
OPTIMISATION ISSUES IN 3D MULTIPLE–POINT
STATISTICS SIMULATION

J. STRAUBHAAR1, A. WALGENWITZ2, R. FROIDEVAUX2, P. RENARD1 and
O. BESSON3
1CHYN, University of Neuchâtel, rue Emile–Argand 11, 2009 Neuchâtel, Switzerland,
2FSS Consultants, 9, rue Boissonnas, CH – 1227 Geneva, Switzerland,
3Institute of Mathematics, University of Neuchâtel, rue Emile–Argand 11, 2009 Neuchâtel, Switzerland

ABSTRACT

Multiple–point statistics simulation has gained wide acceptance in recent years and

is routinely used for simulating geological heterogeneityin hydrocarbon reservoirs

and aquifers. In classical implementations, the multiple–point statistics inferred

from the reference training image are stored in a dynamic data structure called

search tree. The size of this search tree depends on the search template used to scan

the training image and the number of facies to be simulated. In 3D applications this

size can become prohibitive. One promissing avenue for drastically reducing the

RAM requirements consists of using dynamically allocated lists instead of search

trees to store and retrieve the multiple–point statistics.Each element of this list

contains the identification of the data event together with occurence counters for

each facies. First results show that implementing this listbased approach results in

reductions of RAM requirement by a factor 10 and more. The paper discusses

in detail this novel list based approach, presents RAM and CPU performance

comparisons with the (classical) tree based approach.

INTRODUCTION

Multiple–point statistics simulation has been introducedby Guardiano and
Strivastava (1993) and was further developed in recent years (Strébelle, 2002;
Journel and Zhang, 2006; Arpat and Caers, 2007). The method allows to
simulate (2D or 3D) heterogeneous geological facies images, respecting structures
at small and large scales of a given reference training imageand conditioning
data. Following the algorithm proposed by Strébelle (2002), the training image
is scanned with a search template and the multiple–point statistics are stored
in a dynamically allocated tree. From this basic idea, the performances of

gehrenard
Zone de texte
Paper presented at the VIII Geostatistical Congress, Santiago, ChiliDecember 1-5, 2008. To appear in the proceedings.

J. STRAUBHAAR, A. WALGENWITZ, R. FROIDEVAUX, P. RENARD AND O. BESSON

multiple–point simulation algorithms were improved by addressing some critical
issues such as: the post–processing (Strébelle and Remy, 2005), the choice of
the simulation path (Daly and Knudby, 2007; Suzuki and Strébelle, 2007), the
treatment of non–stationarity (Strébelle and Zhang, 2005; Chugunova and Hu,
2008).

In this paper, we come back to the basis of the multiple–pointsimulation algorithm
and propose an alternative to the search tree for storing themultiple–point statistics.
The motivation behind this proposal is the amount of memory required to store
the search tree for a large image. Indeed, in 3D the size of thesearch tree can
quickly become prohibitive and this imposes the use of smalltemplate sizes. The
consequence of using such small templates is that complex structures are not
properly reproduced. This is why, instead of using a search tree, we propose to
use a list. This novel approach allows to drastically reducethe RAM requirements,
and hence to perform simulations that were unmanageable with the tree based
approach. Tests are performed with 3D images and performances in terms of RAM
requirements and CPU time are compared for the two storage methods. We also
discuss about RAM limitation.

CLASSICAL IMPLEMENTATION OF MULTIPLE–POINT STATISTICS

Let us recall here the basic principles of multiple–point statistics for simulating
a facies at each node (pixel) of a grid. Asearch templateis defined as a set of
relative node locationsh1, . . . ,hN, wherehi is a 2D or 3D vector,16 i 6 N. For a
given reference nodeu, the search template atu is the set of nodes

τ(u) = {u+h1, . . . ,u+hN}, (1)

and, ifs(v) denotes the facies at nodev, the vector

d(u) = {s(u+h1), . . . ,s(u+hN)}, (2)

defines thedata eventat u. Note that we can consider a data event with undefined
components (for nodes not yet simulated). To attribute a facies at a nodeu in the
simulated image, we retain the nodesv in the training image where the data event
d(v) has the same components as those ofd(u). Then, the number of occurences
of all the facies at the nodesv is counted. This provides a probability distribution
function (pdf) that can be used to draw a facies at the nodeu randomly.

In addition, the multigrid approach (Tran, 1994; Strébelle, 2002) allows to capture
structures within the training image that are defined at different scales. For a
situation withm levels of multigrid, all the unsimulated nodes whose coordinates
are a multiple of 2j are simulated considering the scaled lag vectors 2j ·hi instead
of hi in the search template, withj = m−1, then j = m−2,..., and finallyj = 0.

Search tree

Let us recall the definition of the search tree (Strébelle, 2002) for storing
multiple–point statistics. The tree has a depth ofN (size of the search template).

2 GEOSTATS 2008, Santiago, Chile

OPTIMISATION ISSUES IN 3D MULTIPLE–POINT STATISTICS SIMULATION

It is made up of cells divided inM (number of facies) subcells. The levels of the
tree are numbered from 0 toN and the subcells in a cell from 0 toM −1. Each
subcell allows to store a counter and can have a child cell (inthe next level of the
tree): the tree is anM–ary tree. The counter in a subcell is defined as follows. Let
{i(0), i(1), ..., i(k)} a path in the tree wherei(j) is the identification number of a
subcell in a cell of levelj. The counter in the last subcell of the path is the number
of data events found in the training image with faciesi(j) at nodev+h j of the the
search templateτ(v) for 0 6 j 6 k−1, and with faciesi(k) at the reference nodev.

ALTERNATIVE TO SEARCH TREES: STORAGE IN LISTS

Instead of using the complete search tree, the multiple–point statistics inferred from
the training image can be stored in a list. The idea is to storeonly the data events
corresponding to the last level in the search tree. An element of the list is then a pair
of vector(d,c) whered = (s1, . . . ,sN) defines a data event andc = (c0, . . . ,cM−1)
is a list of occurence counters for each facies:ci is the number of data eventsd(v)
equal tod found in the training image with faciesi at the reference nodev.

0 1 2 3 4 5
0

1

2

3

4

5

u
1

2
3

4

Elements of the list ref. nodes

L1 = ((0,0,1,1),(0,1)) { /0,{(2,2)}}
L2 = ((0,1,0,1),(0,2)) { /0,{(3,1),(3,4)}}
L3 = ((0,1,1,0),(0,2)) { /0,{(1,4),(4,2)}}
L4 = ((0,1,1,1),(1,0)) {{(3,2)}, /0}
L5 = ((1,0,0,0),(1,0)) {{(3,3)}, /0}
L6 = ((1,0,0,1),(0,2)) { /0,{(4,1),(4,4)}}
L7 = ((1,0,1,0),(1,1)) {{(4,3)},{(1,3)}}
L8 = ((1,0,1,1),(1,0)) {{(2,3)}, /0}
L9 = ((1,1,0,1),(0,2)) { /0,{(1,2),(2,4)}}

L10 = ((1,1,1,0),(1,1)) {{(1,1)},{(2,1)}}

Figure 1: Training image (2 facies: white (0) and black (1)),search template and
corresponding list.

5 11

1 5

0

0 1

0

0 1

1

0 1

1

{(2,2)}

1

1 4

1

0 2

0

0 2

1

{

(3,1)
(3,4)

}

1

1 2

1

0 2

0

{

(1,4)
(4,2)

}

1

1 0

1

{(3,2)}

0

4 6

1

3 3

0

1 2

0

1 0

0

{(3,3)}

0

0 2

1

{

(4,1)
(4,4)

}

1

2 1

1

1 1

0

{(4,3)}

0

{(1,3)}

1

1 0

1

{(2,3)}

0

1 3

1

0 2

0

0 2

1

{

(1,2)
(2,4)

}

1

1 1

1

1 1

0

{(1,1)}

0

{(2,1)}

1

ref.
nodes

Figure 2: Search tree for the training image and the search template of figure 1.

VIII International Geostatistics Congress 3

J. STRAUBHAAR, A. WALGENWITZ, R. FROIDEVAUX, P. RENARD AND O. BESSON

Note that the total number of elements in the list is the number of different data
events in the training image. To build the list (or the searchtree), the training
image is scanned such that the search template is always entirely included in the
training image. At the end of the process, the statistics stored in the list and the
search tree are identical. An important point to emphasize is that knowing the list
allows to reconstruct exactly the search tree. See figures 1 and 2 for illustration.

RAM REQUIREMENTS

The size of the search tree and the list depends on the sizeN of the search template,
the numberM of facies and the entropy of the training image. Moreover, the size of
the search tree can also depend on the order of the nodes numbering in the search
template.

Let us compare the RAM requirements for the search tree and the list. Let stree

be the size in octets of a tree cell (each subcell in a cell contains a counter and an
address (child cell, eventuallyNULL)), slist the size in octets of an element of the
list, r = stree/slist their ratio andKtree andKlist the number of cells in the tree and
the number of elements in the list respectively. Then, the number

R=
Ktree

Klist
· r (3)

denotes the gain factor in terms of RAM usage for the list in comparison with the
tree. In the lowest possible entropy case, there is only one data event in the training
image and we haveKtree = N +1 (degenerated tree),Klist = 1 andR= (N +1) · r.
In the highest possible entropy case, all possible data events appear in the training
image and we haveKtree = 1+ M + M2 + . . . + MN = (MN+1 − 1)/(M −1) (full
M–ary tree),Klist = MN andR= (1−M−(N+1))/(1−M−1) · r. It is clear that in
all real cases, the gain factor is in the interval given by these two values ofR.
Moreover, assume that a counter is coded in a long integer of size 8, a facies of
a data event is coded in a character of size 1 and an address is of size 8. Then,
stree = (8+8) ·M = 16·M andslist = N+8 ·M. Finally, we have

R∈

[

1−M−(N+1)

1−M−1 · r,(N+1) · r

]

, with r =
16·M

N+8 ·M
. (4)

For the previous example,N = 4, M = 2, r = 1.6 andR= 3.84∈ [3.1,8]. For the
more realistic 3D applications in next section, we haveN = 26, M = 4, r ≈ 1.10
andR∈ [1.47,29.80] (first test) andN = 124,M = 4, r ≈ 0.41 andR∈ [0.54,51.29]
(second test). Note that practically, the extreme cases arenever reached.

NUMERICAL COMPARISONS

Let us consider a training image of dimensions 100× 100× 60 (600′000 nodes)
representing a fluviatile environment including 3D channels with M = 4 facies.
The number of multigrid levels is set tom= 4. Two box–shaped search templates

4 GEOSTATS 2008, Santiago, Chile

OPTIMISATION ISSUES IN 3D MULTIPLE–POINT STATISTICS SIMULATION

of dimensions 3×3×3 (sizeN = 26) and 5×5×5 (sizeN = 124) are used. The
results for these two tests, presented in table 1, show that in terms of memory,
the gain with the list is significant. Moreover, the lists forall multigrid levels can
be stored in the RAM simultaneously, and hence several images can be simulated
computing the lists once, whereas this is not always the caseusing trees.

Table 1: Ram usage.

Multigrid Ktree Tree size Klist List size R

First test: M= 4, N = 26 (r ≈ 1.10)
1 941′537 57.47 MB 94′896 5.25 MB 10.95
2 923′839 56.39 MB 90′461 5.00 MB 11.27
3 534′732 32.64 MB 53′427 2.96 MB 11.04
4 246′204 15.03 MB 24′427 1.35 MB 11.12

Second test: M= 4, N = 124(r ≈ 0.41)
1 10′721′840 654.41 MB 125′538 18.68 MB 35.04
2 18′522′678 1′130.53 MB 238′416 35.47 MB 31.87
3 15′432′211 941.91 MB 211′050 31.40 MB 30.00
4 10′075′311 614.95 MB 151′235 22.50 MB 27.33

Let us discuss in more details about RAM limitation. For this, we consider a
training image and a search template that contains theN closest nodes to the
reference node and we increase the sizeN. For each search template, we build
the corresponding search tree and list, and we retrieve their size in gigabytes (GB).
The results are presented on graphs in figure 3 for the previous 3D training image
(a) and a training image of dimensions 101× 101× 1385 with 6 facies (b). The
gain factor for these two cases is drawn on graph (c). These tests show that a fixed
amount of RAM is reached much faster for the tree than for the list: for example, in
the case (a), 512 MB is reached withN = 115 andN = 1962 for the tree and the list
respectively and, in the case (b), the same is true with 2 GB,N = 30 andN = 169.

RAM usage (a)

Search template size

GB

0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
list

tree

RAM usage (b)

Search template size

GB

0 50 100 150 200
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
list

tree

Gain factor

Search template size

R

0 25 50 75 100
0

5

10

15

20

25

case (a)

case (b)

Figure 3: (a) RAM usage for a 3D training image having 600′000 nodes and 4 facies; (b)
RAM usage for a 3D training image having 14′128′385 nodes and 6 facies; (c) Gain factor
with the list in comparison with the search tree.

Let us also compare the CPU performances for the two storage methods. For
the two tests in table 1, a single realization is generated and the used CPU time
is retrieved. For the first test, 219s and 290s are needed using trees and lists
respectively, and for the second test, we obtain 43min and 109min. The two

VIII International Geostatistics Congress 5

J. STRAUBHAAR, A. WALGENWITZ, R. FROIDEVAUX, P. RENARD AND O. BESSON

methods lead to the same simulated images provided that the path and the random
numbers used in both simulations are identical. Since less information is available
in lists than in trees, a simulation requires more CPU time using lists than trees.
However, the ratio of these CPU times is inferior to 3 (with the 9× 9× 5 search
template (N = 404), 2h 30minare needed using trees and 5h 18minusing lists).

CONCLUSIONS

More statistics are stored in search trees than in lists, andhence, the tree method
is less CPU demanding than the list method if the RAM capacityallows to store
the search trees. For large (3D) training images however, the simulations become
unmanageable due to the size of the search trees. The storageof statistics in lists
drastically reduce the RAM requirement and allows to complete simulations in such
cases. The classical implementations are quickly limited by the RAM capacity of
computers. On the other hand, the list based approach is not very affected by RAM
limitation and then the search templates can be chosen largeenough. For large
applications, the RAM requirement is deciding and only the list based approach
allows to complete acceptable simulations.

ACKNOWLEDGEMENTS

We thank the Swiss Confederation’s Innovation Promotion Agency (CTI project
No. 8836.1 PFES–ES) and the Swiss National Science Foundation (grant No.
PPOOP2–106557) for supporting this research.

REFERENCES

Arpat, G and Caers, J (2007).Conditional simulation with patterns. In Mathematical Geology, vol. 39,
no. 2, pp. 177–203.

Chugunova, T and Hu, L (2008).Multiple-point statistical simulations constrained by continuous
auxiliary data. In Mathematical Geosciences, vol. 40, no. 2, pp. 133–146.

Daly, C and Knudby, C (2007).Multipoint statistics in reservoir modelling and in computer vision. In
Petroleum Geostatistics 2007, Cascais, Portugal.

Guardiano, F and Strivastava, R (1993).Multivariate geostatistics: beyond bivariate moments. In
A Soares, ed.,Geostatistics Troia, vol. 1. Kluwer Academic, Dordrecht, pp. 133–144.

Journel, A and Zhang, T (2006).Necessity of a multiple-point prior model. In Mathematical Geology,
vol. 38, no. 5, pp. 591–610.

Strébelle, S (2002).Conditional simulation of complex geological structures using multiple-points
statistics. In Mathematical Geology, vol. 34, no. 1, pp. 1–21.

Strébelle, S and Remy, N (2005).Post-processing of multiple-point geostatistical modelsto improve
reproduction of training patterns. In CD O Leuangthong, ed.,Geostatistics Banff 2004.
Springer, pp. 979–988.

Strébelle, S and Zhang, T (2005). Non-stationary multiple-point geostatistical models. In
CD O Leuangthong, ed.,Geostatistics Banff 2004. Springer, pp. 235–244.

Suzuki, S and Strébelle, S (2007).Real-time post-processing method to enhance multiple-point statistics
simulation. In Petroleum Geostatistics 2007, Cascais, Portugal.

Tran, TT (1994). Improving variogram reproduction on dense simulation grids. In Computers &
Geosciences, vol. 20, no. 7, pp. 1161–1168.

6 GEOSTATS 2008, Santiago, Chile

