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Abstract The objective of most formulations of inverse modeling in the Earth Sci-
ences is to estimate the model parameters given the observation data. In this paper,
an additional element to these formulations is considered, namely, the prediction for
which the models are built. An example of such modeling is the prediction of solute
transport using geological models of the subsurface constrained to existing geophys-
ical, flow dynamic and solute observations. The paper then illustrates and addresses
a fundamental question relating data, model and prediction: does model inversion
reduce uncertainty in prediction variables given the observed data? To investigate this
question, a diagnostic tool is proposed to assess whether matching the observed data
significantly reduces uncertainty in the prediction variables. In addition, for some
cases, a quick estimate of uncertainty can be obtained without applying inverse mod-
eling. It relies on a dimensionality reduction method using non-linear principal com-
ponent analysis (NLPCA) calibrated from evaluating the prediction and data response
variables on a few prior Earth models. The proposed diagnostic tool is applied on a
simple example of tracer flow and, for the cases investigated, the NLPCA provided an
accurate diagnostic and a satisfactory pre-estimation of uncertainty in the prediction
variables.
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1 Introduction

Most problems in the Earth sciences involving data and a model constitute an inverse
problem: an Earth model needs to be inferred from data. The importance of calibrat-
ing the Earth model to data has led to inverse modeling as a very active domain,
and explains why many review papers have been published on this topic (Mosegaard
and Tarantola 2002; Carrera et al. 2005; Oliver and Chen 2011; Zhou et al. 2013).
However, in addition to the field data and model, a third element is often of equal
importance, namely, the quantification of uncertainty in some prediction (typically a
future response) evaluated on the inverse model solutions. A typical example is the
prediction of reservoir production performance based on historical production data
and geological information; the data being the historical production, the model being
a three-dimensional gridded Earth model constrained to well and seismic data. Uncer-
tainty quantification is desired on some future response such as future oil and water
production of existing wells, four-dimensional saturation changes in the field, or pro-
duction rates of planned wells. Similar problems exist in groundwater management
where piezometric records and water chemistry data are used in an inverse modeling
framework to constrain a numerical model, which is then used to estimate uncertainty
and provide management decisions (Freeze et al. 1990; Gallagher and Doherty 2007;
Alcolea et al. 2009). What is common in many of these practical problems is that the
final desired product is not always the inverted parameters or Earth model itself, but
the prediction made on such an Earth model as well as some uncertainty quantification
for risk assessment. The issue when using inverse methods followed by an uncertainty
analysis on the forecast is that most current inverse methods require considerable mod-
eling and computational effort. Thus, a relatively quick estimation of the relationship
between the data and the prediction could be very useful. Note that this idea is dif-
ferent from the use of a surrogate model to accelerate uncertainty analysis: in these
approaches (Mugunthan and Shoemaker 2006; Ferraille and Marel 2012), the model
forecast is approximated via the surrogate model, but not the relationship between the
field data and model forecasts.

In broad terms, this paper investigates the relations between inverse modeling and
prediction variables. Some observed data are assumed to be available, and the objec-
tive is to assess uncertainty in a prediction variable. Both data and prediction are
computed by forward simulations from Earth models (and are denoted as simulated
data variables and prediction variables, respectively). Note that in this paper, the study
is limited to flow variables; other inverse problems are not investigated. Character-
istic of flow inverse problems is that the dynamic data (d) may not constrain the
permeability model (m) well, because of the ill-posedness of the problem. The pri-
mary objective is to elaborate an approach to asses when model inversion does not
significantly reduce uncertainty in the prediction variables given the observed data.
Depending on the location where the data have been acquired and depending on the
value of the observed data themselves, it may occur that those data are not constraining
the model in such a way that the prediction is affected. To give an extreme example,
assume that one is interested in the protection of a groundwater well and in evaluating
travel times between this well and a waste disposal upstream. It is quite intuitive to
think that the estimation of this travel time will not be influenced significantly by a
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water level measurement far downstream of the groundwater well. In most practical
cases, the situation will not be so clear and obvious, in particular if the relationship
between simulated data and prediction variables is highly non-linear, and the data are
only partially informative about such prediction. This suggests that there is a need to
define some tools to diagnose if performing a time-consuming inverse modeling is
relevant or not for a given specific practical prediction. In that perspective, the paper
introduces a method allowing a fairly rapid analysis of the situation. In addition, in
certain cases, one can use the proposed framework to obtain a reasonable estimation
of the uncertainty in prediction without having to run the full traditional inversion
approach. The approach introduced in this paper is termed prediction-focused analy-
sis (PFA). PFA does not require iteration, but rather relies on estimating a direct rela-
tionship between the simulated data variables and prediction variables. This analysis
requires the creation of prior Earth models to calibrate that relationship, but these
Earth models need not match any data. PFA is illustrated on a simple hydrogeological
example.

2 Problem Setup

In this section, the notations and problem setup are introduced. A Bayesian framework
is used to assess the impact of inverse modeling on the uncertainty in some prediction
variable: if the prior and posterior distributions of the prediction variable are similar,
then uncertainty is not reduced and applying inverse modeling may not be useful.
The notations of Mosegaard and Tarantola (1995) are used for the inverse problem
formulation, including an additional variable: the forecast/prediction. The final aim is
to get a reasonable estimation of the posterior distribution of the prediction variable.
To start, m is the vector representing one Earth model, it is usually a gridded three-
dimensional Earth model obtained by geostatistical or other simulation techniques. The
prior distribution of m is denoted ρ(m). dobs represents measurements of state variables
in the field, or observed field data. The data are assumed to be a flow-based (time-series)
response (pressure, concentration, fluxes, etc.). The Earth model and the state variables
are related via a forward model that represents the physics of the problem. This model
allows computing the state variables at the location of the measurements for a given
value of m. The values of the computed state variables are denoted d and the forward
model is denoted g(m). Therefore, d = g(m). The computation of g(m) involves
solving numerically a set of partial differential equations and is therefore highly CPU
demanding. The solution of the inverse problem is the posterior distribution σ (m) of the
Earth models m knowing dobs. Formally, the posterior distribution can be expressed as
σ (m) = k ρ(m) L(m), where k is a proportionality constant, and L(m) is the likelihood
function which is itself a function of the misfit O between the observed dobs and
calculated d state variables. The likelihood is usually expressed as an exponential
model of the mismatch O between the observed dobs and the simulated data variables
d

L(m) = kexp

(
−1

2
O(m)

)
. (1)
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The resolution of the inverse problem consists then not in giving a formal expression
of σ (m) because σ (m) is too difficult to express analytically, but in generating a set of
samples of m that are distributed according to σ (m). There are various ways to generate
such samples (e.g., Mosegaard and Tarantola 2002). Here, rejection sampling is used
because of its simplicity. More advanced methods could be used as well but even if
they are more efficient numerically, they are not really needed here because of the
simplicity of the example (flow problem, few wells, etc.). The traditional rejection
sampling algorithm (Ripley 1987) to generate a sample m of a distribution f (m) is
the following:

1. Sample m from a uniform distribution.
2. Sample u from a uniform distribution over [0,1].
3. Accept m as a sample of f (m) if u ≤ f (m)

S , where S is the supremum of f (m).

However, when sampling from the posterior distribution σ(m) = kρ(m) L(m) in
a Bayesian context, models m from the prior ρ(m) must be generated, and not from
a uniform distribution. As a consequence, rejection sampling is applied as follows in
the examples:

1. Sample m from its prior distribution ρ(m).
2. Sample u from a uniform distribution over [0,1].
3. Accept m as a sample of σ (m) if u ≤ L(m)

SL
, where SL is now the supremum of the

likelihood function, usually SL = 1.

The second component of the problem is the forecast h. It is a vector that can be
computed from m. It represents the variable of interest in a perspective of decision
making. For example, it can be just a single value representing the travel time between
a drinking water well and a contamination source or a complete oil recovery curve. The
dimension of h depends on the problem but is usually much smaller than the one of m.
The computation of h requires running a forward simulator which is rather heavy in
terms of CPU. The computation of h can also include a rather complex cost analysis.
This overall prediction-forward model is denoted r(m) and h = r(m). As before, the
prior and posterior distributions of h cannot be expressed by closed form formulas;
instead, the aim is to draw samples for uncertainty quantification on the forecast. To
determine the prior ρ(h), models {m1, . . . , ml} from the prior distribution ρ(m) should
be generated and then evaluated: h = r(m). The resulting ensemble {h1, . . . , hl} is dis-
tributed according to ρ(h) = ρ(r(m)). The classical method to determine the posterior
σ (h) is first to solve the inverse problem to obtain a set of samples {m1, . . . , ml} from
the posterior distribution σ (m). Then h = r(m) is computed for each of these samples
to get the resulting ensemble {h1, . . . , hl} which is distributed according to σ (h) =
σ (r(m)). All the statistics of interest (P10–P50–P90 in this paper) can be derived from
samples of ρ(h) and σ (h) and can be compared for decision making.

Here the aim is to propose an analysis tool to check if it is necessary to apply the
classical method. A second objective of the paper is, in certain situations, to obtain more
rapidly a set of samples {h1, . . . , hl} that are approximately distributed according to
σ (h). The most important idea in the proposed approach is to introduce a technique to
reduce the dimension of the problem and render possible a direct analysis of the relation
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between the data d and the forecast h. Two new variables are therefore introduced: d∗ is
the representation of d in a low-dimensional space, dim(d∗) � dim(d), and similarly,
h∗ is the representation of h in a low dimensional space, dim(h∗) � dim(h). The
computation of d∗ and h∗ will be described in Sect. 4. Note that compared to other
approaches, the reduction of dimension is not applied on the Earth model m.

3 Illustrative Example

The example is constructed to illustrate the questions raised in the introduction. It is
derived from an aquifer analog located in Germany (Herten site, Bayer et al. 2011;
Comunian et al. 2011). To create the prior, a multiple-point geostatistical (MPS)
approach is used, with the training image (TI) in Fig. 1 (top), showing the binary
spatial distribution of a depositional feature of high hydraulic conductivity. Prior
Earth models m are generated using the MPS code IMPALA (Straubhaar et al. 2011).
A tracer is injected on the left side of each Earth model. The observed data dobs consist
of measurements of that tracer at three different depths (Fig. 1, bottom) for a period of
3.5 days. The purpose is to predict the concentration (vector h in our notation) of that
tracer later in time (12 days) at a drinking well, located further downstream (right side
of the model). Evaluation of the models is done using a flow and transport multi-scale
finite volume model (Künze and Lunati 2011, 2012).

Training Image

Observation: 
tracer 

concentration
Prediction: 
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concentration
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Fig. 1 Test case set-up. Cross-sectional training image (top), example of one realization (bottom). The grid
is a two-dimensional model with 100×25 grid cells. Tracer is injected on the left side; the concentration is
observed at 3 depths in the center, and predicted on the right
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Three different (synthetic) observed data sets, dobs,1, dobs,2, dobs,3 are used to
analyze different situations. They have been chosen purposely to exhibit different
possible situations of contaminant arrival times, namely, early, middle and late. The
three various dobs have been obtained by generating a different Earth model from the
prior (same TI and hydraulic conductivities) and by running the forward simulator to
obtain the tracer concentration at the 3 depths. In this sense, the prior is consistent
with the data and guaranteed to cover the data. In a real case, one would evidently
have only one of these data sets available. Note that noise-free observed data are used
in this study for simplicity.

For each of the three cases, the reference posterior distribution of h is obtained
by applying rejection sampling in the Bayesian framework outlined in Sect. 2. Prior
models are created without using any data and a full posterior probability model of
the Earth model is formulated based on the likelihood distribution and the prior.

The objective function or mismatch O in the likelihood (Eq. 1) is defined as a
weighted squared distance of the difference between the observed and simulated data
variables at each well and for each time steps

O(m) = 1

Nwells × Ntimes

Nwells∑
w=1

Ntimes∑
i=1

(
di,w

obs − gi
w(m)

min(0.01, αdi,w
obs )

)2

, (2)

where Nwells and Ntimes represent the number of wells and time steps in the simula-
tions and α a tolerance around dobs. The posterior models are thus accepted based on
a tolerance in the average misfit over the wells and time-steps. The reference uncer-
tainty is subsequently obtained by estimating the P10, P50 and P90 quantiles of the
tracer concentration at the prediction well from the posterior models. Again, note that
rejection sampling would not be feasible in normal circumstances because of its high
CPU demand.

Data Case 1 corresponds to a late arrival of the tracer at the three observation
wells. Rejection sampling is applied to obtain a set of 30 models matching the data
(Fig. 2), within the given tolerance defined by the likelihood (Eqs. 1, 2). A total
of 14,820 model evaluations were required. In Fig. 2 (top row and bottom left),
the red dots correspond to the observed tracer concentration at the three observa-
tion wells, the blue lines to the data variables simulated from the matched models.
The bottom-right plot shows prediction uncertainty (P10, P50, P90) corresponding
to 200 prior models (dashed black line) compared with uncertainty for the 30 pos-
terior (matched) models (solid blue line). A late tracer arrival at the three observa-
tion wells and, not surprisingly, at the prediction well is observed. The uncertainty
in the predicted tracer concentration is significantly reduced compared to the prior
uncertainty.

Data Case 2 corresponds to a late tracer arrival for the observation wells 1 and 2,
whereas an early arrival is obtained for well 3 (see Fig. 3). Rejection sampling was
applied to obtain a total of 30 models matching the data (requiring 19,462 flow sim-
ulations). Uncertainty in the prediction is not significantly reduced compared to the
prior uncertainty (bottom right).
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Fig. 2 Rejection sampling results for case 1. Tracer concentration at the three observation wells (top and
bottom-left); uncertainty (P10, P50 and P90) at the prediction well (bottom-right) for the prior models
(dashed black) and posterior models (solid blue)

Data Case 3 corresponds to an early tracer arrival at the observation wells 2 and 3 and
subsequently at the prediction well. Figure 4 shows that the uncertainty in prediction
for the 30 models matching the data (24,810 simulations were needed for rejection
sampling) is significantly reduced, compared to the uncertainty resulting from the
prior models.

In the three data cases presented above, different observed data lead to differ-
ent reduction of the uncertainty space. For example, for Data Case 2, only a small
reduction of uncertainty is obtained by applying inverse modeling. For this example,
it may not be worth applying time-consuming inverse modeling, as the data do not
appear to be influential on the prediction variable. In the next section, an analysis
tool is presented which allows assessing how much the observed data are informa-
tive on the prediction variable, without the need for running costly iterative inverse
methods.

4 Prediction-Focused Analysis (PFA)

The idea behind PFA is to provide a tool to analyze the need of time-consuming inverse
modeling. PFA is not an inverse modeling technique, therefore it is not designed to
replace inverse modeling. It can be seen as a sensitivity analysis on the relationship
between the measured field data and the prediction variables.
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Fig. 3 Rejection sampling results for case 2. Tracer concentration at the three observation wells (top and
bottom-left); uncertainty (P10, P50 and P90) at the prediction well (bottom-right) for the prior models
(dashed black) and posterior models (solid blue)

4.1 Main Idea

The idea of PFA is to investigate the following questions: (1) is there a relationship
between d and h and, (2) if there is a (most likely non-linear) relationship, can it be
estimated. The first question can also be phrased as a diagnostic to verify if significant
changes between prior ρ(h) and posterior σ (h) distributions are observed. If little or no
relationship is observed, then there may be no need to perform time-consuming model-
based inversion. To establish such a relationship, PFA requires only the construction of
a set of prior Earth models. Both forward models g and r are evaluated on these Earth
models to get the simulated data d and predictions h. d and h are vectors of potentially
large dimension, although, as typical for flow inverse problems, much smaller than the
model dimension m. Any analysis of a direct relationship between d and h will only
be possible if a sufficient dimension reduction is obtained (an assumption made in the
PFA approach). By applying such dimensionality reduction techniques individually
on the simulated data and prediction, low-dimensional representations of d and h are
created, which are denoted d∗ and h∗, respectively.

Having the compressed field d∗ and h∗, the objective is now to analyze the relation-
ship between d∗ and h∗ and to compare approximate distributions of ρ(h) and σ (h) in
reduced space, denoted, respectively, ρ∗(h∗) and σ ∗(h∗). Note that this relationship
will be informative on the data prediction relationship in physical space, if the dimen-
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Fig. 4 Rejection sampling results for case 3. Tracer concentration at the three observation wells (top and
bottom-left); uncertainty (P10, P50 and P90) at the prediction well (bottom-right) for the prior models
(dashed black) and posterior models (solid blue)

sionality reduction technique possesses a few properties. First, points close to each
other in physical space (in this case concentration curves) should remain close in low-
dimensional space (proximity relationship should be preserved). Secondly, the trans-
formation from the compressed field back to the initial data should be unique. If those
properties are met, then differences in distributions in reduced space will be indicative
of differences in distributions in physical space. The dimensionality reduction tech-
nique employed in this paper is non-linear principal component analysis (NLPCA,
Kramer 1991). NLPCA has the advantage of dealing with the non-linear aspect of
both d and h, and has a straightforward reconstruction of d and h from d∗ and h∗.
Other candidates for dimensional reduction methods such as multi-dimensional scal-
ing (Borg and Groenen 1997) or KPCA (Schöelkopf and Smola 2002) are not pos-
sible, due to the non-unique reconstruction from the reduced space to the physical
space.

4.2 PFA as a Diagnostic Tool

NLPCA is a non-linear generalization of principal component analysis (PCA). While
PCA is restricted to mapping only linear correlations among variables, NLPCA can
reveal the non-linear association present (Caers and Srinivasan 2002, for an example
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Fig. 5 Schematic illustration of the non-linear principal component analysis technique based on a neural
network with a hidden bottleneck layer of low dimension
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Fig. 6 NLPCA. Concentration curves that were used to train the neural network (left). Projection of each
curve in two-dimensional space (middle). Back-transformation from reduced space to physical space (right)

of NLPCA on pressure data obtained from geostatistical realizations). NLPCA can be
implemented using a neural network (Bishop 1995). The training of the network is
done to obtain an identity mapping: the network outputs are simply the reproduction
of network inputs (simulated data or prediction variables in this case). In the middle of
the network is a layer that works as a bottleneck in which a reduction of the dimension
of the data is enforced (Fig. 5). This bottleneck layer provides the desired component
values (scores). A hidden layer in each part enables the network to perform non-linear
mapping through a non-linear function. NLPCA requires a training data set which
is simply obtained by generating a few (hundred) prior Earth models m and then
evaluating both d and h. NLPCA presents the advantage of preserving proximities
and having a unique back-transformation, which is a necessary assumption to study
the distribution of the variables in reduced space. To illustrate, Fig. 6 displays the
results from the neural network trained using a set of 200 prediction variables (left),
4 of which are highlighted in color. The projections of the four highlighted variables
in a two-dimensional reduced space are shown in the middle plot. Finally, a back-
transformation using the trained neural network is applied to construct approximations
(h̃) of the four prediction curves from the two-dimensional samples (right). It can be
seen that each curve corresponds to one point (unique back-transformation) and that
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Fig. 7 Schematic representation of the joint space (d∗, h∗) from the data and prediction variables

a good preservation of the proximities is achieved. Finally, a good reconstruction of
each curve is obtained.

NLPCA is applied successively on the observation and prediction variables to gen-
erate low-dimensional representations d∗ and h∗ of d and h: d∗ = fNLPCA,d(d) and
h∗ = fNLPCA,h(h). It then becomes possible to construct a joint space (d∗, h∗) as illus-
trated in Fig. 7 (right). In this schematic diagram, the x axis represents the compressed
simulated data d∗ and the y axis compressed predictions h∗. Each point in this space
represents the data-prediction compressed values of a single model, and thus allows
analyzing how the data and prediction relate to each other. Only one dimension for d∗
and h∗ is represented for visualization purposes, even though higher dimensions can
be used for each set of variables (usually 1 to 3 dimensions for each variable). The
joint (d∗, h∗) space represents a global relationship between the simulated data and
the prediction variables. If a trend is observed, it indicates that a relationship exists
between the simulated data and prediction variables.

In addition, because the transformation from d to d∗ is known through NLPCA, one
can now calculate the compressed field data dobs

∗, the low-dimensional representation
of the observed data (dobs): dobs

∗ = fNLPCA,d(dobs). Since NLPCA preserves prox-
imity distances, compressed fields d∗ close to dobs

∗ have similar responses than the
observed data dobs. A local relationship can thus be estimated, the location of dobs

∗ in
the (d∗, h∗) space being informative on the possible values of h∗, for the given observed
data. The distribution of h∗ for the given observed data can thus be analyzed. dobs

∗
represents a hyperplane in (d∗, h∗) space. It is represented as a line in (d∗, h∗) space in
two-dimensional figures such as shown in Fig. 8. In the schematic diagram presented
in Fig. 8 (top, left), dobs

∗ lies in a part of the space where only high values of h∗ are
observed. This means that the data are informative on the prediction, the uncertainty
in h∗ (and therefore h) is reduced for models having similar simulated data variables
than dobs

∗. A different location of dobs
∗ is shown in Fig. 8 (bottom, left), where a much

wider range of values of h∗ is found for the given dobs
∗. Therefore, a practical way to

analyze if the observed data are influential/informative on the prediction is to study
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Fig. 8 Schematic diagram of the mapping of the observed data dobs
∗ in (d∗, h∗) space. Estimation of the

joint distribution and the marginal distribution for h∗

the probability distribution functions (pdf) of h∗ with and without the knowledge of
dobs

∗, which are denoted f (h∗) and f (h∗ |dobs
∗) , respectively. These distributions are

assumed to be approximations of the prior and posterior distributions of h in reduced
space, and thus: ρ∗(h∗) = f (h∗) and σ ∗(h∗) = f (h∗ |dobs

∗) . Comparison of the
prior and posterior distribution of h can now be done in reduced space: large changes
in the distributions of h∗ suggest that the data are informative on the prediction.

To generate these distributions, a kernel smoothing algorithm (Bowman and Azza-
lini 1997; Silverman 1986) is employed in (d∗, h∗) space. Kernel smoothing creates
a map of density values at each location, which reflects the concentration of points in
the surrounding area. When estimating σ ∗(h∗), only points close to dobs

∗ in (d∗, h∗)
prior space should be accounted for (similarly to the tolerance defined in the likelihood
function in physical space). This can be done by estimating first the joint density of
(d∗, h∗) using kernel smoothing and by tuning the bandwidth for d∗ to how accurate
one want to represent the observed data dobs. The density σ ∗(h∗) is then obtained by
taking the joint density value at dobs

∗ and normalizing (which is equivalent to dividing
by the marginal). A larger bandwidth will allow more deviation from the observed data
(more points are accounted for in the calculation of σ ∗(h∗), resulting in a wider pdf),
whereas a smaller bandwidth is reflective of observed data considered to be accurate
(little or no measurement and model error), and thus resulting potentially in a narrower
σ ∗(h∗). Note that the bandwidth can be estimated based on the tolerance defined in the
likelihood. Synthetic concentration curves within the tolerance can be constructed and
subsequently projected in the low-dimensional space using fNLPCA,d. The bandwidth
can then be estimated based on the interval spanned by the points projected from the
synthetic curves.
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In the schematic example of Fig. 8, the diagnostic analysis indicates that a significant
reduction of uncertainty in h∗ is achieved in the top figure, but very little reduction
for the bottom case. In the latter situation, according to the diagnostic, matching
the data would not have much effect on the uncertainty assessment of the prediction
variables h. Note that even though the distributions are presented in two dimensions
for illustrative purposes, in reality the marginal distributions are multi-dimensional. At
this point of the study, the need of applying inverse modeling can be assessed based on
the difference of distribution between h∗ and h∗|dobs

∗. However, due to the properties
of NLPCA, it is additionally possible to generate a rapid estimation of the prediction,
in certain cases.

4.3 PFA for Estimation of Uncertainty in Prediction

This section describes how the diagnostic tool can be extended and used for generat-
ing new samples from the estimated distribution σ ∗(h∗). The new samples indirectly
define new prediction variables, which can be evaluated using the same neural network
defined by NLPCA (h̃ = f −1

NLPCA,h(h̃
∗)). New concentration curves can therefore be

constructed directly from the sampling, without the need to generate and evaluate
new Earth models. An approximation of σ(h) is thus obtained, which is denoted
σPFA(h). For the estimation to be reasonable, the NLPCA should reproduce accu-
rately new prediction variables from samples in reduced space that were not used to
train the neural network. Figure 9 provides an illustration where values of h∗ were
generated by projecting new concentrations curves (not used for the training) in a
reduced two-dimensional space and then back transformed using the neural network.
A very good reconstruction of the concentration curves is observed. A Metropolis
sampling algorithm (Metropolis and Ulam 1974; Metropolis et al. 1953) is used to
generate the new samples from σ ∗(h∗), denoted as h̃∗. The corresponding new predic-
tion variables can be constructed. Uncertainty can subsequently be derived from the
distribution σPFA(h) of those new prediction variables. An illustration is provided in
Fig. 10.

5 Application of PFA to the Illustrative Case

5.1 PFA as a Diagnostic Tool

PFA is applied to the synthetic example presented in Sect. 3. In this example, 200 prior
models m are generated and their responses d (d = g(m)) and h (h = r(m)) are evaluated
and serve as inputs for PFA. NLPCA is applied on the 200 simulated data variables
d as well as on the 200 predictions variables h. For both cases, a hyperbolic tangent
is used in the hidden layer of the neural network. Figure 11 (left) presents the joint
space (d∗, h∗) using one dimension for the data variable (d∗ = d1

∗) and one dimension
for the prediction variable (h∗=h1

∗). Note that in both cases, the NLPCA achieves
considerable dimension reduction, with 96.7 and 99.6 % of fraction of explained
variance (FEV) for d∗ and h∗, respectively, for the first dimension, and 98.9 and 99.8 %
when including the second dimension. As a consequence, the tracer concentrations
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Fig. 9 NLPCA. Concentration curves that were used to train the neural network (left). Projection of each
curve in 2D space (middle). Back-transformation from reduced space to physical space (right)

Fig. 10 Sampling from f (d∗, h∗ ∣∣dobs
∗) and reconstruction of the corresponding variables
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Fig. 11 2D joint space (d∗, h∗) using 200 initial models (black circles, left). The lines represent the
observed data for the three different cases. Marginal distribution for the prior models (black) and for the
posterior models (right)

(simulated data and prediction variables) can be explained on the basis of one or two-
dimensional variables and an appropriate non-linear function (defined in the neural
network).

The configuration of points in the (d∗, h∗) space (shown in Fig. 11) indicates
whether there is a relationship between the data and prediction variables. High values
of d1

∗ (corresponding to early tracer arrival at the observation wells) correspond to
high values of h1

∗ (corresponding to early tracer arrival at the prediction well) and low
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values of d1
∗ correspond to low values of h1

∗. The low-dimensional representations
of the observed data for the three different cases (denoted dobs,1

∗, dobs,2
∗ and dobs,3

∗)
are computed using the same NLPCA function ( fNLPCA,d) as for the simulated data
variables.

Figure 11 (right) shows the distributions for the prior ρ∗(h∗) and posterior σ ∗(h∗)
in reduced space for each case. At this stage, PFA shows that the data are informative
on the prediction variable for cases 1 and 3 (the prior and posterior distributions are
significantly different), but less for case 2. In practice, in situations as illustrated in case
2, one could rely on the prior uncertainty distribution for the prediction without having
to run the time-consuming inversion procedure. The accuracy of the diagnostic tool is
confirmed by the results of rejection sampling, shown in Fig. 3, where the posterior
uncertainty in the forecast almost covers the range of uncertainty of the prior. For cases
1 and 3, the diagnostic made with PFA suggests that there is a need to run the inversion
procedure and indeed, Figs. 2 and 4 show an important reduction of uncertainty in the
predictions after the integration of the data. So the results of the diagnostic are well in
agreement with the rejection sampling.

5.2 Estimation of Uncertainty in Prediction

As stated, the PFA could also be used to obtain an approximate estimation of the
posterior uncertainty in h. To test whether this is the case for each of the three data
cases, the posterior distribution σPFA(h) obtained by PFA is compared to the posterior
distribution σ (h) obtained by rejection sampling. For brevity, results of PFA are only
presented by choosing one dimension for d∗ (d∗ = d1

∗) and two dimensions for h∗
(h∗ = (h1

∗, h2
∗)). However, the method has been applied for higher dimensions (2

dimensions for d∗, 3 dimensions of h∗), with similar results.

Data Case 1 (late arrival of the tracer at the three observation wells) PFA is applied
in three dimensions (two dimensions for h∗ and one dimension for d∗). The posterior
distribution σ ∗(h∗) is therefore a two-dimensional pdf, which is represented by the
sliced plane in Fig. 12, and as a contour map in Fig. 13 (left). Metropolis sampling of the
kernel smoothed pdf is applied to generate 300 samples of distributionσ ∗(h∗). Only the
new samples h̃∗ are shown by red “+” in Fig. 13 (left). Using the neural network that was
used to create the compressed predictions h∗, the predicted concentration profiles can
be reconstructed directly from the sampled values h̃∗ = (h̃1

∗, h̃∗
2): h̃ = f −1

NLPCA,h(h̃
∗).

The estimated prediction variables h̃ corresponding to each h̃∗are shown in red in the
middle plot (Fig. 13), the resulting uncertainty quantification is shown on the right.
Figure 13 (right) shows that the uncertainty in the prediction, represented by the
P10–P50–P90 values, obtained by PFA (red dash-dotted line) is significantly reduced
compared to the prior uncertainty (shaded in grey). Finally, the uncertainty estimated
using PFA (red dash-dotted line) is similar to the one obtained by rejection sampling
(solid blue line).

Data Case 2 (late tracer arrival for the observation wells 1 and 2, and early arrival for
well 3) The results are displayed in Fig. 14. Sampling was done using the distribution
shown in Fig. 14 (left). As expected from the diagnostic analysis, the new prediction
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Fig. 12 3D joint space (d∗, h∗).
The slice corresponds to the
probability density
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Fig. 13 PFA results for case 1. Marginal distribution f (h∗ ∣∣dobs,1
∗) , the red “+” represent the new samples

(left). Corresponding prediction variables (red lines, middle). Comparison of uncertainty of the prior models
(shaded in grey) and posterior models for PFA (dash-dotted red) and rejection sampling (RS) (solid blue,
right)
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Fig. 14 PFA results for case 2. Marginal distribution f (h∗ ∣∣dobs,2
∗) , the red “+” represent the new samples

(left). Corresponding prediction variables (red lines, middle). Comparison of uncertainty of the prior models
(shaded in grey) and posterior models for PFA (dash-dotted red) and rejection sampling (RS) (solid blue,
right)

curves (middle) as well as the P10–P50–P90 quantiles (right) obtained by PFA are
fairly similar to the one from the prior. In this case, matching the data may not provide
any better uncertainty in the prediction. The uncertainty in the prediction is not signifi-
cantly reduced compared to the prior uncertainty (right). Furthermore, the uncertainty
obtained by rejection sampling and PFA is very similar.

Data Case 3 (early tracer arrival at the observation wells 2 and 3 and subsequently at
the prediction well) The results are displayed in Fig. 15. Note that only high values of
h1

∗ are sampled in this case, as shown by the empirical distribution (left). This results
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Fig. 15 PFA results for case 3. Marginal distribution f (h∗ ∣∣dobs,3
∗) , the red “+” represent the new samples

(left). Corresponding prediction variables (red lines, middle). Comparison of uncertainty of the prior models
(shaded in grey) and posterior models for PFA (dash-dotted red) and rejection sampling (RS) (solid blue,
right)

in an early tracer arrival time for the prediction (middle). Figure 15 shows that the
uncertainty in the prediction for the models matching the data is significantly reduced
compared to the uncertainty estimated from the prior models. Again, the uncertainty
estimation obtained by PFA is very similar to the uncertainty obtained by rejection
sampling.

6 Discussion

The three examples above show that it is possible to establish a reliable diagnostic on
how much the observed data are expected to be informative on the prediction variable.
It is also possible to obtain a rather accurate estimation of uncertainty in predictions h
without performing inverse modeling. In these examples, the PFA approach provided
similar results as the full rejection sampler. This is encouraging from an Earth modeling
point of view as the PFA only calls for forward models. No iterative inversion with
possible problems of convergence is required; hence all modeling focus can be on
the Earth models and the simulators. Finally, the direct estimation of uncertainty in
prediction using PFA can only be applied in certain cases. A few models of the prior
should already be in the vicinity of dobs

∗ to ensure an accurate estimation of the
bandwidth and reconstruction of the curves. This requirement is not necessary for the
diagnostic tool where only large changes between the prior/posterior distributions of
h∗ are of interest. In addition, NLPCA should not be used to generate curves outside
of the training bounds (no extrapolation is feasible), hence the importance of a wide
prior.

In practice, the application of PFA will be possible and appealing when the following
circumstances are found. First, when a very small number of prediction variables are
sufficient to describe the problem and are known ahead of time. The PFA approach
is not applicable when Earth models need to be created for multiple purposes that
are not necessarily known a-priori. Second, when a significant dimension reduction
can be obtained for both d∗ and h∗. Kernel smoothing will require more data (hence
more forward simulations) as the dimensions of d∗ and h∗ increase and will likely
not be successful in very high dimensions (in a recent paper, Park et al. 2013, such
smoothing was successfully applied in dimensions as high as ten). If the dimension
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reduction is not successful in low dimensions, then the loss can be quantified (as is
the case with any dimension reduction method) and should be accounted for, or better,
one should use a more appropriate dimension reduction technique. Third, when the
prior model is broad enough to cover well the observed data, as would be expected
in Bayesian modeling. Finally, when large uncertainty exists in the prior model with
many contributing factors. Since only forward modeling is required, the PFA allows
for any prior model with an amalgamation of uncertainty, such as uncertainty in the
training image or structural model (e.g., faults, Park et al. 2013), or any other non-
continuous types of variation. Discrete or scenario uncertainty are difficult to handle
and computationally demanding within a classical inversion which tends to focus on
within-scenario optimization or sampling.

7 Conclusions

In this paper, some fundamental questions related to flow inverse modeling have been
investigated in cases with substantial uncertainty and important influence of prior
information on the final inverse solutions. The prediction focused approach (PFA) is
introduced to analyze the triangular relationship between data, model and prediction.
PFA can be seen as a pre-inverse modeling sensitivity study. Based on NLPCA, PFA
offers a diagnostic tool that allows investigating if matching the data, through inverse
modeling, provides reduced uncertainty in the prediction. If the data are not informative
on the prediction, then there may be no need to apply inverse modeling. If the data are
shown to be sensitive, then inverse modeling should be performed. In the cases studied
in the paper, a successful dimensionality reduction was obtained, which made an
accurate diagnostic in only two dimensions possible. In addition, the cases demonstrate
that it is possible to estimate the uncertainty in prediction relatively accurately without
performing any flow inverse modeling. The uncertainty estimated by PFA was similar
to the one obtained by rejection sampling for the three tested examples. While such
results should be tested with more complex models and on a wider range of situations,
one can be confident that the proposed approach may have considerable impact on
the practice of subsurface modeling, the most direct being computational. Additional
research is still needed to account for noise in the data and how such noise propagates
in the dimensionality reduction. Finally, another extension of this research could be to
investigate to what extent the data should be matched, or, what part of the data should
be matched, to provide better predictions and lower computational cost.
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