer a higher degree of
concurrency for long transactions, it is difficult to
use them in practical implementations. Even when
using vector clocks, a TBTM still has to build a
consistent snapshot at a certain time. Vector time
provides some flexibility in the way a snapshot is
constructed as it can take effect at different times
for different objects, but long transactions still have
to strive to find a consistent snapshot that is not in-
validated by concurrent transactions.

Second, using vector clocks requires all objects to

7



participate in tracking causality. It would be prefer-
able to only impose this overhead on long trans-
actions and on the transactions that are in direct
conflict with them.

Third, a TBTM typically needs old object ver-
sions to construct a consistent snapshot for a long
transactions when objects are being updated con-
currently. Keeping multiple copies does not only
increase the memory overhead but also the runtime
overhead because these versions need to be tracked.

In our experiments with CS-STM and S-STM we
have observed that single-version objects can de-
crease performance and that the overheads of vector
clocks and the respective STM algorithms are quite
high. We also know that single-clock TBTMs pro-
vide good performance for short transactions and
in workloads with little contention. We would thus
like to combine the efficient and simple approach
of single-clock TBTMs with a more involved mech-
anism for long transactions, without the need to
keep multiple versions.

5 A Pragmatic Approach:
z-linearizability

In this section we introduce a novel way to address
the problem of how to increase the chances that
long transactions can commit. The problem is that
in TBTMs, long transactions that access a large
number of objects have typically a higher likelihood
of interfering with other transactions (e.g., TL1 in-
terferes with T1 and T2 in Figure 4). Moreover,
when a short transaction (e.g., T5 or T6) updates
objects that are read by a long transaction and the
short transaction commits first, this will result in
the abort of the long transaction.

To illustrate our approach, consider the scenario
depicted in Figure 4. Long transaction TL1 accesses
all objects (e.g., all accounts of a bank) while the
remaining transactions only access a small number
of objects (e.g., two accounts in case of a transfer
between two accounts). To permit TL1 to commit
and to guarantee serializability, the system would
need to abort at least transactions T1 and T2 be-
cause neither T1 and TL1 nor T2 and TL1 can be
ordered. To permit TL1 to commit and to guaran-
tee linearizability, one would additionally need to

o3

o4

TL1 T1 T5 T6 TL2

T3 T2 T7

T4

T8

real time

1

o2

o

Figure 4: Long transactions have typically a higher
chance of interfering with other transactions. Since the
first committer wins, a commit by any of the short trans-
actions T5 and T6 will result in the abort of TL1.

abort T4 or T5 because linearizability requires T5 to
be ordered before T4 but TL1 must be ordered after
T4 and before T5.

Figure 4 indicates that during long transactions
we need either to delay or abort some short trans-
actions to enforce linearizability. A practical alter-
native is to slightly weaken linearizability during a
long transaction. We propose to permit an order-
ing of short transactions that can violate the real
time ordering of transactions but only while a long
transaction is executing. To explain this, consider
for a moment that two long transactions TL1 and
TL2 access all objects (e.g., they calculate the sum
of all accounts). Our basic assumption is that long
transactions are quite infrequent in comparison to
short transactions. Hence, long transactions parti-
tion short transactions into different “time zones”
(see Figure 5).

4

TL1 TL2

zone 2

1

o2

o3

o
zone 1

zone 3

o

Figure 5: Long transactions partition short transac-
tions into zones. Transactions in each zone are lineariz-
able while the set of all transactions is only serializable.

All transactions in the individual zones are
linearizable and all transactions are serializable.
More precisely, the semantics (we call this z-
linearizability) that we want to enforce is (1) that
the set of long transactions is linearizable, (2) the

8



set of short transactions between two long transac-
tions is linearizable, (3) the set of all transactions is
serializable, and (4) the serialization order observes
the sequential execution ordering of the individual
threads. This is a weakening of linearizability in
the sense that we permit some short transactions
to violate linearizability while a long transaction is
in progress. Property (4) states that a thread can-
not cross an active long transaction “backwards”,
e.g., in Figure 4 a thread t could execute T3 and
then T5 but not T5 and then T4 because the latter
would cross the path of TL1 backwards.

5.1 Algorithm

To implement a z-linearizable STM, we use a
slightly extended LSA for short transactions and
long transactions are ordered with the help of a log-
ical clock. The idea is that each long transaction T
reserves a unique logical clock value T.zc with the
help of a global counter (which we call the zone
counter) ZC. Long transactions need to commit
in the order of their unique timestamps (i.e., T.zc).
Since we assume that long transactions are executed
infrequently, we can enforce that with the help of
a simple commit counter CT : a long transaction T
can only commit if its logical time is greater than
the current commit time, i.e., T.zc > CT , and it
then sets CT atomically to T.zc. This implies that
all active transactions have a logical time that is
bounded by the interval AI = (CT,ZC].

Conflicts between long transactions are resolved
with the help of logical time o.zc attached to each
object o. When a long transaction T opens an ob-
ject o, it sets o.zc atomically to T.zc if o.zc < T.zc.
If T was “passed” by a long transaction T2 with a
higher zone number, i.e., T2.zc > T.zc and o.zc =
T2.zc, then we abort T .

We assume that a transaction opens each object
that it accesses exactly once. When opening an
object in read mode, a reference to the current ver-
sion of the object is returned. This object will not
change because when an object is opened in write
mode, a private copy of the object is created and
returned to the transaction. Write accesses are vis-
ible, i.e., write/write conflicts are detected on open
and result in one of the involved transactions being
delayed or aborted by the contention manager.

Committing of a long transaction is straightfor-
ward. A long transaction just atomically flips its
status from “active” to “committed” if its zone
number T.zc is greater than the current commit
time CT . Otherwise, the transaction has to abort.
Such a simple check is sufficient because any read or
write conflict with another long transaction is de-
tected via the logical timestamps o.zc of the objects
and leads to an abort or delay of one of the involved
transactions.

5.2 Short Transactions

The percentage of short transactions is expected to
be substantially higher than that of long transac-
tions. To improve scalability, we can use a LSA
that uses real-time stamps. This permits us to par-
allelize the time base through the use of synchro-
nized real-time clocks [9] (and avoids in this way
the contention on shared commit time counter).

To enforce z-linearizability, we need to detect
and abort short transactions that would “cross” the
path of a long transaction (e.g., like transactions
T1 and T2 in Figure 4). The detection is imple-
mented as follows. Each short transaction T has a
logical timestamp T.zc. Unlike for a long transac-
tion, T.zc is set when T opens the first object. This
means that the first object that T opens determines
its zone. We have to detect when a transaction
crosses from one zone into another zone (unless the
transactions that defined these zones have already
committed). More precisely this can be achieved as
follows.

When a short transaction T opens the ith object
oi (i > 1), it compares its timestamp T.zc with
that of the opened object oi.zc. If they are in the
same zone, T can proceed. If they are different
but both belong to transactions that are not active
anymore (i.e., oi.zc ≤ CT and T.zc ≤ CT ), T can
also proceed because T cannot interfere with any of
these long transactions. If however the transaction
might still be active (i.e., oi.zc ∈ AI or T.zc ∈
AI) we call the contention manager, which would
typically abort T .

The decision of whether a transaction can commit
is performed by the underlying LSA algorithm, i.e.,
the detection of a short transaction crossing a long
transaction is entirely performed during the open of

9



objects.

5.3 Implementation Details

The pseudo code for implementing z-linearizability
is depicted in Algorithms 2 and 3. The basic pre-
requisite is that we classify transactions as either
long or short: a long transaction calls the functions
depicted in Algorithm 2 while a short transaction
the ones depicted in Algorithm 3. The class must be
known at the start of a transaction. In the simplest
case, the programmer might need to mark explic-
itly transactions that are long. However, an auto-
matic marking based on past behaviors of transac-
tions would be a viable alternative.

Algorithm 2 Z-STM for long transactions
(algorithm of thread p)
1: procedure Startlong(T ) . Start long transaction
2: T.state← active
3: T.zc← ZC++
4: end procedure

5: procedure Openlong(T, oi, m) . T opens oi in mode m
6: if oi.zc < T.zc then
7: oi.zc← T.zc
8: if oi.writer 6= null then
9: arbitrate(T , oi.writer) . CM resolves conflict
10: oi.writer ← null . T won
11: end if
12: if m = write then . T updates oi

13: oi.writer ← T
14: oi.next← Duplicate(Current(oi))
15: return oi.next
16: else . T reads oi

17: return Current(oi)
18: end if
19: else . Transaction with higher zc beats us
20: Abort(T )
21: end if
22: end procedure

23: procedure Commitlong(T ) . Try to commit transaction
24: if T.state = active ∧ T.zc > CT then
25: T.state← committed
26: CT ← T.zc
27: LZCp ← T.zc . Remember last zone committed in
28: else
29: T.state← aborted
30: end if
31: end procedure

The pseudo code assumes access to an imple-
mentation of LSA (e.g., see [9]), which is called
when a short transaction T starts, opens an ob-
ject, commits, or aborts. For simplicity, we assume
that methods execute atomically in the pseudo-
code. Atomicity is implemented with the help of

compare-and-swap operations and indirect accesses
to shared objects via locators, as in [4].

Algorithm 3 Z-STM for short transactions
(algorithm of thread p)
1: procedure Startshort(T ) . Start short transaction
2: T.zc← 0
3: StartLSA(T)
4: end procedure

5: procedure Openshort(T, oi, m)
6: if T.zc = 0 then . Opening first object?
7: if oi.zc < LZCp then . From old zone?
8: if LZCp > CT then . Zone still active?
9: Abort(T ) . Cannot move to past zone
10: else
11: T.zc← CT
12: end if
13: else
14: T.zc← oi.zc
15: end if
16: else if T.zc 6= oi.zc then . Different zones?
17: if T.zc > CT ∨ oi.zc > CT then . Zones still active?
18: conflict(T, oi.zc) . CM delays/aborts T
19: else
20: T.zc← CT
21: end if
22: end if
23: OpenLSA(T, oi, mode)
24: end procedure

25: procedure Commitshort(T ) . Try to commit transaction
26: CommitLSA(T )
27: if T.state = committed then
28: LZCp ← T.zc . Remember last zone committed in
29: end if
30: end procedure

5.4 Discussion

We discuss briefly why Algorithms 2 and 3 ensure
z-linearizability. First, we need to explain why the
set of committed long transactions is linearizable.
Informally, we need to sketch why any long trans-
action T takes effect atomically somewhere between
the start and the end of the transaction. The way
this is achieved is that a long transaction uses a
consistent snapshot of all objects it accesses. The
snapshot of the objects is created by opening the
objects and by making sure that the zone counter
(o.zc) of all objects is strictly monotonic, i.e., all
long transactions access objects in the order of their
zone counter (i.e., T.zc) or get aborted. Short trans-
actions cannot “cross” a transaction that is still ac-
tive (see Algorithm 3 lines 16-22). We use visible
writes to detect write/write conflicts and updates
become visible to other transactions when the up-

10



date transaction’s status changes from “active” to
“committed” (Algorithm 2, line 25). In this way,
a long transaction takes atomically effect when the
status changes to committed.

Second, we need to sketch why short transactions
sandwiched between two long transactions are lin-
earizable. Such short transactions use LSA [8] to
make sure that that their read and write snapshot
is consistent at the time a short transaction com-
mits. This ensures linearizability.

Third, the set of all transactions is serializable.
This follows from the property that all long trans-
actions are linearizable and all short transactions
belonging to the same zone are linearizable. Note
that a short transaction T can access objects be-
longing to different zones as long as T and all the
objects T accesses belong (at the time of the open)
to a zone that is already in the past (Algorithm
3: test on line 17). LSA ensures that at the time
T accessed the last object (and until T commits),
T ’s snapshot of all accessed objects is consistent.
This means that T can be ordered between the last
long transaction that committed before T accessed
its last object and the next long transaction that
commits.

Fourth, we explain why the serialization order
observes local execution order. This is enforced
with the help of a thread local variable LZC. This
variable keeps track of the last zone in which the
thread committed either a long or a short transac-
tion. Long transactions will always commit with a
new maximum zone number (see Algorithm 2: test
on line 24) and this will be used to update LZC (Al-
gorithm 2 line 27). In short transactions, we make
sure that a thread only accesses objects with a zone
counter of at least LZC (Algorithm 3 line 7) unless
all long transactions with a zone counter ≤ LZC
have already committed (Algorithm 3 line 8). In
the latter case, we can safely assume that the short
transaction executes at the current CT (Algorithm
3 lines 11 and 20) because the underlying LSA en-
forces a consistent snapshot.

5.5 Performance Evaluation

In what follows, we highlight the usefulness and
advantages of z-linearizability by showing perfor-
mance results for a simple bank micro-benchmark.

This benchmark consists of two transaction types:
(1) transfers, i.e., a withdrawal from one account
followed by a deposit on another account, and
(2) computation of the aggregate balance of all
accounts (Compute-Total). Whereas the former
transaction is a small update transactions, the
latter is a long transaction and treated as such.
Compute-Total has two variants: a read-only trans-
action, or an update transactions that write to pri-
vate but transactional state. There are 1,000 ac-
counts. One of the threads performs both transfers
(with 80% probability) and balance computations
(with 20% probability), while the other threads only
execute transfers. We executed the benchmark on
an 8-core UltraSparc T1 system, which runs four
threads concurrently per core. The STMs are Java
prototypes, LSA-STM is from [8], and Z-STM is
LSA-STM adapted as described in Section 5. We
used Sun’s HotSpot Java VM 1.5 running on So-
laris.

Figure 6 shows that with read-only Compute-
Total transactions, Z-STM and LSA-STM perform
very similar, and the overhead of updating and
checking the per-object zone counters is negligible
on our system. Z-STM performs Compute-Total
faster than LSA-STM because the latter always
maintains read sets. An optimized version of LSA-
STM that detects when read sets are not required
is as fast as Z-STM. The slight decline of through-
put when the number of threads increases is due to
several threads sharing one CPU core.

However, once Compute-Total transaction be-
come update transactions, LSA-STM is not able
to execute them anymore because the probability
that an account is updated during the runtime of
the long transaction is very high. Because of invis-
ible reads, Compute-Total transactions cannot eas-
ily prevent or delay transfers. In contrast, Z-STM
is able to sustain the throughput, as can be seen
in Figure 7. Note also that the transfer through-
put does not decrease as compared to LSA-STM.
Traditional visible reads would require that trans-
fers wait for the long transaction to complete; in
Z-STM, transfers can update an object right after
the long transaction has completed its read access.

11



6 Conclusion

The linearizability semantics supported by time-
based transactional memories (TBTMs) are sim-
ple to reason about for the developers and allow
for efficient and scalable implementations. Yet, en-
forcing linearizability also has the negative effect of
restricting concurrency under some common work-
loads, notably when long transactions compete with
many short transactions.

We have investigated the use of semantics weaker
than linearizability as a mean to increase the
throughput of long transactions. Causal serializ-
ability is sufficient for a wide range of applications
and can be easily implemented using vector clocks
(or plausible clocks). However, we have also ob-
served in our prototype that the runtime overhead
for managing vector time can be quite significant.
Serializability is strong enough for many applica-
tions but is hard and costly to fully support as it
requires maintaining a partial precedence graph at
runtime.

We have therefore proposed a novel consistency
criterion, which we call z-linearizability, that of-
fers a good trade-off between strong semantics and
good performance. Long transactions partition
short transactions into different zones. Lineariz-
ability is guaranteed among long transactions and
within a zone, while the whole set of transactions
is serializable. We have observed a significant in-
crease in the throughput of long transactions using
z-linearizability in our experiments. Some of the
throughput gains of Z-STM can be attributed to the
following factors: (1) Z-STM does neither have to
maintain a read set nor a write set for long transac-
tions, (2) long transactions can commit with a very
simple and efficient validation test, (3) Z-STM does
not need visible reads for short transactions, and (4)
Z-STM does not, in particular, need to keep mul-
tiple versions (like snapshot isolation) to get good
performance for long transactions.

References

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of SIGMOD, pages
1–10, 1995.

[2] D. Dice, O. Shalev, and N. Shavit. Transactional
Locking II. In 20th International Symposium on
Distributed Computing (DISC), September 2006.

[3] C. Fidge. Timestamps in message-passing systems
that preserve the partial ordering. Australian Com-
puter Science Communications, 10(1):56–666, 1988.

[4] M. Herlihy, V. Luchangco, M. Moir, and
W. Scherer. Software transactional memory for
dynamic-sized data structures. In Twenty-Second
Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, 2003.

[5] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[6] F. Mattern. Virtual Time and Global States of Dis-
tributed Systems. In International Workshop on
Parallel and Distributed Algorithms, 1988.

[7] M. Raynal, G. Thia-Kime, and M. Ahamad. From
serializable to causal transactions for collaborative
applications. In Proceedings of the 23rd EUROMI-
CRO Conference, 1997.

[8] T. Riegel, P. Felber, and C. Fetzer. A Lazy Snap-
shot Algorithm with Eager Validation. In 20th In-
ternational Symposium on Distributed Computing
(DISC), September 2006.

[9] T. Riegel, C. Fetzer, and P. Felber. Time-based
Transactional Memory with Scalable Time Bases.
In 19th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), June 2007.

[10] M. F. Spear, V. J. Marathe, W. N. S. III, and M. L.
Scott. Conflict Detection and Validation Strategies
for Software Transactional Memory. In 20th Intl.
Symp. on Distributed Computing (DISC), 2006.

[11] R. H. Thomas. A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases.
ACM Transactions on Database Systems, 4(2),
June 1979.

[12] F. J. Torres-Rojas and M. Ahamad. Plausi-
ble Clocks: Constant Size Logical Clocks for
Distributed Systems. Distributed Computing,
12(4):179–195, 1999.

[13] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code Generation and Optimization
for Transactional Memory Constructs in an Unman-
aged Language. In CGO, 2007.

12



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

12 8 16 32

10
00

 T
x/

s

Threads

Compute-Total transactions (read-only)

LSA-STM
LSA-STM (no readsets)

Z-STM
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

12 8 16 32

Threads

Transfer transactions

LSA-STM
LSA-STM (no readsets)

Z-STM

Figure 6: Throughput results for the Bank benchmark with read-only Compute-Total transactions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

12 8 16 32

10
00

 T
ra

ns
ac

tio
ns

/s

Threads

Compute-Total transactions (update)

LSA-STM
Z-STM

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

12 8 16 32

Threads

Transfer transactions

LSA-STM
Z-STM

Figure 7: Throughput results for the Bank benchmark with Compute-Total transactions that update state.

13


