
• Large-scale network, no PKS or trusted parties
• Secured communications and confidential membership among

members of private groups

• Detection/recovery from faulty onion-routes under
continuous churn conditions

• Impact of onion-friendly views on clustering

• Computing cost breakdown at relay nodes

• Deployment over PlanetLab and home devices

The Private Peer Sampling Service
The Ground for your Secret Society

Valerio Schiavoni, Étienne Rivière, Pascal Felber University of Neuchâtel, Switzerland

• Serverless confidential communication
• Private and secret group membership
 • Protect groups from targeted attacks

• NATs
• Firewall
• Relays

• Build a Private PSS for each secret group:
 • stream of secure channels to alive nodes
 from the group
 • secret membership protects group members
 identities and prevents group mapping

... based on a system-wide PSS

• Help with NATs
• Threat to privacy

• How to use relays but hide
source/destination/content ?

behind NAT

public

X invalid direct link

benevolent relays

malicious relays

• Creation and admission via
signed group keys, passports

• Access via explicit invites
(IM, emails, ..)

group members

onion hops

• Gossip-based views
exchange

• No direct communications
• PSS over Secure

Anonymizing Channels

• Messages exchanged via
onion routes

• Decentralized PKI

• Routing challenges:
 - Pub-to-NAT
 - NAT-to-NAT

• Bandwidth cost to maintain
onion-friendly views:

• Tested and implemented
using ᔕᕈᒪᐱᓭ (NSDI'09)

• Lua-based DSL and libraries

www.splay-project.org

tributed system. It is noteworthy that the churn manage-
ment system relieves the need for fault injection systems
such as Loki [13]. Another typical use of the churn man-
agement system is for long-running applications, e.g., a
DHT that serves as a substrate for some other distributed
application under test and needs to stay available for the
whole duration of the experiments. In such a scenario,
one can ask the churn manager to maintain a fixed size
population of nodes and to automatically bootstrap new
ones as faults occur in the testbed.

3.3 Language and Applications

SPLAY applications are written in the Lua language [17],
a highly efficient scripting language. This design choice
was dictated by four majors factors. First, the most im-
portant reason is the support of sandboxing for remote
processes and, as a result, increased security both for the
testbed owner and its users. As mentioned earlier, sand-
boxing is a sound basis for execution in non-dedicated
environments, where resources need to be constrained
and where the hosting operating system must be shielded
from possibly buggy or ill-behaved code. Second, one
of SPLAY’s goals is to support large numbers of pro-
cesses within a single host of the testbed. This calls for
a low footprint for both the daemons and the associated
libraries. This excludes languages such as Java that re-
quire several megabytes of memory just for their exe-
cution environment. Third, SPLAY must ensure that the
achieved performance is as good as the host system per-
mits, and the features offered to the distributed system
designer shall not interfere with the performance of the
application. Fourth, SPLAY allows deployment of appli-
cations on any hardware and on any operating systems.
This requires a “write-once, run everywhere” approach
that calls for either an interpreted of bytecode-based lan-
guage. Lua’s unique features allow us to meet these goals
of lightweightness, simplicity, performance, security and
genericity.

Lua was designed from the ground up to be an efficient
scripting language with very low footprint. According
to recent benchmarks [2], Lua is among the fastest inter-
preted scripting languages. It is reflective, imperative, and
procedural with extensible semantics. Lua is dynamically
typed and has automatic memory management with incre-
mental garbage collection. The small footprint from Lua
results from its design that provides flexible and extensi-
ble meta-features, rather than a complete set of general-
purpose facilities. The full interpreter is less than 200 kB
and can be easily embedded or use libraries written in dif-
ferent languages (especially C/C++). This allows for low
level programming if need be. Our experiments (Sec-
tion 5) highlight the lightweightness of SPLAY applica-
tions using Lua, in terms of memory footprint, load, and
scalability.

Lua’s interpreter can directly execute source code,
as well as hardware-dependent (but operating system-
independent) bytecode. In SPLAY, the favored way of
submitting applications is in the form of source code, but
bytecode programs are also supported (e.g., for intellec-
tual property protection).

Isolation and sandboxing are achieved thanks to Lua’s
support for first-class functions with lexical scoping and
closures, which allow us to restrict access to I/O and net-
working libraries. We modify the behavior of these func-
tions to implement the restriction imposed by the admin-
istrator or by the user at the time he/she submits the ap-
plication for deployment over SPLAY.

Lua also supports cooperative multitasking by the
means of coroutines, which are at the core of SPLAY’s
event-based model (discussed below).

events/threads

crypto*

io (fs)*

sb_fs

misc

sb_stdlib

stdlib*

log rpc

json*llenc

socketeventssb_socket

luasocket*

splay::app

* : main dependencies: third!party and lua libraries

Figure 6: Overview of the main SPLAY libraries.

3.4 The Libraries
SPLAY includes an extensible set of shared libraries (see
Figure 6) tailored for the development of distributed ap-
plications and overlays. These libraries are meant to be
used outside of the deployment system, when developing
the application. We briefly describe the major compo-
nents of these libraries.

Networking. The luasocket library provides basic
networking facilities. We have wrapped it into a restricted
socket library, sb_socket, which includes a security
layer that can be controlled by the local administrator (the
person who has instantiated the local daemon process)
and further restricted remotely by the controller. This se-
cure layer allows us to limit: (1) the total bandwidth avail-
able for SPLAY applications (instantaneous bandwidth
can be limited using shaping tools if need be); (2) the
maximum number of sockets used by an application and
(3) the addresses that an application can or cannot con-
nect to. Restrictions are specified declaratively in config-
uration files by the local user that starts the daemon, or at
the controller via the command-line and Web-based APIs.

We have implemented higher-level abstractions for
simplifying communication between remote processes.
Our API supports message passing over TCP and UDP,
as well as access to remote function and variables using
RPCs. Calling a remote function is almost as simple as
calling a local one (see code in next section). Communi-
cation errors are reported using extra return values.2

2Lua allows multiple values to be returned by a function.

6

ᔕᕈᒪᐱᓭ

Group Management

Real World Setting

Context and Problem Challenges

X X

X

X

XX

X

X
X

X

X
X

Relay nodes

R

Objectives

Private Membership Management

Private Peer Sampling Onion Views

Implementation Ongoing Evalution

300Kb

800Kb

1MB

1.2MB

1.4MB

1.6MB

base base+keys k=1 k=2 k=3

A
vg

 B
yt

e
 S

e
n
t

300Kb

800Kb

1MB

1.2MB

1.4MB

1.6MB

base base+keys k=1 k=2 k=3

A
vg

 B
yt

e
 R

e
ce

iv
e
d

Continuous stream of alive random nodes at each node

Peer Sampling Service: a Building Block for Large-Scale Applications

• Group membership • Randomness • Keeps network connected

