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ABSTRACT

Multiple—point statistics simulation has gained wide gutegce in recent years and
is routinely used for simulating geological heterogenéitiitydrocarbon reservoirs
and aquifers. In classical implementations, the multipleiat statistics inferred
from the reference training image are stored in a dynamiadstucture called
search tree. The size of this search tree depends on thenseanplate used to scan
the training image and the number of facies to be simulate8D applications this
size can become prohibitive. One promissing avenue fottidedly reducing the
RAM requirements consists of using dynamically allocaitd Instead of search
trees to store and retrieve the multiple—point statisti€&ach element of this list
contains the identification of the data event together withusence counters for
each facies. First results show that implementing thiddésted approach results in
reductions of RAM requirement by a factor 10 and more. Theespaiscusses
in detail this novel list based approach, presents RAM andJQferformance

comparisons with the (classical) tree based approach.

INTRODUCTION

Multiple—point statistics simulation has been introdudeg Guardiano and
Strivastava (1993) and was further developed in recentsyétrébelle, 2002;
Journel and Zhang, 2006; Arpat and Caers, 2007). The metHodsato
simulate (2D or 3D) heterogeneous geological facies imagspecting structures
at small and large scales of a given reference training inzagk conditioning
data. Following the algorithm proposed by Strébelle (90@2e training image
is scanned with a search template and the multiple—poitiststa are stored
in a dynamically allocated tree. From this basic idea, thefopmances of
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multiple—point simulation algorithms were improved by eslbing some critical
issues such as: the post—processing (Strébelle and Ré¥§),2he choice of
the simulation path (Daly and Knudby, 2007; Suzuki and Isille, 2007), the
treatment of non-stationarity (Strébelle and Zhang, 2@HBugunova and Hu,
2008).

In this paper, we come back to the basis of the multiple—dnulation algorithm

and propose an alternative to the search tree for storingttigole—point statistics.
The motivation behind this proposal is the amount of memenuired to store
the search tree for a large image. Indeed, in 3D the size ofehech tree can
quickly become prohibitive and this imposes the use of sieatiplate sizes. The
consequence of using such small templates is that complegtgtes are not
properly reproduced. This is why, instead of using a seaw, twe propose to
use a list. This novel approach allows to drastically redheeRAM requirements,
and hence to perform simulations that were unmanageable thét tree based
approach. Tests are performed with 3D images and perforasan¢erms of RAM

requirements and CPU time are compared for the two storagieoae We also
discuss about RAM limitation.

CLASSICAL IMPLEMENTATION OF MULTIPLE-POINT STATISTICS

Let us recall here the basic principles of multiple—poiritistics for simulating
a facies at each node (pixel) of a grid. skarch templatés defined as a set of
relative node locationb,, ..., hy, whereh; is a 2D or 3D vector,X i < N. Fora
given reference nodg the search template ais the set of nodes

T(u) = {u+hy,...,u+hyn}, (1)
and, ifs(v) denotes the facies at nodgthe vector
d(u) = {s(u+hy),...,s(u+hn)}, (2)

defines thelata evenaitu. Note that we can consider a data event with undefined
components (for nodes not yet simulated). To attribute ee$aat a node in the
simulated image, we retain the nodeis the training image where the data event
d(v) has the same components as thosd(af. Then, the number of occurences
of all the facies at the nodesis counted. This provides a probability distribution
function (pdf) that can be used to draw a facies at the nadgadomly.

In addition, the multigrid approach (Tran, 1994; Strébel002) allows to capture
structures within the training image that are defined atedifit scales. For a
situation withm levels of multigrid, all the unsimulated nodes whose cauaths
are a multiple of 2 are simulated considering the scaled lag vectdréi2instead
of hj in the search template, with=m— 1, thenj = m—2,..., and finallyj = 0.

Search tree

Let us recall the definition of the search tree (Strébell@Qd2) for storing
multiple—point statistics. The tree has a depttNofsize of the search template).
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It is made up of cells divided iM (number of facies) subcells. The levels of the
tree are numbered from O ¢ and the subcells in a cell from 0 td — 1. Each
subcell allows to store a counter and can have a child ceth@mext level of the
tree): the tree is aM-ary tree. The counter in a subcell is defined as follows. Let
{i(0),i(1),...,i(k)} a path in the tree wheri¢j) is the identification number of a
subcell in a cell of levej. The counter in the last subcell of the path is the number
of data events found in the training image with fadigs at nodev+ h; of the the
search template(v) for 0 < j < k—1, and with facie$(k) at the reference node

ALTERNATIVE TO SEARCH TREES: STORAGE IN LISTS

Instead of using the complete search tree, the multipletptatistics inferred from
the training image can be stored in a list. The idea is to statg the data events
corresponding to the last level in the search tree. An elépfahe list is then a pair
of vector(d,c) whered = (sy,...,5v) defines a data event aed= (Cp,...,Cm-1)
is a list of occurence counters for each facigss the number of data everdgv)
equal tod found in the training image with faciest the reference node

5 Elements of the list ref. nodes
; L1=((0,0.1,1),(0,1))  {0.{(2.2)}}
) L2=((0,1,01).(0.2)  {0.{(3.1).(3.4)}}
. L3=((0,1,1,0),(0,2))  {0,{(1,4),(4,2)}}
Ly = ((Ov 1,1, 1)7 (170)) {{(3 2)} 0}
0 L5—((1,0,0,O),(1,0)) {{(373)}70}
012345 Le =((1,0,0,1),(0,2))  {0,{(4,1),(4,4)}}
— L7 =((1,0,1,0),(1,1))  {{(43)},{(1,3)}}
1 I-8 - ((1 O 1 1)7(170)) {{(273)}70}
|4 u 2| Lg—((l 17071)7(072)) {07{(172)7(274)}}
3] Li10=((1,1,1,0),(11)  {@AD}{21)}}
Figure 1: Training image (2 facies: white (0) and black (19garch template and

corresponding list.
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Figure 2: Search tree for the training image and the seansplége of figure 1.
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Note that the total number of elements in the list is the nunabelifferent data
events in the training image. To build the list (or the searele), the training
image is scanned such that the search template is alwayslgmticluded in the
training image. At the end of the process, the statisticeedt the list and the
search tree are identical. An important point to emphasizledt knowing the list
allows to reconstruct exactly the search tree. See figures 2 #or illustration.

RAM REQUIREMENTS

The size of the search tree and the list depends on th&lsizéhe search template,
the numbeM of facies and the entropy of the training image. Moreoversize of
the search tree can also depend on the order of the nodes ringiinethe search
template.

Let us compare the RAM requirements for the search tree antish Let Syee
be the size in octets of a tree cell (each subcell in a celladosta counter and an
address (child cell, eventuallyuLL)), sist the size in octets of an element of the
list, r = sree/Sist their ratio andKyee andKjis; the number of cells in the tree and
the number of elements in the list respectively. Then, thralmer

Ktree
R = -r 3
Kiist ®)

denotes the gain factor in terms of RAM usage for the list imparison with the
tree. In the lowest possible entropy case, there is only atealent in the training
image and we havi§yee = N + 1 (degenerated tredjist = 1 andR= (N+1)-r.
In the highest possible entropy case, all possible datat®egpear in the training
image and we havyee = 1+ M +M? 4 ... +MN = (MN*1 — 1) /(M — 1) (full
M-ary tree) Kist = MN andR= (1 — M~ (N+1)y /(1 —M~1).r. Itis clear that in
all real cases, the gain factor is in the interval given bys¢hewo values oR.
Moreover, assume that a counter is coded in a long integezef8s a facies of
a data event is coded in a character of size 1 and an addreksime@. Then,
Sree = (8+8)-M =16-M ands;st = N + 8- M. Finally, we have

1-M-(N+D) _ 16-M

4)
For the previous exampl®l =4, M = 2,r = 1.6 andR=3.84 ¢ [3.1,8]. For the
more realistic 3D applications in next section, we hive- 26,M = 4,r =~ 1.10
andR € [1.47,29.80] (first test) andN = 124,M = 4,r ~ 0.41 andR € [0.54,51.29
(second test). Note that practically, the extreme casesemer reached.

NUMERICAL COMPARISONS

Let us consider a training image of dimensions ¥0000x 60 (600000 nodes)
representing a fluviatile environment including 3D chasngith M = 4 facies.
The number of multigrid levels is set to= 4. Two box—shaped search templates
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of dimensions 3 3 x 3 (sizeN = 26) and 5x 5 x 5 (sizeN = 124) are used. The
results for these two tests, presented in table 1, show thegrins of memory,
the gain with the list is significant. Moreover, the lists &r multigrid levels can

be stored in the RAM simultaneously, and hence several imege be simulated
computing the lists once, whereas this is not always the usisg trees.

Table 1: Ram usage.
Multigrid Kiree Tree size Kiist List size R
Firsttest: M=4,N=26(r ~ 1.10)

1 941537 5747 MB 94896 525MB 1095
2 923839 5639 MB 90461 500MB 1127
3 534732 3264 MB 53427 296 MB 1104
4 246204 1503 MB 24427 135 MB 1112
Second test: M=4, N = 124(r = 0.41)
1 10721840 65441 MB 128538 1868 MB 3504
2 18522678 113053 MB 238416 3547 MB 3187
3 18432211 94191 MB 217050 3140 MB 3000
4 10075311 61495 MB  15¥235 2250 MB 27.33

Let us discuss in more details about RAM limitation.

For thaee consider a

training image and a search template that containsNhgosest nodes to the
reference node and we increase the dizeFor each search template, we build
the corresponding search tree and list, and we retrievestzei in gigabytes (GB).
The results are presented on graphs in figure 3 for the pred@buraining image
(a) and a training image of dimensions 10101 x 1385 with 6 facies (b). The
gain factor for these two cases is drawn on graph (c). Thase sbow that a fixed
amount of RAM is reached much faster for the tree than forittiefbr example, in

the case (a), 512 MB is reached with= 115 and\ = 1962 for the tree and the list
respectively and, in the case (b), the same is true with 2N&B,30 andN = 169.

R Gain factor
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Figure 3: (a) RAM usage for a 3D training image having’€00 nodes and 4 facies; (b)
RAM usage for a 3D training image having’128 385 nodes and 6 facies; (c) Gain factor
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with the list in comparison with the search tree.

Let us also compare the CPU performances for the two storagbhaus. For
the two tests in table 1, a single realization is generatelthe used CPU time
is retrieved. For the first test, 219and 290s are needed using trees and lists
respectively, and for the second test, we obtainmB and 109min. The two
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methods lead to the same simulated images provided thaatheapd the random
numbers used in both simulations are identical. Since gssmation is available
in lists than in trees, a simulation requires more CPU tiniagilists than trees.
However, the ratio of these CPU times is inferior to 3 (witk #hx 9 x 5 search

template N = 404), 2h 30 minare needed using trees antl 58 min using lists).

CONCLUSIONS

More statistics are stored in search trees than in lists hande, the tree method
is less CPU demanding than the list method if the RAM capaalityws to store
the search trees. For large (3D) training images howevessithulations become
unmanageable due to the size of the search trees. The stafragtistics in lists
drastically reduce the RAM requirement and allows to cong@amulations in such
cases. The classical implementations are quickly limitethe RAM capacity of
computers. On the other hand, the list based approach ienpaffected by RAM
limitation and then the search templates can be chosen ¢éargegh. For large
applications, the RAM requirement is deciding and only ilsebased approach
allows to complete acceptable simulations.
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