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Abstract Kriging, stochastic conditional simulations, and stochastic inversion 
are compared to characterize a synthetic hypothetical braided alluvial aquifer. 
The performance of the three techniques is compared in terms of reproduction 
of a 10-days capture zone of a pumping well. The results obtained compare 
fairly well with previous investigations dealing with the stochastic delineation 
of capture zones however the presence of a large number of deterministic 
channels in the reference transmissivity field reduces significantly the 
accuracy of the three techniques as compared to previous published results. 
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INTRODUCTION 
 
In Switzerland, alluvial aquifers constitute the most exploited freshwater resource. At 
the same time, these aquifers are extremely vulnerable because they are shallow, and 
located in zones that are either highly urbanized or intensively used for agriculture. 
Furthermore, the complexity of the sedimentary processes in such regions, located 
very close to the Alpine arc, creates a high degree of heterogeneity leading to a large 
uncertainty in solute transport predictions. Finally, because of the scarcity of arable 
land and the subsequent economical importance of alluvial plains, the law imposes to 
delineate protection zones of smaller size compared to other European countries. 
Within this context, the present study aims at evaluating numerical techniques that can 
be used to characterize the aquifer in order to delineate capture zones and estimate the 
uncertainty of the prediction. Three approaches are considered: two direct approaches 
based only on transmissivity data (kriging and conditional simulations), and one 
inverse approach including head data. The advantage of including head data in the 
inverse approach has already been shown (Wen et al, 1996; Bakr & Butler, 2004; 
Stauffer et al, 2004). In this study, we investigate the efficiency of these techniques by 
considering a synthetic braided alluvial aquifer that includes some realistic 
deterministic structures (channels) and bimodal random fluctuations of the 
transmissivity field. In order to simulate the typical approach followed in practice, the 
study is divided in two major steps: first a characterization step to reconstruct the 
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Fig. 1 (a) The synthetic transmissivity field. (b) Histogram of the log decimal of the 
transmissivities. (c) x and y directional variograms. (d) Head fields and boundary 
conditions for the uniform flow situation. (e) 10 days capture zone under the radial 
flow conditions.  

transmissivity fields from punctual transmissivity and/or head values sampled on the 
synthetic reality, then a forecasting step to predict the 10-days protection zone around 
a future pumping well. Like in real cases, the flow conditions of the forecasting step 
are different (new pumping well) from the flow conditions of the characterization step. 

 
 

THE VIRTUAL REALITY 
 
The research is conducted on a synthetic and hypothetical reality (Fig. 1a-c). The 
medium consists of channels and lenses displaying internal heterogeneity. The 
reference transmissivity (T) field is built from an air photograph displaying braided 
channels in the Ohau River, New Zealand (Mosley, 1982). This image was digitized 
and used at its real scale so that the size of the channels and lenses is realistic. The 
image size is 1km long and 400m wide with a resolution of 1m. Two multi-Gaussian 
unconditional simulations were generated to populate separately the channels and the 
lenses with T values. The first simulation describes the T distribution in the channels; 
it has an exponential variogram with a short correlation range (3 m). The second 
simulation describes the lenses. It has a nested variogram including one isotropic 
exponential model with a 3 m range, plus a cubic anisotropic model with a long range 
in the x direction (600 m) and a smaller one in the y direction (300 m). The overall 
integral scale has been estimated in the x and y direction (ix= 25.7 m, iy= 7.4 m) by 
numerically integrating the correlation function calculated directly on the reference T 
field. 
 On the reference transmissivity field, a uniform steady-state flow (Fig. 1d) is 
computed with the feflow code by imposing two constant head values on the east and 
west boundaries, whereas the north and south limits are no-flow boundaries. This flow 
field is used to sample head data for the inverse approach in the characterization step. 
 In the forecasting step, the flow field has the same boundary conditions plus an 
additional constant-rate pumping well located in the middle of the domain. The 10-
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Fig. 2 The characterization step for 250 T data. (a) Histogram of the 250 T data, (b) 
Experimental and model variograms of the Gaussian transform of the decimal log of 
the T data. (c) Kriging. (d) One simulation conditioned only to the 250 T values. (e) 
The same simulation conditioned to the 250 T and 1000 h measurements. 

days capture zone of this well is calculated by solving the Kolmogorov backward 
equation (Uffink, 1989). The mean life expectancy is calculated with the gwad finite 
element code (Cornaton, 2004). The 10 days capture zone is defined as the region 
where these values are lower than 10-days (Fig. 1e). The longitudinal and transversal 
dispersivities are very small (2 and 0.2 m), leading to a narrow dispersion of the life 
expectancy values around the mean.  
 
 
SIMULATING THE CHARACTERIZATION AND FORECAST STEPS 
 
To simulate the aquifer characterization, the reference transmissivity field is sampled 
at random locations within the cells of a regular grid. We obtain three data sets with 
21, 250, and 1000 T measurements. The mean distance between the samples is 
respectively 89, 26, and 12 meters. If we normalize these distances by the integral 
scale in the x direction, we obtain a mean dimensionless distance between the samples 
d=3.5, 1, and 0.5 respectively. In other words, the three data sets represent 
measurements whose mean spacing is 3 times the integral scale in the x direction, on 
the order of the integral scale, and half of the integral scale, respectively. Note that the 
reference image is anisotropic and the integral scale in the y direction is much smaller, 
even smaller than the mean distance between the samples in the 1000 T measurements 
case. The same sampling method is applied for the piezometric heads. Sampling 
locations are the same location as for the transmissivities. 
 Each transmissivity data set is intended to mimic a set of experimental data and it 
is analyzed separately. The T values are transformed into a normal variable N via a 
Gaussian anamorphosis of the decimal log of T. An experimental variogram is 
calculated and a model fitted to this data. The variogram model is used for the three 
characterization techniques. As a first direct approach, kriging of the N values is used. 
This map is transformed back to get an estimation of the T field (Fig. 2c). As a second 
direct approach, 100 conditional stochastic simulations of N are generated and 
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Fig. 3 Examples of the probability maps calculated in the case of 21 T measurements. 
The thick line represents the reference. The grey area, the zone forecasted by kriging. 
The thin lines represent the isoprobability contours for every value between 0.1 to 0.9 
with a step of 0.1 when using (a) 100 conditional simulations only with the 21 T, (c) 
100 conditional simulations with the 21 T and the 1000 head measurements.  

transformed back into T (Fig. 2d). As a third approach, the previous stochastic 
simulations are conditioned in addition by the head data (Fig. 2e) with the inverto code 
(Hendricks Franssen, 2001). In this case, for each ensemble of stochastic simulations 
corresponding to a given T data set, the conditioning on heads (h) is made successively 
for all the h data sets that contain the same number of head data than the T data or 
more. At the end of the process, we have 3 kriged transmissivity fields, 300 
simulations conditioned only on T, and 600 simulations conditioned on T and heads. 
For each of these transmissivity fields, the 10-days capture zone is calculated with the 
same approach that was used for the reference field.  
 
 
RESULTS 
 
The first striking result when looking at the transmissivity maps and capture zones is 
that the forecasts differ significantly from the reference (Fig. 1, 2 and 3). To quantify 
this discrepancy, we introduce two error norms that allow to compare one forecasted 
capture zone with the reference: 

 

ema =
N

B + N
= missed area    euc =

P
B + P

= useless cost  (1) 

 
where N [ m2 ] is the area of the protection zone that is not correctly identified by the 
forecast, B [ m2 ] is the area of the reference protection zone that is correctly 
forecasted, P [ m2 ] is the area wrongly forecasted as belonging to the protection zone. 
In other words, ema is the percentage of the reference that has not been identified. euc is 
the percentage of the forecast that is unnecessarily protected. In the direct conditional-
simulation approach and in the inverse approach, several simulations have been 
constructed for a given data set. In these two cases, the uncertainty is estimated by 
constructing the maps of the probability for a point to belong to the capture zone. 
Examples of these maps are shown in Fig. 3. In addition to the two error norms 
presented above, we propose to quantify the uncertainty with the following 
dimensionless number:  

 

u =
I

N + B
= uncertainty (2) 

 
where N+B [ m2 ] is the area of the reference protection zone, and I [ m2 ] is the area 
located between the 0.9 and 0.1 isoprobability contours. The missed area ema and 
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Fig. 4 Synthesis of the results. (a) Error norms versus mean distance between the 
samples. (b) Uncertainty versus mean distance between the samples. (c) Error norms 
versus probability threshold for the simulations with 21 T values. (d) Same graph but 
1000 additional head measurements used to condition the T fields. (e,f) Error norms 
versus d for different probability thresholds. (See comments in the text)  

useless cost euc errors are calculated as well for the different levels of probability. 
Figure 4 summarizes the results of our calculations for the three approaches 
considered.  
 When the direct approach with Kriging is employed, we find that the error 
decreases as expected when we add T data (Fig. 4a). The reduction becomes stronger 
when the average distance between the data point is lower than the integral scale. The 
behaviour is similar for the missed area (ema) and the useless cost (ecu). Note that even 
in the best case (1000 T measurements), there is still about 50 % of the forecasted 
protection zone that is useless (ecu=0.5) even if a large part of the reference protection 
zone is correctly identified (ema=0.3). When stochastic simulations are employed, the 
uncertainty reduces, as expected, when the distance between the samples reduces (Fig. 
4b). The reduction is stronger when the mean sample distance is lower than the 
integral scale (d<1). Like previous authors (Wen et al., 1996; van Leewen et al., 2000; 
Bakr & Butler, 2004), we observe that the inverse approach allows reducing the 
uncertainty. This reduction is more important when the T measurements are too distant 
to allow capturing the main transmissivity field structure. What is specific to our 
example is that the level of uncertainty remains very significant even when a large 
number of samples is used. The uncertain area has still a size of 1.8 times the area of 
the reference protection zone for 1000 samples.  
 An interesting aspect of the stochastic simulations is that the resulting probability 
map can be used as a tool to help decision makers. The decision maker can define a 
level of risk (a probability value) that he is ready to accept and based on this 
probability, identify the area on the map corresponding to this level of risk. By doing 
so, the error becomes a function of this probability value. A risk prone decision maker 
will select a high probability value (0.9 for example) and will apply the protection 
measures only to this area. As we can see in Fig. 4c, in this case, the decision maker 
will miss a large part of the zone that he should have protected (ema close to 1), but he 



will reduce the surface that is unnecessarily (euc close to 0). It is interesting to notice 
that adding head data allows reducing considerably the errors for all probability values 
if the number of T data is small (comparison of Fig. 4c and 4d). Fig. 4e and 4f 
demonstrate that adding data points reduces the missed area for all probability levels, 
however the useless cost error has significantly increased when going from 21 to 250 T 
measurements. A relatively surprising result is that the Kriging forecast performs as 
well as the simulations. Finally, it is important to note that all the errors remain rather 
high in this study and even for the case with the highest number of samples. If we 
analyse in detail the results of the inverse approach, the statistics show that the 
characterisation of the T field improves considerably when adding more data, but the 
head conditioning is not very efficient to improve the T field except in the case of 21 T 
measurements. In the case of a 1000 h samples for example, the head field is very well 
reproduced but the improvement of the T field is rather limited. 
 
 
CONCLUSION 
 
The performances of kriging, stochastic simulations, and stochastic inversion to 
characterize a braided alluvial aquifer and to forecast protection zones have been 
compared. If most trends in our results are similar to those already published, the most 
important point is that even with a large number of data points, it remains difficult for 
the geostatistical techniques to identify the deterministic structures that control the 
shape of the protection zone. With a thousand T data, and even by taking a safe 
probability value of 0.2, the forecast still miss about 30% of the reference capture zone 
and in this case overestimate the area that should be protected by 60%. This is a rather 
disappointing result: it demonstrates that an accurate forecast in this specific example 
requires an amount of data that is not realistic. We think that there are two reasons for 
this behaviour. First, geostatistics cannot create information at a scale which is below 
the resolution of the sampling. Second, the fact that we are using a conceptual 
stochastic model that does not include explicitly the channels has probably a high 
impact as well. This result should not however be misunderstood. We are convinced 
that stochastic techniques have a major role to play in applied studies like the 
delineation of protection zones. However, the practitioner must be aware that the 
accuracy of the forecast will depend on the amount of data available and on the 
adequacy of the model with the real field structure. 
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