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Identification of Near-Surface Karst Cavities
Using the Posterior Population Expansion
Inverse Method Applied to Electrical

Resistivity Data
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Abstract

Traditional inverse methods used to interpret electrical
resistivity tomography (ERT) measurements are not able
to properly characterize karst environments due to the
strong contrast between air or water filled conduits and
the surrounding matrix. In fact, these inversion methods
were originally conceived to interpret rather uniform
lithologies. The posterior population expansion (PoPEx)
method is an inverse method designed to deal with data
presenting abrupt variations such as those encountered in
a karst system. The advantage of this method is that it
directly returns maps indicating the probabilities of
encountering conduits instead of the usual deterministic
set of resistivity values that one has to interpret manually.
This method is tested here to invert synthetic 2D ERT
data of karst systems. At this stage, PoPEx is computa-
tionally demanding and needs to be standardized. How-
ever, the results presented in this paper show that it is
capable of properly identifying simple and synthetic
caves. Further, research is needed to test its applicability
in the field.
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1 Introduction

Limestone environments are subject to significant karstifi-
cation leading to the formation of large cavities. In many
situations, it is necessary to be able to detect them as
accurately as possible. For example, near-surface cavities
can seriously impact any kind of construction through sub-
sidence or collapse. Therefore, identifying them at an early
stage may avoid important material and economical losses
(Parise et al 2015). It may also be important to characterize
the karst subsurface to locate, for example, where to drill
new boreholes for the drinking water supply.

Geophysical techniques, and among them geoelectrical
techniques, are broadly used methods to characterize effi-
ciently the subsurface (Bechtel et al 2007; Chalikakis et al
2011). Although widely used and very effective in uncon-
solidated media, geoelectric methods are not fully effective
in karst environments. In fact, locating the exact location of a
conduit remains one of the most challenging tasks in karst
research (Zhu et al. 2011).

Most traditional geophysical inversion methods are based
on a deterministic approach and do not consider prior geo-
logical knowledge. Moreover, their most frequent numerical
schemes assume that the spatial distribution of the petro-
physical parameters (e.g., the electrical resistivity) is as
smooth as possible. In the case of karstic systems, this can be
an issue as conduits are discrete objects displaying strong
contrasts with the underlying limestone.

Among the inverse methods that can deal with discrete
problems is the posterior population expansion method
(PoPEx) (Jaggli et al. 2017, 2018). This method was
specifically developed to account for categorical distribu-
tions of the unknown parameters, i.e., the electrical
resistivity when applied to ERT data. Moreover, it allows
the integration in the inversion scheme of prior geological
knowledge. Models of the possible distribution of the
electrical resistivity values are defined before running the
inversion.
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The method can be used for a broad range of applications
in complex, geologically realistic, and discrete model space
settings. Until now it has been tested on hydrogeological
problems. This paper presents its first application on a
geophysical data set. The study aims to investigate if the
method can provide reasonable results when it is applied to
interpret electrical resistivity tomography (ERT) data. The
study is based on synthetic data sets for which the exact
locations of the conduits are known and can be used to
verify the quality of the results. Application to real field data
is out of the scope of this paper and will be studied in future
works.

2 Methods

2.1 The Posterior Population Expansion Method
All the mathematical theory underlying the PoPEx method
is described in detail in Jaggli et al (2017) and Jéggli et al
(2018). Here, for sake of brevity, only the main ideas are
outlined. PoPEx is a generic probabilistic Bayesian inver-
sion method. Its inversion scheme is based on a set of
geological models that are generated using a geostatistical
method and extended iteratively. At each iteration, the
existing set of samples is used to learn, in a statistical
sense, the relationship between the model parameters and
the variables.

As for any Bayesian inversion technique, the first step is
to define the statistical model of the prior distribution of the
unknown parameter values (i.e., the electrical resistivity).
This prior distribution expresses what we know about the
underground before collecting the geophysical data. In karst
systems, we will express the fact that we know that we
expect to find cavities in limestone formations with a certain
spatial geometry derived a priori from analogous sites and
geological studies.

To express this knowledge in statistical terms, a
multiple-point statistics (MPS) approach is used. Then, each
geological model that is generated is transformed into
petrophysical parameters. In this paper, to keep the problem
very simple, we assumed that this relation is deterministic,
but this is not an obligation.

The models are then used to compute the forward geo-
physical response which is compared to the observation data.
This allows to define a misfit function and evaluate the
likelihood by assuming a certain statistical distribution of the
errors. Results are stored in an ensemble, and statistics from
the ensemble are computed to check which features in the
model space are likely to produce a good fit between the
observations and the calculated data. This knowledge is then

used to preferentially sample certain locations and parameter
values and generate new models by conditioning the geo-
statistical simulations with this information. In this process,
the algorithm progressively learns how to generate new
models that are more likely to fit the data.

The PoPEx method generates a large ensemble of
stochastic simulations and returns either the simulations
having the highest probabilities of fitting the data or the
probability maps of finding a conduit at a certain location.

2.2 Prior Parameter Distribution

To apply the PoPEX inversion method to ERT data, a sta-
tistical model of all the possible geometries of the encoun-
tered cavities is needed in order to define a prior parameters
distribution. To this aim, the direct sampling (DS) MPS
method (Mariethoz et al. 2010) is used.

This method is based on a training image (TI). The
training image is a conceptual model that represents the
general structures and the variability of the geometries that
are expected to be found in the studied area. From the
training image, the DS method learns the statistics of the
pattern and produces stochastic simulations (realizations)
that resemble the training image. The TI must be larger than
the realizations so that the algorithm can deduce statistics.
Figure 1a shows the training image used in this study. Size
of the TI is 80 by 1000 m. Realizations of 15 m depth by
100 m long are produced from it. This TI is a concept
derived from field observations and adapted to represent the
expected variability of the geometry of karst conduits.

Figure 1b, c shows few examples of the many possible
realizations obtained from the training image 1a with the DS
algorithm. When no conditioning data is given, realizations
can be very different and allow exploring a wide uncertainty
space. If conditioning data, such as observations of the rock
type at the surface or along a borehole are available, the
simulations can account for that information (compare
Fig. la, b).

2.3 Forward Model and Traditional Inversion

There are many codes and software available for inverting
geophysical ERT data. Here, the pyGIMLi open-source
python package (Riicker et al. 2017) is used for two different
purposes.

Firstly, data acquisition is simulated through the forward
ERT responses of the reference models to obtain sets of
apparent resistivity values used as input for the inversion
schemes. Responses are calculated using 72 electrodes
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Fig. 1 Prior synthetic cross-sections that represent karst cavities. a is the training image. b is a set of four simulated realizations showing the
variability that can be expected at the scale of this cross-section. ¢ are a set of four realizations conditioned with observation points (the circles)
located at the surface and along a borehole. In cases ¢ the variability of the simulations is reduced as simulations are constrained by more data

regularly placed at the surface with a dipole—dipole setting.
One example of the results of this forward computation is
shown in Fig. 2. Secondly, a forward simulator is needed to
run the PoPEx inversion. Finally, the standard inversion is
also performed with pyGIMLi in order to compare its results
with the results obtained with PoPEx.

3 Synthetic Case Study

In order to assess the PoPEx method, synthetic reference
models are defined as the unknown truth of the numerical
experiment. To this aim, three DS realizations (references 1,
2, and 3) were chosen (Fig. 3a). These references were
selected because they show situations with different densities
and complexities of conduits allowing to assess the perfor-
mance of the methods in different situations.

Appgrent resistivity
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Fig. 2 Result of the forward ERT computation of Reference 1 using

pyGIMLI

4 Results

Results Obtained with Standard
Inversion Methods

4.1

Figure 3b shows the spatial distribution of the resistivity
values obtained when a standard inversion is applied to the
three reference models. For reference 1, we see a strong
resistivity anomaly centered around the location of the main
cavity and a smaller anomaly corresponding to the smaller
cave close to the surface on the right side. In the second case,
the anomalies are also located properly, but some artefacts
are visible. Finally, for the denser and more complex
geometry, it becomes much more difficult to relate the
inverted resistivity fields to the exact geometry of the caves.
In all cases, the exact geometry of the boundary of the caves
is difficult to infer only based on the resistivity fields.

4.2 Results Obtained with PoPEx

Results of the PoPEx inversion are illustrated in Figs. 4 and
5. They are expressed either in terms of cross-sections
showing the probability (between O and 1) of finding a cave
at each location (Fig.4) or as individual simulations
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(a) Reference models

(b) Standard inversions
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Fig. 3 Reference models and results of the standard inversion. a Three reference cross-sections, the cavities are represented in blue and the
limestone matrix in grey. b Results of the standard inversion for these three reference cases
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Fig. 4 Results of the PoPEx inversion. a Unknown references and b The resulting probabilities of the occurrence of a cave. The green lines
represent the position of the true caves. The first three examples represent the same references as in Fig. 3. In addition, the last two examples
illustrate how geological observations can be added to constrain the inversion and improve the results

(Fig. 5.). A probability of 1 means that there is 100% of
chance to find limestone at this location.

Figure 4a shows the reference models. For references 1,
2, and 3, the inversion is performed without conditioning
data, whereas references 1hd and 2hd include conditioning
data at the surface and along a vertical line mimicking a
possible borehole log. These conditioning points are shown
with grey and blue circles in the reference models.

Figure 4b shows the probability maps obtained after the
inversion for these models. A probability of 1 indicates that
there is a 100% probability of finding a conduit at this
location. The shapes of the true cavities are represented with
a green line in the probability maps to facilitate the analysis
of the results. Figure 4b shows that all the large and main
cavities are detected and rather well represented in the

probability maps. However, small cavities such as the one
located in the upper right corner in Reference 1 are not
always detected properly.

In all the references, the uncertainty zones (zones with
intermediate probabilities) are essentially occurring at the
edges of the cavities. In most cases, the central part of the
cavity is detected and delineated with a probability of 1,
whereas outside of the cavities, the probability is correctly
identified as 0. In between, intermediate probabilities are
indicating some uncertainty on the exact position of the limit
of the cave.

The only case in which the central part of the cave is not
identified with a very high probability is the first example
(Reference 1). In that case, the shape of the cavity is not well
determined and seems to be slightly shifted from its actual
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position. It can be observed that adding conditioning data
(Reference 1hd) improves significantly the quality of the
predictions for the largest cave. The shape of the detected
cavity is more accurate, and there are much more locations
where the probability of finding a conduit is 1. However, in
that case, artefacts appear, PoPEx identifies wrongly the
position and the size of the small cavity on the right side. It
finds that the cavity should be deeper than it is, and it is
overconfident about the results giving a wrong probability of
1 instead of 0. For Reference 2hd, adding the conditioning data
improves the results (without creating artefacts) only slightly
because they were already good without conditioning data.

For Reference 3, results obtained with PoPEx (Fig. 4b)
are much better than results obtained with the traditional
inversion (Fig. 2b), even if the number of cavities is rather
large.

Finally, Fig. 5b shows five of the individual simulations
obtained for the five test cases. The PoPEx method generates
a large ensemble of stochastic simulations, from which it
produces the probability maps discussed above. Each sim-
ulation is associated with a posterior probability value. In
Fig. 5b, the simulations having the highest probabilities are
displayed. This figure shows that the geometries are close
but slightly different from the true unknown reality (Fig. 5a).

An important point to notice with these individual real-
izations is that they can be used in a Monte Carlo procedure
for probabilistic risk assessment studies. For example, it
would be straightforward to use them as input in a
geo-mechanical model to study how a construction project
could be damaged if built on such type of ground. By
repeating the mechanical computation with the different

karst simulations, one could estimate for example the
probability of collapse of the building from these results.

5 Discussion and Conclusion

The aim of the study was to assess if the POPEx method,
coupled with the direct sampling MPS algorithm, could be
used to invert synthetic ERT geophysical data to detect
near-surface karst cavities. Results showed that applied to
simple and synthetic models, the method is able to detect the
cavities, which shows the benefits of pursuing this strategy.
Shape of the conduits is determined with a higher accuracy
than with a classical inversion method.

An interesting feature of the approach is the possibility to
integrate surface or borehole observations to condition the
prior distribution of the electrical resistivity values and thus
combine geological observations, geological concept and the
geophysical data. The prior distribution of the electrical
resistivity is performed using the MPS approach. One
advantage of the MPS approach is its flexibility allowing to
include a conceptual geological knowledge in the inversion
process and generate rapidly many very different models.
Here, only simple models where tested, but different levels
of complexity could be easily studied. Indeed, it is rather
easy to modify and increase step by step the complexity of
the geological models: starting with very simple ones, as the
examples presented above, and adding complexity by simply
changing the training image.

Although results are very encouraging and PoPEx pro-
vides many advantages, results presented here must be taken
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Fig. 5 Results of the POPEX inversion. a The five unknown references and b the best individual simulations belonging to the posterior ensemble

for the five different cases
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with care. Two important points must be highlighted. First,
results show low uncertainty in the probability maps. This
behaviour could be due to the way the likelihood is com-
puted. Different ways to compute it were tested and, a
tempered likelihood was selected, but that aspect requires
further sensitivity analysis. The second point is that the
synthetic models used as references models were generated
using the same conceptual geological model (the same
training image) as the one used to define the prior distribu-
tion for the inversion. Reference models and the one used to
define the prior distribution of the parameters are hence
rather similar. Quality and robustness of the results still need
to be evaluated if these images are different and if the
training image does not contain enough variability to allow
the MPS simulation algorithm to model the actual cave
geometry. These cases must be further studied, especially
when considering real field data. Another possible impact on
the quality of the results is the variability of petrophysical
parameters and the number of cavities in the rock matrix.
This variability can be incorporated into the simulations, but
its impact on the accuracy of the results must be tested.

To conclude, results showed that the POPEx approach is
able to improve the detection of cavities in simple and
synthetic cases. The major drawbacks of the method are that
it requires longer computing times than a standard inversion,
and a conceptual model of the cave geometries needs to be
defined. However, the results obtained with this method are
very encouraging.
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