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ABSTRACT 

In this paper, we propose a new cosimulation algorithm for simulating a 

primary variable using one or several secondary attributes known exhaustively 

on the domain. 

At each node of the grid to be simulated, two conditional distribution functions 

are inferred. The first one comes from the available conditioning data of the 

main attribute using, for instance, a multi-Gaussian framework. The second one 

is the distribution function of the main attribute conditioned to the co-located 

value of the secondary attribute. Using a conjunction of probabilities approach, 

these two distribution functions are then combined into a single one from which 

an outcome is drawn. 

The paper discusses the probabilistic model underlying this approach and 

illustrates its performances using both synthetic and actual field data. The 

synthetic examples cover a range of different types of joint probability 

distributions inspired from relations between geophysical parameters and 

hydraulic parameters. The field example uses remote sensing images. 

 
 
INTRODUCTION 

Exhaustive maps of secondary information are often available and can guide the 
simulation of a primary variable by using an appropriate coregionalization 
model. For instance, geophysical surveys provide exhaustive maps of electric 
resistivity, which is related to hydraulic conductivity, the attribute of main 
interest. 
Several approaches have been proposed to address this problem: full co-kriging 
and co-located cokriging which assume a linear model of coregionalization 
(Journel 1999; Rivoirard 2001) and the so-called cloud transform technique 
(Bashore et al. 1994; Kolbjørnsen and Abrahamsen 2004) which uses a non-
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parametric description of the bivariate distribution between the main and 
secondary attributes thus allowing to accommodate situations in which the 
marginal distributions are multimodal and the relationship between the two 
attributes are non-linear or heteroscedastic. This joint distribution can be inferred 
from data by interpolation in the probability space (e.g. kernel smoothing, 
Epanechnikov 1969; Kolbjørnsen and Abrahamsen 2004), or deduced from 
known physical laws or from interpretation. 
In all the above methods a single local conditional distribution function of the 
main attribute is estimated directly. We propose a new approach, in which two 
separate distribution functions are inferred locally. The first one is estimated 
considering the available conditioning data only. The second one is extracted 
from the bivariate distribution model using the collocated value of the secondary 
attribute. These two distributions are then combined into a single one using the 
concept of probability conjunction (Tarantola 2005), which can be seen as a 
particular case of the theory of Bordley (1982) used in management science for 
aggregating expert’s opinions. Note that similar ideas were used by Ortiz and 
Deutsch (2004) to combine indicator kriging probabilities with multiple-points 
statistics. 
 
 
SIMULATION BY PROBABILITY AGGREGATION 

Outline of the Method 
 
Denote: 
 
Z(u) : the attribute of main interest. 
S(u) : the co-located attribute. 
z(ui), i=[1…N]  : available conditioning data for the main attribute. 
f (z , s )ds,dz  =Prob{z<Z≤z+dz ,  s<S≤s+ds} : the joint probability density 
function. 
 
Given this joint probability model, the marginal probability distribution function 
f(z)  is given by the integral on the real line:  
 

 ∫=
R

dsz,sfzf )(1)(
η

, (1) 

 
where η is a normalizing factor.  
In all generality at location u, the distribution function of the main attribute Z(u) 
conditional to the neighboring data is given by : 
 
 { })(),...,(|)(robP);( 1

1
NzzzZzF uuuu ≤=  (2) 

 
This ccdf can be estimated using any suitable geostatistical method (e.g. 
multiGaussian kriging, indicator kriging). 
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At the same location u, the distribution function of Z(u) conditional to the co-
located attribute s(u) is: 
 
 { })()(|)(robP);(2 uuuu sSzZzF =≤=  (3) 
 
The issue is therefore to combine (aggregate) F 1(u ;z)  and F 2 (u ;z)  into a single 
ccdf F (u ;z)  which would be an approximation of: 
 
 { })()(),(),...,(|)(robP 1 uuuuu sSzzzZ N =≤  (4) 
 
Once this ccdf is available, the simulation proceeds as usual in sequential 
simulation: an outcome is drawn by Monte-Carlo from F (u ;z)  and treated as 
conditional data thereafter. 
 
 
Probability Conjunction 

Due to the sequential character of pixel-based simulations methods, ccdfs 
defined in (2) and (3) are not independent, because F1 (u ;z)  is based on 
previously simulated nodes that already integrated information from the joint 
distribution. 
Management science provides methods for aggregating expert’s opinions in a 
Bayesian framework while dealing with data interaction. Bordley (1982) 
demonstrates that aggregating n probability density functions (pdfs) f k=Fk ’ ,  
k=[1…n],  while accounting for data interaction, can be accomplished by: 
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each probability having the weight wk, that can be seen as a way of quantifying 
redundancy or as a confidence factor. f 0 is the prior density function which is, in 
our case, the marginal pdf f (z)  defined in (1) (i.e. the homogeneous state of 
information). 
Equation (5) is closely related to tau and nu models (Journel 2002; Krishnan 
2005; Polyakova and Journel 2007). These models use a parallel approach that 
formulates the problem in terms of odd functions (Bordley 1982). In the same 
spirit, Tarantola (2005) defines the conjunction of probability densities by the 
operation 
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which is a particular case of (5) with two probabilities being aggregated and 
identical confidence factors equal to 1. 
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Remarks 
1. Although in our case all the weight wk are equal and set to 1, such does 

not necessarily be the case: they could be used to assign relative weight 
to an expert-provided bivariate distribution model or to account for 
possible non-stationary model uncertainty. Setting a weight to 0 would 
produce the uniform distribution, resulting in the corresponding source 
of information having no influence. 

2. The proposed method can easily account for more than one secondary 
attribute. 

 
 
Step-by-Step Algorithm 
 
The proposed algorithm performs the following steps: 
 

• Compute the marginal cdf of the primary attribute from the joint 
probability model. 

• Assign conditioning data to nearest grid nodes. 
• Define a suitable path through the grid nodes. 
• At each node: 

o Collect conditioning information. 
o Estimate f 1 (u ;z )  using an appropriate method. 
o Extract f 2 (u ;z)  from the bivariate model. 
o Estimate f(u ;z)  by conjunction of probabilities. 
o Draw an outcome z ' (u)   from F (u ;z)  and add it to the data 

set. 
 
 
SYNTHETIC EXAMPLES 

The probability aggregation algorithm has been tested on synthetic data sets, 
with multiGaussian kriging used for estimating f 1 (u ;z) . For each example, a 
bivariate density function is known. A reference field for the primary variable is 
obtained by applying a normal score transform to a Gaussian simulation. The 
secondary variable is constructed from the (fully known) primary variable by 
drawing for each node u a value in 
 
 { }1)(|)(robP zZsS =≤ uu . (7) 
 
Then, for each example, the primary variable is sampled at 50 random locations. 
This dataset is used as conditioning data. The simulation grid size is 50x50 cells 
for all synthetic examples, and 100 realizations are computed. 
Simulations are then compared to the reference which is known exhaustively, in 
order to evaluate the performances of the method. The comparison criteria are 
the reproduction of the histogram and variogram, the errors compared to the 
known reality and the visual aspect of the simulations. 
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Figure 1 illustrates the method with a primary variable (fig. 1.a) that has an 
exponential variogram model with a range of 5 and a sill of 6.3. The resulting 
simulations are shown in fig. 1.b and 1.c. Locations of samples data are marked 
by circles. Inside the circles are stars whose color indicates the value of the 
conditioning data. 
A noisy secondary variable (fig. 1.d) results from the custom crescent-shaped 
joint PDF (fig. 1.e), but it still contains enough information to guide the 
simulations, where features of the reference are present at locations where no 
data are available (for example the dark channel that runs through the field from 
left to right). 
The joint distribution (fig. 1.f), the reference histogram (fig 1.g) and variogram 
(fig 1.h) are well reproduced (solid line represents the reference, dotted lines the 
simulations and circles the samples data). There is no systematic bias, as shown 
by the histogram of errors of the simulated variable that is centered on 0 (fig. 
1.i). 
The next examples are illustrated in the same manner. Figure 2 uses a 
relationship that presents a low correlation coefficient (0.5) and Figure 3 uses an 
almost perfect dependency (correlation coefficient of 0.99), with pure nugget 
effect for the primary variable. 
For all synthetic cases, the method allows an overall good reproduction of 
histograms, variograms and joint distributions. Moreover, the features of the 
primary variable field are generally well reproduced. 
 

 

Figure 1:  Synthetic example using a custom non-bijective joint PDF. The primary variable has a 
spherical variogram model (sill=5.3, range=12, adjusted on the 50 sample data). 
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Figure 2:  Synthetic example using a loosely correlated joint PDF (ρ=0.5). The primary variable has 
an exponential variogram model (sill=6.3, range=5, adjusted on the 50 sample data). 

 
 

 

Figure 3:  Synthetic example using a joint PDF with ρ=0.99. The primary variable is pure nugget 
effect (sill=12, adjusted on the 50 sample data). 
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FIELD EXAMPLE 

In order to test further the method, a real case data set has been used. It is based 
on two Landsat 7 satellite images of the same area corresponding to two 
different wavelengths. One image is considered to be the primary variable while 
the other is the secondary variable. Each image highlights different features of 
the land surface and the joint relationship is thus complex. 
As for synthetic examples, multiGaussian kriging is used for estimating f 1 (u ;z) .  
Again, the first image is used as a reference, sampled at 100 random locations, 
while the second is the auxiliary variable. The size of the simulation grid is 
181x201. This dataset is used to build the joint distribution by kernel smoothing. 
Figure 1 presents the results of the 100 simulations. 
Results show a good match with the reference primary variable field, even if the 
joint PDF is inaccurate because it was constructed using only 100 points, which 
is not enough to capture all features of the real field (as shown by the 
discrepancy between the reference variogram and the variogram of the data). 

 

Figure 1:  Real case example. The primary variable has an exponential variogram model (sill=1110, 
range=30, adjusted on the 100 sample data). 

 
 
DISCUSSION AND CONCLUSION 

We presented a new method for conditional co-simulations using a secondary 
variable and accounting for a non-parametric joint distribution.  
 
The main advantage of the proposed method, as compared to traditional co-
simulation methods, is that the algorithm can be applied when the relationship 



G. MARIETHOZ, PH. RENARD, R. FROIDEVAUX 

 GEOSTATS 2008, Santiago, Chile 

between variables is too complex for a linear model to hold and in particular 
when this relation is not bijective. The method is based on the concept of 
probability aggregation and is implemented in the framework of Sequential 
Gaussian Simulation. It could be extended to any sequential, pixel-based 
simulation technique that uses local ccdfs. Moreover, it is not limited to 
continuous variables. 
 
A point to discuss is that the respective weights of the spatial correlation model 
and the collocated information have been set arbitrarily to one and remain 
identical during the simulation process when aggregating these probabilities. 
This may be questionable due to the complex interaction between the two 
sources of information during the simulation process. However, the numerical 
examples indicate that the method provides satisfactory results.  
 
Adjusting the weights could be a powerful way of parametrizing and extending 
the method. Without entering deeply into the details, the important aspects to 
bear in mind are first that the sum of the weights (equal to 2 here) allows to 
reinforce (or not) the information provided separately by each source of 
information, and second that the individual weights are related to the confidence 
that is associated with a given source of information (Bordley, 1982). Ongoing 
work aims at calibrating the weights to aggregate variables having different 
information contents. 
 
At this stage of the work, spatial cross-correlations between primary and 
secondary variables were neglected, but integrating them in the simulation 
algorithm would not change drastically the theoretical background. 
 
Finally, this paper shows that the concept of probability conjunction or 
aggregation, originating from management science, is a precious tool for 
integrating secondary variables in geostatistical simulations. It allows combining 
information originating from diverse sources in a straightforward 
implementation. 
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