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a b s t r a c t

Understanding the role of connectivity for the characterization of heterogeneous porous aquifers or res-
ervoirs is a very active and new field of research. In that framework, connectivity metrics are becoming
important tools to describe a reservoir. In this paper, we provide a review of the various metrics that were
proposed so far, and we classify them in four main groups. We define first the static connectivity metrics
which depend only on the connectivity structure of the parameter fields (hydraulic conductivity or geo-
logical facies). By contrast, dynamic connectivity metrics are related to physical processes such as flow or
transport. The dynamic metrics depend on the problem configuration and on the specific physics that is
considered. Most dynamic connectivity metrics are directly expressed as a function of an upscaled phys-
ical parameter describing the overall behavior of the media. Another important distinction is that connec-
tivity metrics can either be global or localized. The global metrics are not related to a specific location
while the localized metrics relate to one or several specific points in the field. Using these metrics to char-
acterize a given aquifer requires the possibility to measure dynamic connectivity metrics in the field, to
relate them with static connectivity metrics, and to constrain models with those information. Some tools
are already available for these different steps and reviewed here, but they are not yet routinely integrated
in practical applications. This is why new steps should be added in hydrogeological studies to infer the
connectivity structure and to better constrain the models. These steps must include specific field meth-
odologies, interpretation techniques, and modeling tools to provide more realistic and more reliable fore-
casts in a broad range of applications.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last 50 years, conceptualizing and modeling aquifer
heterogeneity has evolved in three main phases. In the first phase,
most models considered an ensemble of regions having constant
equivalent properties. These regions were generally drawn on the
base of geological mapping and their properties were estimated
either from typical average values within a geological formation
or by means of model calibration. In the second phase, small scale
variability has been considered as a key feature and geostatistics
was intensively used to model the spatial variability [1–3]. Most
models were then based on the multi-Gaussian assumption that
has the advantage to be extremely parsimonious. In this frame-
work, the main parameters controlling the degree of heterogeneity
were the variance of the logarithm of the hydraulic conductivity
and its correlation length. An extremely broad range of important
results have been obtained using this model in the stochastic
hydrogeology literature [3–6]. But several authors raised the point
that the multi-Gaussian model was too restrictive and could not
ll rights reserved.
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describe the full range of connectivity patterns that one finds in
nature [7–10]. That can be considered as the start of the third
phase; nowadays, in addition to the variance and the correlation
length, the connectivity structure of the heterogeneity is under-
stood as a property that strongly influences groundwater flow
and solute transport in aquifers. In parallel to this evolution, a
broad range of stochastic models has been developed to represent
geological structures such as channels, lenses, deltas, with the aim
to better reproduce the expected connectivity of aquifers [11,12].
But surprisingly, it is only since the last 10 years that a significant
number of papers have been published on the quantification of
connectivity and its relations with the physical properties of aqui-
fers (Fig. 1). It is worth noticing that a similar evolution occurred
simultaneously in the neighboring fields of surface hydrology
[13–20], geomorphology [21–24], landscape ecology [25–28], pore
scale or soil physics [29–34].

A common issue that appears in the literature is that, even if the
concept of connectivity refers to a rather intuitive notion, there is
not a single mathematical definition that is adopted by the whole
community. The word connectivity is often used as a broad concept
with various definitions related for example to the efficiency with
which runoff moves from source areas to streams [35] or to the
presence of an unsaturated zone between a river and an underlying
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Fig. 1. Evolution of the number of articles having the word connectivity in their title
in the top five journals in groundwater hydrology according to ISI Web of
Knowledge. No paper mentions the concept in its title before 1990. The first papers
in the 1990s relate to fractured media. It is only after 2000 that regular publications
are found.
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aquifer [36]. Therefore, as pointed out by several authors
[37,18,19], there is a need to adopt some standards and to share
them.

However, providing a standard single short definition of
connectivity is probably an impossible task. In the context of
groundwater hydrology, connectivity is a broad concept related
to the existence of a path enabling fast flow and transport from
one location to another. As described in the following paragraphs,
the concept of connectivity is quantified using both static and
dynamic connectivity metrics.

The static connectivity metrics are only a function of the spatial
distribution of the parameters (lithology or directly permeability).
They are statistical measures describing the connectivity of a field
without considering a specific physical process. Because the most
common statistics used to describe the spatial distribution of a
field are based on two-point statistics, such as covariances, vario-
grams, or spatial entropy, it is important now to remind the reader
that they are not able to describe the connectivity. Two-point sta-
tistical metrics describe only the probability of having a certain va-
lue at a certain location knowing the value at another location. This
is not influenced by the structure in between and by the possibility
of having or not a connection through a complex path
[10,39,13,40–42]. This is illustrated in Fig. 2 where two stochastic
simulations are compared. The one on the left (Fig. 2(a)) displays
channels of high permeability. The one on the right (Fig. 2(b))
was generated in order to reproduce the histogram and variogram
of the first image. The histograms (Fig. 2(c)) and experimental vari-
ograms (Fig. 2(d)) of the two fields are thus not distinguishable
from a statistical point of view. Obviously, if only punctual obser-
vations are available at a small number of locations from one of
those field and if one carries on a statistical analysis of the data,
it will not be possible to distinguish if the field belongs to the cat-
egory on the right or to the category on the left, or to another one,
while their response to flow and transport will be very different.
This is the reason why other statistical metrics, such has those
developed in the framework of percolation theory [43,44], and al-
ready widely applied to fractured media [45–48], should be used.
With the emergence of new heterogeneity models involving
high-order statistics [40,49,50], the static connectivity metrics
are becoming an important tool to assess the quality of the simu-
lations or to rank them [51–54].

The dynamic metrics are more diverse since they depend on the
type of processes. Usually, dynamic connectivity metrics represent
better the physics but they depend both on the geometry and on
additional physical parameters such as the type of boundary con-
ditions or the state of the system. For example, in unsaturated
media the flow properties of the system will depend on its degree
of saturation and on the spatial variability and connectivity of the
saturated zone [13,29,55,36]. It implies that the dynamic metrics
can vary with time. Dynamic and static connectivity metrics are
linked through complex relations [29,42,56–59]. Dynamic metrics
are easier to measure in the field.

Another important way to classify connectivity metrics is to dis-
tinguish the global metrics from localized ones. Global metrics of
connectivity, also called geobody or sand-body connectivity [60],
are related to the overall structure of a media and provide informa-
tion which is not related to a specific location. We will review sev-
eral of these metrics in the following, but to make the point clear
an example of this type of metrics is the probability that two dis-
tinct points taken randomly in the domain belong to a connected
pattern. Localized metrics, also referred to as reservoir-to-well
connectivity or simply reservoir connectivity [60], are related to
one or several specific positions in the domain of interest. For
example, one might be interested in the connected volume at a gi-
ven well location. Or a tracer test can provide the indication that
two specific points in the study domain are connected or are not
connected. This is a localized deterministic metric taking only a
binary value: 1 = connected, 0 = disconnected. On a stochastic
model, similar information relating two points can be expressed
in statistical term. One can for example compute the probability
that a certain location in a model connects with another one
[48]. Note the semantic subtle distinction; these metrics are said
to be localized, because they are related to specific locations. How-
ever, as it will be made clear in the next sections, it is not a local
property in the sense that the whole media is potentially involved
in the connectivity metric.

In terms of heterogeneity modeling, the connectivity metrics
are usually not explicit input parameters but are rather implicit de-
rived properties of the medium generated by a given simulation
technique. In practice, often the connectivity of several realizations
of a stochastic model obtained with the same input parameters
will have a range of connectivity properties. The statistical rela-
tions between the connectivity metrics and the input parameters
of various stochastic models have been analyzed [61–63] and can
be used as a guide to select an appropriate model or a set of param-
eters when required.

The aims of this paper are to highlight the importance of con-
nectivity on flow and transport and to provide a review of the most
important connectivity metrics and their use in groundwater
hydrology. From a general perspective, the major questions that
we will cover in this work are the following: (1) How to define sta-
tic connectivity? (2) How to define dynamic connectivity and how
to relate it to static metrics? (3) How to infer connectivity in the
field? (4) How to constrain models of heterogeneous media with
a given connectivity? and (5) What do we gain if we properly
use connectivity information? In the next section we discuss the
importance of connectivity on flow and transport, and how it
emerged from different studies. In Section 3, we review several sta-
tic connectivity metrics. We first recall their definition as rigor-
ously as possible; we then present their most important
properties and how they are related to subsurface flow and trans-
port. Section 4 is concerned with dynamic connectivity metric and
Section 5 shows how static and dynamic metrics are related. In
Section 6 we discuss the practice of stochastic simulations of sub-
surface structures when connectivity information is available and
must be respected. We also discuss how this issue is related to
solving inverse problems. We close this paper with a discussion
of avenues for future work in Section 7. Appendix A provides some
details on how to compute the connectivity metrics with available
software.
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Fig. 2. Two heterogeneous fields showing different connectivity patterns but identical histograms and variograms. From Mariethoz [38].
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2. The importance of connectivity on flow and transport

The importance of connectivity was early recognized for flow in
fractured rocks [64,65]. This triggered a vast amount of research
[45,66–69,47,48,70]. Fractured media and their connectivity hav-
ing already been the topic of several review papers [71–74], we fo-
cus this review only on porous media.

In these aquifers or reservoirs, the role of connectivity was al-
ready analyzed quantitatively with a Boolean 2D model of sand
lenses in a shally matrix representing fluvial sediments by Allen
[75,76]. He showed that the proportion of connected sand lenses
is growing very rapidly with the sand proportion if it is greater
than 50%. In the mid 1980s, Fogg [77] did a detailed 3D modeling
study of the Wilcox aquifer in Texas. He showed that the connec-
tivity of sand lenses is a critical factor influencing flow and
transport at a regional scale. According to his results, the intercon-
nectedness between the lenses is a factor more important than the
permeability of the lenses themselves. In his paper, Fogg also
stated that the available piezometric measurements were not suf-
ficient to locate and identify the connectivity between sand lenses
in 3D while the knowledge of the connectivity is essential for accu-
rate transport simulations and to evaluate properly the prediction
uncertainty. This conclusion demonstrates the importance of hav-
ing other sources of information such as a prior geological knowl-
edge, geophysical observations, or tracer observations in order to
infer the connectivity.

At the Hanford site (USA), Poeter and Townsend [78] investi-
gated contaminant transport and built several models of heteroge-
neity based on two different conceptual geological models having
different spatial connectivity patterns. The resulting sequential
indicator simulations were used to estimate the critical flow paths
and to show their influence on the overall solute transport
behavior.

At the Lawrence Livermore National Laboratory site, LaBolle and
Fogg [79] observed that high permeability channels embedded in
less permeable floodplain deposits dominate the solute transport.
Ronayne et al. [80] used the probability perturbation inverse meth-
od [81] and multiple-point statistics [40] to analyze on the same
site the anomalous pressure signals observed in six observation
wells during a pumping test. They showed that those data can be
explained if high permeability channels connecting some piezom-
eters with the pumping well are accounted for in the model.

These type of observations, highlighting the influence of con-
nectivity on flow and transport processes, have been reported at
various scales and on various geological environments [82–84].

In addition, several authors [85–90] have reported observations
of anomalies of transport behavior and scale effects that are
difficult to explain with traditional multi-Gaussian models of het-
erogeneity. To explain the observation that the values of the per-
meabilities estimated at various scales apparently increase with
the dimension of the sample (from laboratory experiment to regio-
nal scale models), Sánchez-Vila et al. [9] constructed a series of
models with different degrees of connectivity and computed their
equivalent conductivities. They showed that indeed a model with a
higher degree of connectivity than the multi-Gaussian model could
explain at least partly the observations. A rather similar investiga-
tion was conducted by Wen and Gómez-Hernández [91] on the
transport properties of non-multi-Gaussian media. Their study
showed that high connectivity of the high permeable regions leads
to faster arrivals and longer tailing, clearly characteristic of non-
Gaussian transport responses. Wen and Gómez-Hernández [91]
suggested that a careful evaluation of the connectivity of an aquifer
should be conducted prior to apply a given type of model. This is
also described in detail in Gómez-Hernández and Wen [10].

Zinn and Harvey [92] went a step further in the systematic anal-
ysis of the impact of connectivity. They constructed an ensemble of
permeability fields displaying different connectivity structures as
did Sánchez-Vila et al. [9] or Wen and Gómez-Hernández [91].
But here, they built the transmissivity fields using a series of trans-
formations of an initial multi-Gaussian field that ensures that all
the fields have identical pdfs, and nearly identical variograms but
very different connectivity structures. This transformation will be
detailed in Section 3.2. In the initial multi-Gaussian field
(Fig. 3(a)) representing the logarithm of the transmissivity, the
high and low values are isolated in lenses having a size propor-
tional to the correlation length and only the intermediate values
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are well connected. This is a well known feature of the multi-
Gaussian model [7,8]. In the transformed fields, one can chose to
connect low values (Fig. 3(b)) or high values (Fig. 3(c)), thus lead-
ing to what will be called the disconnected or connected field mod-
els in the rest of this paper.

By simulating flow and transport through a large ensemble of
those fields and by varying the variance, Zinn and Harvey [92]
showed how the equivalent conductivity Keff of the connected
or disconnected fields depart from the multi-Gaussian case
(Fig. 3(d)). As a direct consequence, solute transport is much faster
in the connected fields (Fig. 3(e)) and the deviation increases as a
function of the variance. But the difference in the breakthrough
curves between the three configurations is not only due to the dif-
ferences in effective conductivity (which controls the mean veloc-
ity of the tracer), it also relates to the presence of mass transfer
between the mobile and less mobile water phases. As a conse-
quence, the overall breakthrough curve through the highly con-
nected media displays a non-Fickian behavior with faster arrivals
than the standard model and a longer tailing due to the mass trans-
fer process (Fig. 3(f)). The apparent macrodispersivity al does not
follow any more the standard asymptotic behavior al ¼ r2

Y IY ob-
served in multi-Gaussian fields (where r2

Y is the variance of the
logarithm of the hydraulic conductivity K, and IY is the correlation
length of lnK). For the poorly connected media, the behavior is
opposite. More generally, Zinn and Harvey [92] showed that isotro-
(e) breakthrough curves
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Fig. 3. Illustration of the procedure used by Zinn and Harvey [92] to construct various ty
the effective conductivity, Kg is the geometric mean of the local conductivity values, Ka t
mass of tracer recovered at the outlet (modified from Zinn and Harvey [92]).
pic media with a log-normal distribution of the local conductivity
values can behave like stratified media if the high conductivity val-
ues are highly connected. The transport is not Fickian and the
equivalent hydraulic conductivity is higher than the geometric
mean.

Neuweiler and co-authors [93,55,94] extended this work to
unsaturated media and two-phase flow problems. Again, they
showed that the connectivity structure has a strong impact on
the equivalent relative permeability curves. They also indicated
that simple estimates of effective parameters can reproduce the
typical time scales of the flow processes if the connectivity infor-
mation is correctly incorporated in the estimates.

Another important aspect is that inverse methods which as-
sume that the underlying heterogeneity is multi-Gaussian may
not perform properly if the unknown reality is not multi-Gaussian.
To test that assumption Kerrou et al. [95] generated a synthetic
channelized aquifer model and used it as a virtual reality to study
if the multi-Gaussian model could be sufficiently robust to provide
correct forecasts of the total flux through the medium and capture
zone delineation under those conditions. The results showed that
when a large number of head and transmissivity measurements
are available, the inverse method is heavily constrained by the
underlying multi-Gaussian assumption and the prediction uncer-
tainty is very small but the forecasts were biased. This was attrib-
uted to the fact that the Sequential Self Calibration method (like
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any other method based on a multi-Gaussian model) reproduced
very well the variogram of the transmissivity data, their local val-
ues, the head values at the observation nodes, but not the connec-
tivity structure as shown by comparing the connectivity functions
(see definition below) of the reference and the results of the inver-
sion technique. Recently Zhou et al. [96] showed that these prob-
lems do not occur when using ensemble Kalman filters (EnKF)
even when the underlying prior model is incorrect. The method
consists in generating an initial ensemble of models using multi-
ple-point statistics and to iteratively update those fields using
the standard or a modified version of the EnKF (allowing to deal
with non multi-Gaussian distributions). In the case that is investi-
gated, Zhou et al. [96] are able to reconstruct the structure of the
channels in a very efficient manner. This is a very interesting and
promising result probably due to the fact that EnKf do not ensure
in general that the simulated fields honor the prior model and that
the transient data are sufficient in this case to identify the presence
of the channels.

To conclude this section, all these results indicate that inferring
the connectivity of a field is extremely important to allow produc-
ing reasonable forecasts. Blindly assuming that aquifers are multi-
Gaussian is not a conservative assumption [92].
3. Static connectivity metrics

3.1. Grids, neighborhoods and clusters

Aquifers and reservoirs are in general modeled on regular grids
on which neighborhood relations are defined. The most common
grid in 2D is the square grid with 4 neighbors (4-connectivity);
in 3D it is the regular cubic grid with 6 neighbors (6-connectivity).
Other lattices with other connectivities could alternatively be de-
fined. For example, the 8-connectivity square grid (the 4 corners
are added in the neighborhood), the hexagonal grid with 6 neigh-
bors or the honeycomb grid with 3 neighbors are other possible
grids in 2D, see Fig. 4 for two examples of regular grids. All connec-
tivity characteristics discussed in this paper are based on the def-
inition of neighbors. They thus depend on the chosen lattice and
neighborhoods. From now on, we will always consider regular cu-
bic grids (regular square grids in 2D) equipped with the 6-connec-
tivity (4-connectivity in 2D) as they are the most frequently used.

The grid will be denoted G, its spatial dimension d and L will be
the number of grid nodes along one of its dimension. We will de-
fine a point or a cell on this grid by its location x which is a vector
of d spatial coordinates. The total number of cells of G is thus Ld. In
each cell, there are only two types of porous media represented by
an indicator variable I(x) that can either take the value 1 (the cell is
highly permeable) or 0 (the cell is impermeable). I(x) can be deter-
ministic, or can be one realization of a random function. Let us de-
note X the subset of G representing all cells in which I(x) = 1. Xc will
be denoted its complement set. Two points x and y of X are said to
Fig. 4. Two examples of regular grids in 2D. Left: regular square grid wi
be connected if there exists a sequence in X of neighboring points
between x and y. When x and y are connected, we will denote
x M y. An obvious consequence of this definition is that x M y and
y M z entails x M z. A subset A of X is said to be connected if x M x0

for any x and x0 of A. The connected components of X are the largest
connected subsets of X.

Far from being a bivariate characteristic, the connectivity in-
volves not only the entire grid, but also the neighborhood relation-
ship defined on G. The concept of connected component is well
known in percolation theory under the terminology of clusters
[43,44]. The same concept is known in petroleum engineering lit-
erature as a geobody [51,60,57]. We further define the cluster iden-
tification function C(x) that identifies with a unique value each
cluster and is equal to 0 for all cells not in X (Fig. 5). The details
of an efficient computer implementation of the calculation of
C(x) from I(x) are given for example in Hoshen and Kopelman
[97] or Newman and Ziff [98] (see Appendix A for additional infor-
mation about available codes). Once the function C(x) is defined,
testing the connectivity between two cells x and y is equivalent
to testing that C(x) is equal to C(y). This approach is computation-
ally efficient to test the connectivity between many cells.

At this stage, it is important to recall that the connectivity of the
complement set Xc is related to the connectivity of the set X in a
way which involves the lattice with the dual connectivity. Consider
the set represented in Fig. 6 by black grid nodes. For the 4-connec-
tivity square grid it is composed of two clusters. The impossibility
of a flow between to distinct clusters means implicitly that the
background is connected. On the square grid, the dual of the 4-con-
nectivity is thus the 8-connectivity. In contrast to this, the hexag-
onal grid with 6 neighbors is auto-dual. The 6-connectivity
neighborhood applies to X and its complement Xc.

3.2. General probabilistic framework and three important random sets

We need to precise a little bit the general set-up considered.
Many properties of the connectivity metrics studied in this section
involve probabilities. The meaning of probabilities is straightfor-
ward when X is a random set. In this case, they can then be esti-
mated through simulation studies. In the rest of this paper, all
simulated models are stationary, i.e. translation invariant. The con-
sequence is that the connectivity between two points x and y de-
pends only on the vector h = y � x. The meaning of a probability
is less obvious when studying a specified aquifer or a reservoir.
In this case, making stationarity and ergodicity assumptions will
allow us to compute some connectivity metrics by counting on G

the number of repetitions of events depending on some distance
vector h. More details will be given below.

Many numerical studies were conducted for describing and
quantifying connectivity metrics [99,62,61,60,57] based on sto-
chastic simulations of random sets.

Among models of interest, the Boolean model is by far the most
frequently studied, see e.g. [61,62,60,57]. We recall briefly its
th four neighbors. Right: regular hexagonal grid with six neighbors.
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Fig. 5. Identification of the connected components of an indicator variable (a) using the cluster identification function C(x) (b).

Fig. 6. The black clusters are not connected for the 4-connectivity; the background
is thus connected for the 8-connectivity.
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definition. More details can be found for example in Lantuéjoul
[100]. In a Boolean model, objects are located at points drawn uni-
formly in a given domain. The objects can have random or fixed
shape, size and orientation. Here, we consider a discrete version
of the Boolean model. Squares of size l are centered at each grid
node with a probability p0 2 [0,1]. The probability of being in the
permeable phase, called the proportion and denoted p is related
to p0 according to p ¼ 1� ð1� p0Þ

l2 . Note that l = 1 corresponds
to Bernoulli grids, i.e. random sets X such that each grid node is
in the permeable phase independently to all other grid nodes,
while l ?1 with L/l kept constant tends to a continuous Boolean
model of squares of size L/l in the plane.

Another model which will be extensively illustrated in this pa-
per is the truncated Gaussian model. For this model, a standard
multi-Gaussian random function Y(x) is first simulated on G. The
random set X is then defined as the set of points x above a thresh-
old t. Since p = P(Y > t) = 1 � G(t), where G is the cpf of a Gaussian
random variable, there is a one-to-one correspondence between
the proportion and the threshold. The random function Y(x), and
thus the random set X for a given proportion, is fully characterized
by the covariance function c(h) of Y(x). The regularity of c(h) at the
origin is a parameter of crucial importance for the continuity of X
and some of its connectivity characteristics. If c(h) is twice differ-
entiable at the origin, i.e. if c00(h = 0) <1, which is for example
the case for the Gaussian covariance model, X will display very reg-
ular boundaries [100,101]. On the continuous plane, X will have a
finite perimeter in bounded domains. On the contrary, if
c00(h = 0) =1, which is for example the case for the exponential
or spherical covariance models, X will display very erratic bound-
aries. For these models, the perimeter of X in a bounded domain
of the continuous plane is infinite.

As a third family of model illustrated in this paper, we will con-
sider the transformation of multi-Gaussian fields proposed in Zinn
and Harvey [92] and Vogel [102]. First, an initial classical multi-
Gaussian field Y0(x) having a mean of zero and a unit variance is
generated (see Fig. 3(a)). To connect high or low values, the abso-
lute value of the multi-Gaussian field is taken. The minimum val-
ues are now connected. By stretching the univariate distribution
using a normal score transform, a field Ydi with a Gaussian pdf
and connected low values (or disconnected high values) is ob-
tained (Fig. 3(b)):

YdiðxÞ ¼
ffiffiffi
2
p

erfinv 2 erf
jY0ðxÞjffiffiffi

2
p

� �
� 1

� �
; ð1Þ

where erf and erfinv are the error function and its inverse. This
transformation alters the covariance of the field (but not the overall
variance) and therefore a spatial stretching is applied to ensure that
the new field has a variogram identical to the initial multi-Gaussian
field. To obtain a field Ydi with connected high values, the distribu-
tion is simply reversed (Fig. 3(c)) Yco = �Ydi. The latter transforma-
tion leads to the so-called connected fields.

In all the binary models, the proportion p can vary from 0 to 1.
For a given realization, the set Xp describing the permeable phase
will thus increase with p in the following way: if a cell x belongs
to Xp for a given p, it also belongs to all Xp0 for all p0 P p. This can
be achieved by tuning the threshold t for truncated Gaussian mod-
els and for any thresholded continuous field, or by tuning the prob-
ability p0 for Boolean models or the external proportion for other
models. On an aquifer, Xp would for example correspond to the
thresholding of the permeability. In the context of oil reservoirs,
p is the net-to-gross parameter.

3.3. Scalar indicators

Among the many indicators that can be defined to characterize
the connectivity, we first present the scalar indicators that have
been the most studied in the literature. We will use two major
sources: (i) from integral geometry we will borrow a topological
functional known as the Euler characteristic which will be related
to the number of clusters; (ii) using the percolation theory para-
digm, we will detail how some connectivity metrics such as the
size of the largest cluster or the connectivity at long distance vary
with the proportion. In particular, we will show how these quanti-
ties change dramatically around a specific proportion, known as
the percolation threshold.

3.3.1. The Euler characteristic and the number of clusters
One of the most important result of integral geometry [103,104]

states that there is only a very limited number of functionals
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describing the geometry of sets which are motion invariant and
additive in the sense that g(A [ B) = g(A) + g(B) whenever A and B
are disjoint subsets of G. Up to the multiplication by a constant,
there is in fact only one functional per dimension d0 6 d. In 3D,
the four functionals are, in decreasing order of dimension, the vol-
ume, surface, mean curvature and the Euler characteristic. This last
characteristic, dimensionless, provides a number which is only re-
lated to the shape (the topology) of the set. It is the unique integer
valued functional / defined on subsets A of X satisfying /(A) = 0 if
A = ; and /(A) = 1 if A is a cube with all cells in the permeable
phase. In 2D, the Euler characteristic is simply the number of clus-
ters minus the number of holes in the clusters. In 3D, it is the num-
ber of clusters, minus the number of ‘‘handles’’ plus the number of
holes. Thus, for example, the Euler characteristic of a snowball is 1
(one cluster, no hole, no handle); that of a tennis ball is 2 (one clus-
ter, no handle, one hole); that of coffee cup is 0 (one cluster, no
hole, one handle).

It can be shown [105] that on a grid the Euler characteristic of a
set X can be computed according to:

/ðXÞ ¼
Xd

i¼0

ð�1Þi#eiðXÞ; ð2Þ

where ei are the elementary facets of dimension i on the graph of G,
i.e. #e0(X) is the number of sites of X and #e1(X), #e2(X), #e3(X) its
number of edges, faces of 4 adjacent sites and volumes of 8 adjacent
sites. Eq. (2) provides a very efficient algorithm for computing the
Euler characteristic (see Appendix A for available codes). Note that
Eq. (2) shows that / is nothing but a local 8-point statistics aver-
aged on the entire grid. It is thus a local characteristic. Explicit for-
mula for the specific Euler characteristic /ðXÞ=jGj ¼ /ðXÞ=Ld is
available for the Boolean model of fixed size squares described
above [99]. For the truncated Gaussian model on G, theoretical val-
ues can be obtained by computing numerically the multiple inte-
grals corresponding to Eq. (2). On the continuous plane or 3D
space, explicit formulas are also available for the Boolean model
and for the truncated Gaussian model, provided the covariance
function is twice differentiable at the origin [106,107], see
Section 3.7.

Contrarily to /(X), the number of clusters, N(X), is a non-addi-
tive, global characteristic for which there exists no analytical for-
mula. Allard [99] showed that for stationary random sets, the
specific number of clusters can be related to the mean size of the
cluster containing the origin provided the origin is in the perme-
able phase:

lim
L!1

NðXÞ=L3 ¼ pEX #C0jIð0Þ ¼ 1½ �; ð3Þ

where EX[] stands for the mathematical expectation with respect
to the distribution of the random set X and #C0 denotes the num-
ber of cells of the cluster containing the origin. There is thus a
strong relation between the number of clusters and their size
through Eq. (3).

Let us now assume that the proportion increases as presented in
the introduction of this section and let us denote the set Xp to
emphasize its dependency to p. By convention, X0 = ; and X1 ¼ G.
This situation is illustrated in Fig. 7 for 2D Boolean models of fixed
size squares, for different square sizes l, while keeping the ratio
grid size/ grain size constant. At low p, the clusters are small and
well spaced. As p increases but still remains low enough, existing
clusters increase in volume and new ones are created in the many
empty spaces. As a result, both /(Xp) and N(Xp) increase. Further-
more, for low values of p, there is no room for ‘‘holes’’, and
N(Xp) ’ /(Xp) (Fig. 7(a), left). Then, as p continues to increase, clus-
ters that were different will merge. Creation of new clusters and
merging of already existing ones are antagonistic effects which
find a balance for a particular proportion where N(Xp) and /(Xp)
reach a maximum. For larger proportions, N(Xp) and /(Xp) will de-
crease. The Euler characteristic decreases faster because the merg-
ing of clusters tends to create ‘‘holes’’ (Fig. 7a, middle). At some
point, the Euler characteristic becomes negative, because the num-
ber of holes is larger than the number of clusters. At a particular
proportion, the clusters become dominated by a single large clus-
ter, spanning the whole region and joining opposite sides of the
grid. The set Xp is said to percolate. For very large proportions al-
most all clusters are absorbed by the largest one (Fig. 7(a), right).
The number of clusters tends to one, indicating that all clusters
have merged into a single one. In this case, all points of the perme-
able phase are connected. The Euler characteristic reaches a mini-
mum. Eventually the holes get filled and /(p) increases again, up to
its limit value /(1) = 1.

The number of clusters and the Euler characteristic are thus
indicators of the connectivity computed on the whole grid, but
with very different meanings. /(X) is a local characteristic summed
over the whole grid, while N(X) is a truly global one. Although very
similar for low p, they behave very differently when p� 0. How-
ever, unless N(X) is very small, they are not direct indicators of
the size of the existing clusters, and they do not provide informa-
tion about how likely two points of the permeable phase are con-
nected. Therefore, further indicators are needed and will be
described in the following paragraphs.

3.3.2. Percolation
Percolation is the transition from many disconnected clusters to

a very large spanning cluster as p increases. On finite grids, several
percolation metrics can be defined.

(1) A first metric is the ratio of the volume of the largest cluster
to the total volume, denoted H(p). This quantity corre-
sponds to the first geobody connectivity defined in [60,57].
Fig. 8 illustrates this metric for 2D truncated Gaussian mod-
els with different covariance functions.

(2) A second metric, denoted C(p) is the proportion of the pairs
of cells (distinct or not) that are connected amongst all the
pairs of permeable cells:
CðpÞ ¼ 1
n2

p

XNðXpÞ

i¼1

n2
i ; ð4Þ

where np is the total number of permeable cells in Xp and ni is
the number of cells within cluster Ci. Note that by construc-
tion the first moment of the distribution of the cluster size,
n�1

p

PNðXpÞ
i¼1 ni, is always equal to 1. C(p) is its second order mo-

ment, and the moment of order 0 is N(Xp). This quantity is the
second geobody connectivity studied in [57], in which it is
shown that it behaves very similarly to H(p).
(3) A third quantity of interest is the indicator function T(Xp)
equal to 1 when two opposite sides of the field are con-
nected and equal to 0 otherwise. We shall call the partic-
ular proportion defined as the lowest value p such that
T(Xp) = 1 the percolation transition of X. It will be denoted
pt(X).

Percolation theory [43,44] studies connectivity, mostly on infi-
nite Bernoulli grids. Its fundamental theoretical result is that, on
these grids, there exists a proportion pc, called percolation thresh-
old, with pc – 0 and pc – 1 such that if p > pc, there will be, with
probability equal to one, a unique cluster with infinite volume, de-
noted C1. If p < pc this event has probability zero. This theoretical
result was generalized in [99] to any random set with finite range,
i.e. random sets whose centered covariance function, K(h), is such
that there exists a > 0 with K(h) = 0 whenever jhj > a. In summary,
as L ?1:
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HðpÞ ! Pðx 2 C1Þ; CðpÞ ! HðpÞ2; pt ! pc; ð5Þ

and

p < pc : HðpÞ ¼ 0; CðpÞ ¼ 0; TðXpÞ ¼ 0;
p > pc : HðpÞ > 0; CðpÞ > 0; TðXpÞ ¼ 1:

ð6Þ
Going back to finite grids, instead of a sharp transition at pc, the
functions H(p) and C(p) follow a sigmoid shape illustrated in
Fig. 8 (S-shape, for short), typical of a phase transition phenome-
non located at a proportion equal to the percolation transition
pt(X). Many numerical studies were conducted for describing
and quantifying this S-shape curve [99,62,61,60,57] based on
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stochastic simulations of random sets. King [61] illustrates the
concepts of percolation theory on 2D Boolean models of rectan-
gles and 3D cubes of fixed size and orientation. A similar study
was conducted in 2D and 3D in Allard and Heresim Group [62]
and Allard [99] with an emphasis on the variability of the perco-
lation threshold on finite grids and on the analysis of the connec-
tivity range (see definition later: Eq. (12)). In the same papers a
truncated Gaussian model is studied, and a comparison between
the two models is made. Larue and Hovadik [60] and Hovadik
and Larue [57] performed an extensive simulation study which in-
cludes Boolean models, truncated Gaussian models and SIS simu-
lations, with interesting extensions to dynamical measures of
connectivity. These studies showed clearly that the S-curve
describing percolation could be observed on all tested situations.
The main results are briefly summarized:

� Space dimension: Percolation holds from values between
p = 0.55 and p = 0.65 in 2D, down to values roughly between
p = 0.25 and p = 0.35 in 3D. There is thus a dramatic effect of
the dimension of the space.
� Variability as a function of p: The variability of H(p), from one

realization to the other is maximum at those proportions where
H(p) increases the fastest, i.e. for proportions near the percola-
tion transition. The slope of the curve at pt(X) is thus an excel-
lent indicator of the variability at the percolation.
� Object and grid size: The variability of H(p) depends also on the

grid size compared to a typical length of the random set,
denoted l (we will give a precise definition of this typical length
in Section 3.5). As the ratio L/l increases, two observations can
be made. Firstly, the transition is sharper, implying that the
slope of the S-shape curve increases. This effect is clearly visible
on the left panel of Fig. 8. Secondly, the connectivity metrics
H(p), C(p) or pt(X) are less variable from one realization to
the other. This point is very well illustrated in [60]. From perco-
lation theory considerations [44,43,61], a universal scaling law
was derived:
Hðp; L=lÞ ¼ ðL=lÞ�bd=md F ðp� pcÞðL=lÞ1=md

h i
; ð7Þ
where bd and md are universal exponents depending only on the
dimension d. The function F is a universal S-curve, but its precise
form is unknown. The right panel of Fig. 8 shows clearly that the
curves H(p) are very similar for truncated Gaussian models with
different covariance functions when the ratio L/l is kept constant.
� Discretization effect: When increasing l while keeping a constant

ratio L/l, the variability of all percolation metrics remains con-
stant, while the Euler characteristic and the number of clusters
may vary a lot. Euler characteristic and number of clusters
depend highly on the regularity at the origin of the covariance
of X. For Boolean models and for truncated Gaussian models with
twice differentiable covariance functions at the origin (Gaussian,
cubic, etc.) the boundary of the random set is very regular. This
has two consequences: first, there is a low number of clusters;
second, connectivity metrics do not change much with the
discretization as soon as a reasonable one is reached. On the
contrary, for truncated Gaussian models with exponential or
spherical covariances, there is a massive number of very small
clusters not participating to the connectivity at long distance.
Percolation quantities such as H(p) and C(p) do not vary with
the discretization since they do not depend on small clusters.

3.4. Connectivity function

The connectivity function is defined as the probability that a cell
x in X is connected with (i.e. belongs to the same cluster as) an-
other cell of X located at y [62,13]:
sðx; yÞ ¼ P x$ yjx; y 2 Xð Þ ¼ PðCðxÞ ¼ CðyÞ – 0Þ: ð8Þ

When the random set X is stationary, which we always assume in
this paper, we more simply consider the function of the lag vec-
tor h

sðhÞ ¼ Pðx$ xþ hjx; xþ h 2 XÞ ¼ PðCðxÞ ¼ Cðxþ hÞ– 0Þ: ð9Þ

It is a global characteristic since connections involve the entire
grid.

On single realizations, this quantity can be computed by divid-
ing the occurrences of the event {C(x) = C(x + h) – 0} by the occur-
rences of {C(x) – 0 and C(x + h) – 0} on the grid, as a function of h.
From now on, we will consider (9) as the definition of the connec-
tivity function.

Since {x M x + h} necessitates {x,x + h 2 X}, the unconditional
probability P(x M x + h) can easily be decomposed as:

Pðx$ xþ hÞ ¼ Pðx$ xþ hjx; xþ h 2 XÞPðx; xþ h 2 XÞ
¼ sðhÞKðhÞ; ð10Þ

where K(h) is the non-centered covariance function of X. We re-
call that K(0) = p, where p = E[I(x)] is the proportion of the ran-
dom set and that limjhj?1K(h) = p2. The probability that any two
grid points is connected is thus naturally factorized into the prod-
uct of the non-centered covariance and the connectivity function.
This probability P(x M x + h) is denoted C2(h) and named the
2-point cluster function by Torquato et al. [108], Matheron
[101]. A slightly different definition is used by Stauffer and
Aharony [43]. They consider the probability P(x M x + hjx 2 X) = P
(x M x + h)/p.

It has been observed empirically [99,109] that for many random
sets, s(h) is anisotropic for the Euclidean metric at short distances,
in particular because of the anisotropy of the neighborhood defini-
tion, and that is isotropic at medium to long distance despite the
anisotropy of the cubic lattice and the potential anisotropy of the
random sets.

On Fig. 9a the connectivity function s(h) is reported as a func-
tion of p for a fixed separation vector h. The existence of a sharp
transition very similar in nature to the S-functions in Fig. 8 is
clearly visible. For large distances, there is a clear separation be-
tween the proportions for which s(h) ’ 0 from those where
s(h)� 0.

The way s(h) decreases with jhj depends on the proportion p. It
is illustrated in Fig. 9b. For proportions below the percolation
threshold, s(h) decreases rapidly and converges towards 0 for large
jhj because all connected components are small. For proportions
above the percolation threshold, s(h) tends to a sill whose value
is nothing but P(x 2 C1)2, where C1 is the largest cluster (the per-
colating cluster, of infinite size when L ?1). On finite grids,
P(s 2 C1)2 ’H(p)2, the approximation being sharper as the grid
size increases.

The connectivity function of random sets with regular bound-
aries is almost parabolic near the origin, while it is near to linear
at the origin for irregular random sets such as truncated Gaussian
models.

In the process of writing this review, we found an interesting
(and so far unread) relationship between the overall sum of the
connectivity function s(h) computed in Xp and the global index
C(p) defined in Eq. (4):

X
h

sðhÞ ¼ n�1
p

X
x2Xp

X
xþh2Xp

Pðx$ xþ hÞ ¼ n�1
p

X
x2Xp

jCxj

¼ n�1
p

XNðXpÞ

i¼1

X
xi2Ci

jCij ¼ n�1
p

XNðXpÞ

i¼1

jCij2 ¼ CðpÞnp; ð11Þ
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where C1; . . . ; CNðXpÞ denotes the clusters of Xp and jCij their size. This
results deserves some comments.

� When p < pc, the connectivity function tends rapidly to 0. The
sum

P
hsðhÞ is thus bounded away from np, entailing a connec-

tivity index C(p) to the order Oðn�1
p Þ.

� When p > pc, s(h) converges towards a non-null value as
jhj?1. The sum

P
hsðhÞ is thus to the order O(np), implying

that C(p) is to the order O(1).

The quantity C(p) can thus be used a criterion for a first, quick
assessment of the global connectivity. If it is larger than say, 20%,
there is a very good chance that a very large connected component
dominates, spanning the whole domain. In this case percolation
holds almost surely. We will provide some justification supporting
this value in Section 3.7.

Let us now study the connectivity function s(h) in more details.
To emphasize the dependency of the connectivity function to the
proportion, it will be noted sp(h) in the rest of this section. It can
be proved [44], and it has been confirmed on numerous studies
[61,99], that the decreasing part of the connectivity function be-
haves as an isotropic exponential function for large distances h,
i.e. for p < pc

spðhÞ ¼ expf�jhj=nðpÞg; for jhj � 1; ð12Þ

where n(p) is a length parameter, called correlation length in perco-
lation theory [44]. Since this denomination can be confused with
the range parameter of K(h), it was renamed connectivity range in
[99,62]. It is a ‘‘typical’’ length of the clusters and it depends obvi-
ously on p. Connectivity at distances jhj larger than 3n(p) are very
unlikely. From this equation the value n(p) that best fits the empir-
ical connectivity equation can be estimated. Alternatively, sinceR

h sðhÞdh ¼ xdnðpÞd for a constant xd depending on the dimension
d (x2 = 2p and x3 = 8p), an excellent approximation of n(p) is given
by Eq. (11):

nðpÞd ’ x�1
d CðpÞnp: ð13Þ

This equation provides an equivalence, up to some multiplicative
constant, between the global connectivity index and the dth power
of the connectivity range.

For proportions above the percolation threshold, the connectiv-
ity function can be decomposed as the sum of two terms, one cor-
responding to the infinite cluster C1 (the largest cluster on finite
grids), the other one corresponding to connections between finite
size clusters:
spðhÞ ¼ P x$ xþ hjx; xþ h 2 Xð Þ
¼ P CðxÞ ¼ Cðxþ hÞ ¼ C1ð Þ þ P CðxÞ ¼ Cðxþ hÞ – C1ð Þ

¼ HðpÞ2 þ sf
pðhÞ;

where H(p) ’ jCmaxj/jXj on finite grids and sf(h) is the connectivity
function restricted to other clusters of X than the largest one, behav-
ing as in Eq. (12).

3.5. Power laws

We have seen that a great number of numerical studies indicate
that many percolation metrics behave according to S-curves. The-
oretical considerations, already described in Section 3.3.2 and in
Eq. (7), indicate further that up to some scaling, they can univer-
sally be described by some abstract function F. The precise shape
of F is unknown, but it can be usefully summarized by a location
and a scale parameter: the location parameter, e.g. the point of
inflexion of the curve H(p), is related to the percolation transition;
the scale parameter, e.g. the slope of the curve at the inflexion
point is related to the variability at the percolation transition. Note
that the cumulative probability function (cpf) of the percolation
transition pt(X), obtained from several realizations of the same ran-
dom set model, follows a S-curve very similar to those of H(p) and
C(p). This third percolation metric can thus be summarized by the
average and variance of the values pt(X). For the rest of this section,
we will denote �pf the average (on many realizations) of any of
these location parameters and rf will denote its standard
deviation.

In [62,99] it is shown that the Boolean model and the truncated
Gaussian model can be unified in a unique framework if the ‘‘ob-
ject’’ volume is defined as the integral range, A. We recall that
the integral range is the normalized integral of the centered covari-
ance function [100]:

A ¼ 1
Kð0Þ

X
y2G

X
x2G

Kðy� xÞ � p2� �
: ð14Þ

Closed form expressions for A exist for some models, including
the Boolean model and truncated Gaussian model [99]. For the
connected field model, A can be computed numerically. The
quantity l in Eq. (7) can then be set to the dth-root of A:
l = A1/d.

From the scaling law (7) and from empirical considerations
[62,99], one can now establish that, if L/l is large enough (say L/
l > 5):
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rf ’ adðL=lÞ�1=md ; pc � �pf ’ bdðL=lÞ�1=md ; nðpÞ=l

’ cdðpc � pÞ1=md ; ð15Þ

where ad, bd and cd are constants depending on the dimension d.
These scaling laws are illustrated in Fig. 10 for 2D random sets.
On the left panel, the linear relationship between the log of the
standard deviation of the percolation transition and the log of the
ratio L/l for the two models is a strong evidence in support of the
power law relating the variance of the percolation transition on fi-
nite grids to the ratio L/l. The right panel depicts the proportion p as
a function of ðn=lÞ�1=m2 for the Boolean model and for the truncated
Gaussian model. The intersection with the y axis, corresponding to
n ?1, provides an estimate of the percolation threshold on an infi-
nite grid of the considered random set.

Numerous empirical studies [43,44,61,62] agree on m2 = 4/3 and
m3 = 0.875. For the regular infinite cubic grid, the same authors
found that the percolation threshold is pc = 0.311 in 3D and
pc = 0.59 in 2D for Bernoulli grids. For other random sets, pc must
be estimated from Eq. (15). Allard [99] found a2 = c2 = 0.45 and
b2 = 0.23. Values for d = 3 are not known. Note that in Eq. (15),
n(p) is the expected value of the connectivity range among many
realizations, whereas in Eq. (13) it is computed for the particular
realization under study. Comparison between the two values pro-
vides thus a fast and efficient way for deciding whether the reali-
zation is less or more connected than on average.

Put together, Eq. (15) state that the proportion interval [0,1] can
be approximately divided in three domains:

� p < pc � (L/l)�1/m: percolation is very unlikely; the connectivity
function is almost null at distances jhj > 3n(p).
� pc � (L/l)�1/m

6 p 6 pc + (L/l)�1/m: percolation and connections at
long distance are likely but not certain. From a connectivity
point of view, it is a domain of high variability for all global
metrics. Several clusters of quite similar size can coexist. Note
that the range of this interval decreases if the grid size increases
or if the range decreases. To the limit, if L ?1, the interval is
reduced to a single proportion equal to the percolation
threshold.
� p > pc + (L/l)�1/m: percolation holds almost certainly. A single

very large cluster dominates, spanning the entire domain. Any
two points are almost certainly connected.

Broadly speaking, there is thus only three connectivity behav-
iors, corresponding to the three domains described above: below,
around or above the percolation threshold.

3.6. Binary mixture of permeable media

All the tools described above for binary media do not consider
the fact that the two phases can be permeable. We assumed that
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Xc, the complementary phase of X, was completely impermeable.
A single pixel belonging to Xc separating two permeable bodies
was sufficient to consider that these two bodies were
disconnected.

However, most often in practice, the geological medium is made
of two permeable phases. Let us assume, without any loss of gen-
erality, that X is the high permeability phase, and Xc the low per-
meability phase. Because the flow has to go through Xc, the
connectivity of both phases play an important role and we cannot
consider only X.

In 2D and for infinite media, the two phases play a symmetrical
role: if the low permeability phase is percolating, the high perme-
ability phase is disconnected and vice versa. This is not true in 3D.
But, even in 2D, the connectivity metrics of one phase are not un-
iquely related to their equivalent connectivity metrics for the com-
plementary phase. One has therefore to compute the connectivity
metrics of the two phases to get a complete vision of the topology
of the medium. In the following, we denote all those additional
metrics by simply adding a subscript c to the name of the variables
that we already introduced. For example, Cc is the probability of
having two points of the low permeability phase connected, or /c

is the Euler characteristic of the low permeability phase. Using this
extended set of metrics one can already get a good characterization
of binary media.

However, this may not be sufficient to describe accurately the
conductive properties of the medium that are strongly influenced
by the proximity between high permeable inclusions [110]. To
quantify that effect, Knudby et al. [110] compute the ratio of the
average distance (within Xc) between the inclusions to the average
distance between the center of the inclusions by analyzing the po-
sition and size of the inclusions along the flow direction.

A more general analysis of the proximity of the inclusions can
be conducted using the two fundamental operations of mathemat-
ical morphology: the erosion and dilation of a set [105]. To intro-
duce this tool, we have to define a small set that is called the
structuring element. It will be denoted B in the following. It is char-
acterized by its shape which is often very simple such as a square
or circle in 2D or a sphere or a cube in 3D. The size and shape of the
structuring element are defined by the user.

The erosion of X by B is the set of points x of G such that the
structuring element Bx centered on each point x is entirely included
in X:

Xerod ¼ X � B ¼ fx 2 G : Bx # Xg: ð16Þ

The result is a new set that has been eroded by a layer whose width
is the radius of B. The erosion removes all the isolated clusters
whose breadth is smaller than the diameter of B, i.e. those part of
X such that B does not fit in.

The dilation of X by B is the set of points x of G such that the
structuring element Bx intersect X:
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Xdilat ¼ X � B ¼ fx 2 G : Bx \ X – ;g: ð17Þ

This operation adds a layer of pixels to the set X. The width of this
layer is equal to the radius of the structuring element B. Applying a
dilation fills the holes and bays which are narrower than the diam-
eter of B.

We have now defined the basic tools that we need to generalize
the previous connectivity definitions and investigate more pre-
cisely the connectivity structure of a binary field with two perme-
able phases.

Let us consider a simple structuring element B that is an ele-
mentary cross (1 central block, plus one single block on each side
of it and in all directions). We pose X0 = X and build two series of
sets. The first is obtained by a series of dilations:

Xk ¼ Xk�1 � B; k 2 1; . . . ;M; ð18Þ

where XM ¼ G; the whole grid is filled after M successive dilations.
The second series is obtained by a series of erosions,

X�k ¼ X�ðk�1Þ � B; k 2 1; . . . ;N; ð19Þ

until the set X0 is completely eroded for k = N. By combining the
two, we get a series of successive concentric sets Xk with
k = [�N, . . . ,�1,0,1, . . . ,M]. k is a distance to the boundary of the ini-
tial set. A convenient representation of this ensemble of sets is to
represent in any point of the domain the value k corresponding to
the set with the lowest index k to which that point belongs. This
can be seen as a map of oriented distances to the boundary of the
initial set X. Positive distances are those corresponding to points lo-
cated outside of X and negative distances are for the points within X.
By computing scalar connectivity metrics defined previously on the
ensemble of sets, we obtain a series of characteristic curves C(k), /
(k), etc.

The behavior of these curves allows to identify precisely if the
metric computed on the initial set is stable: for example a stable
value of C is reflected by a constant value around k = 0. Sudden
drops in the curve indicate the presence of critical thresholds at
a certain average distance.

Fig. 11 (left column) illustrate the behavior of those curves for
three different binary media having the same proportion p of inclu-
sions and the same values for C and /. However, the horizontal
flux through these three media is different. For the medium repre-
sented in Fig. 11(h), the horizontal flux is higher than for the med-
ium represented in the two other figures since all the high
permeability inclusions are almost aligned. The medium will al-
most behave like a stratified one. The middle column shows for
the three media the distance function. Finally, the right column
shows the characteristic curves C(k) and Cc(k) for the correspond-
ing media. We see clearly that even if the connectivity indicators of
the three medium are identical, their characteristic curves are very
different. In particular, for the medium with inclusions placed on a
regular grid, we see that the connection of all inclusions occurs
abruptly for a distance between 35 and 45 (Fig. 11(c)). This shows
that the distance between the inclusions has little variability. On
the opposite, in the case of the random location of the inclusions,
both functions C(k) and Cc(k) display some complex variations
showing the variability in distances between the inclusions
(Fig. 11(g)).

On the last line, we see clearly that for a small dilation distance
(lower than 10), the inclusions rapidly merge and the probability of
having two cells connected remain for some time at a value of 0.5
(Fig. 11(j)) indicating that we have two big inclusions (the two dis-
connected layers of inclusions). At a distance of about 50 these two
connected components merge to become a single one (C = 1).

Note that anisotropic distances and directional effects can be
accounted for. One has simply to use a structuring element B such
as a segment with a given orientation to define the distance only
along a certain direction. Applying a vertical and an horizontal dis-
tance and weighting them is also a possibility.

Finally, instead of using a simple erosion or dilation operation
which are only a function of distance, one can use an opening or
closing morphological operation which are a function of the size
of the objects (see [111] for a definition). Vogel et al. [112] applied
such a technique to relate the connectivity with the pore size dis-
tribution. Similar application could be made in hydrogeology to re-
late the connectivity with the channel size distribution.

3.7. Connectivity of continuous fields

The next step is to generalize the static connectivity metrics to
random fields of continuous variables. These fields can be obtained
through direct imaging of a medium via remote sensing, tomogra-
phy, geophysics, etc. or they can be produced by simulation tech-
niques. We will denote Y(x) the continuous variable that we
want to characterize. Typically it will be the logarithm of the
hydraulic conductivity.

The procedure follows rather closely what has already been de-
scribed for binary media. It is based on the decomposition of the
continuous field into a series of sets. For each set, the static connec-
tivity metrics are computed. There are different ways to decom-
pose the field. The simplest is to apply a threshold t to the
continuous variable:

Xt ¼ fx : YðxÞP tg: ð20Þ

In this way, we obtain a series of sets such that Xt1 � Xt2 if t1 > t2.
The threshold is chosen to vary between the minimum and maxi-
mum value of Y. By computing the scalar connectivity metrics on
each of these sets, one can build a set of characteristic curves for
the medium: /(t),C(t). Many authors applied that technique for
the Euler characteristic /(t) [29,102,113,106,34,94]. Here, we argue
that one should also use C(t) and consider the connectivity metrics
of the complementary phase: /c(t),Cc(t).

To illustrate how the different characteristic curves vary as
function of the threshold t, we first consider a multi-Gaussian med-
ium such as the one shown in Fig. 12(a). When the range parame-
ter is small as compared to the grid size L, Mantz et al. [106] give
the analytical expression of the Euler number as a function of the
threshold in 2D:

/ðtÞ ¼ L2k2ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p t � E½Y�ð Þ exp

t � E½Y �ð Þ2

2r2

" #
; ð21Þ

where k2 is proportional to the second derivative of the centered
covariance function c(h) of Y(x):

k2 ¼ � c00ðh ¼ 0Þ
2pr2 : ð22Þ

Note that, as already discussed in Section 3.2, Eq. (21) only applies
to random fields with regular covariance functions, i.e. covariance
functions with finite second derivative at the origin. For other mod-
els, such as exponential covariance models, the Euler number is infi-
nite. This theoretical result tells us that /(t) should be symmetrical
around the mean (in our example E[Y] = 0). When the range param-
eter is not small compared to the grid size, the symmetry around
the mean value is broken /(t � E[Y]) – �/c(t � E[Y]) and instead
of having a single critical value corresponding to a unique percola-
tion threshold, we can define a series of 5 critical points (Fig. 12(c)).
This is due to (1) the fact that the grid is not symmetrical in terms of
4-connectivity as described in Section 3.1 and (2) finite size effects.

In Section 3.3 we showed how connectivity metrics such as /
behave statistically (i.e. on average on many realizations) as a func-
tion of p. Here, we will describe those 5 critical stages step by step
on a single realization. It is perhaps useful to recall that the propor-
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Fig. 11. Illustration of the use of morphometric distances to better quantify the topology of a mixture of permeable media. The media displayed in the left column have been
borrowed in Knudby et al. [110].
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tion can be deduced from the threshold with p = 1 � G(t), where
G(t) it the cpf of a (0,1) Gaussian random variable. For very low val-
ues of t, the set Xt is the complete grid G, all the values in the field
are above the first threshold. The Euler characteristic /(t) is equal
to 1, as well as C is equal to 1 because all the pixels are connected.
The complementary phase is empty, hence /c(t) = 0. When t in-
creases, we start to isolate clusters of low values (Fig. 12). C(t) re-
mains equal to 1 since all the high values are connected together in
a single cluster. /c(t) increases because the number of inclusions of
low permeability increases. On the opposite /(t) decreases because
there are more and more holes in the high permeability unique
connected component. When we reach a value of t around � 1.5,
we see that /c(t) starts to decrease and /(t) starts to increase. This
is because the lenses of low permeability start to coalesce and con-
nect together to create a smaller number of larger connected com-
ponents. The change is rather sudden and abrupt around t = �1,
corresponding to p = 0.16. At this point C(t) starts to become lower
than 1. We start to have isolated clusters of high permeability dis-
connected to the larger cluster which still span the whole domain
and connect one side to the other (Fig. 12e shows two clusters for
t = 0.7). The large cluster is divided in two pieces when /(t) = 0,
which occurs at t = �0.295. Before, /(t) was negative because there
were more holes than connected components, now the situation
will reverse, there will be more isolated lenses than holes. The
transition corresponds to a new threshold. But, at that point the
low permeability part is not yet completely connected as revealed
by the fact that /c = 0.17 (Fig. 12f shows several clusters for
t = �0.295, i.e. p = 0.61). At t = 0, none of the two phases are well
connected. We have large clusters of high and low permeability
(Fig. 12e and f for t = 0). When we continue to increase t, we follow
in reverse order the same behaviors that were described for t < 0.
When t = 0.15, corresponding to p = 0.44, /c(t) = 0, a large cluster
of low permeability connects all the faces of the bloc. When
t = 0.7, i.e. p = 0.24 the low permeability part becomes fully con-
nected and Cc = 1. The zones with permeabilities lower than t con-
stitute a unique connected component Cc = 1. The permeabilities
higher than t belong to isolated clusters.

All this detailed description highlights the fact that there is not
a unique percolation threshold for fields of finite size with a typical
correlation length that is not very small as compared to the size of
the field. There is clearly a range of thresholds around t = 0 where
none of the two phases percolate. Instead, it is more useful in that
case to define a range of values [t1, t2] which defines the most con-
nected part of the field. To estimate [t1, t2] we suggest to identify
the values such that none of the complementary phases are almost
fully connected:

t1; t2½ � ¼ t : a < ðCðtÞ and CcðtÞÞ < 1� af g; ð23Þ

for some value a.
It is interesting to see how such intervals can be related to the

power laws (Eq. (15)) which apply statistically when L is large
with respect to the correlation parameter of the multi-Gaussian
random field. The integral range of Y is AY = pk2, with k = 10 in
Fig. 12 and k = 20 in Fig. 13. The range parameter of the random
set at t = 0 is approximately AX = 0.69 AY [62]. The characteristic
length l is thus l ¼ A1=2

X ¼ 1:47k. According to the power laws in
Eq. (15), the transition domain of proportions is [0.37,0.65] for
the simulation in Fig. 12 which is to be compared to the critical
points p = 0.44 and p = 0.61 described above (Table 1). On the
simulation represented in Fig. 13 one gets [0.44,0.58]. Note that
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Fig. 12. Illustration of the evolution of the characteristic curves as a function of the threshold value for a multi-Gaussian medium.
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the midpoint of the intervals is pc = 0.51, the percolation thresh-
old of the truncated Gaussian model with a Gaussian covariance
function. These proportions correspond to the threshold intervals
[�0.33,0.39] and [�0.15,0.20], respectively. Reading C and Cc

values corresponding to these thresholds leads to Table 1, from
which we can roughly set a ’ 0.2. There is thus a very good
agreement between the two approaches for the multi-Gaussian
random field.

To illustrate how the characteristic curves are influenced by
the type of connectivity, Fig. 13 compares the characteristic
curves of a multi-Gaussian field, a connected field having the
same univariate distribution, and a multiple-point simulation
with a different histogram. The most striking feature for the con-
nected field is a shift of the thresholds t1 and t2 toward the high
values. For t below t1 = 0, there are a relatively small number of
holes in a unique cluster / < 0. Above t1 the unique cluster starts
to be divided in a small number of components: C(t) < 1 and
Cc(t) > 0. The crossing of the Euler characteristic /(t) with the
horizontal axis occurs largely above the mean at a value
t0 	 1.8. Above this point, a very high number of tiny isolated
clusters of high conductivity appear within the high permeability
channels. This is reflected by the strong rise of /(t). For t > t2 = 2,
the complementary phase is completely connected (Cc = 1). The
range of thresholds leading to connected fields is therefore be-
tween 0 and 2 for this medium instead of between �0.4 and
0.4 for the multi-Gaussian field. The second feature is that the
transition is far less sharp than for the multi-Gaussian field, de-
spite the fact that both fields have the same histogram and the
same correlation length.

Finally, the characteristic curves for the multiple-point simu-
lation (Fig. 13(g)) display an interesting behavior. The Euler
characteristic (Fig. 13(i)) is less dissymmetric than for the con-
nected field (Fig. 13(f)). The probability of connection shows a
sudden fall for values larger than �3.5, (Fig. 13(h)) and then it
raises slowly, while the probability of having the complementary
component connected is constant Cc = 0.4. At a value of t = �1.5,
C(t) falls to a value of 0. There is a broad range of high values
that are well connected, but there are different spatial compo-
nents in these high values. They can be seen in Fig. 13(g): there
are long and connected channels of high values which are coex-
isting with small ellipsoidal shapes of high values as well. These
two patterns do not affect much the Euler characteristic curve,
but they really influence the probability of connection of the
two phases.
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Fig. 13. Connectivity of continuous fields.

Table 1
Connectivity values corresponding to power law intervals.

L = 200 L = 1000

p 0.37 0.65 0.44 0.58
t �0.33 0.39 �0.15 0.20
C 0.93 0.14 0.57 0.07
Cc 0.14 0.86 0.21 0.82
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As a final remark, a simple thresholding technique is used to
decompose the continuous field into a set of binary images. An
alternative approach is to segment the image in connected regions
having similar values of the continuous variables. A recent
technique to do so was proposed by Soille [114]. It uses two
parameters: the maximum difference between the values of two
adjacent pixels who belong to the same connected component,
and the range of the maximum differences acceptable between
the values of pixels inside a given connected component. This def-
inition allows to define a unique partition of a continuous field on
which one could compute the connectivity metrics.
4. Dynamic connectivity metrics

We have seen in Section 2 that differences in connectivity pat-
terns influence qualitatively the flow and transport properties of
underground reservoirs. In particular, the total flux flowing
through a porous medium and the distribution of the travel times
are controlled by the connectivity of the high permeability areas
(channeling) or by the presence of hydraulic barriers. To quantify
the relations between the static connectivity and the response of
the medium to flow and transport, one can define a series of dy-
namic metrics which are based on the response of the medium
to an experiment related to a given physical process. These differ-
ent metrics are described in this section.

Behind the theoretical interest in understanding the behavior of
complex heterogeneous system, some dynamic metrics can be
measured in the field during an experiment, and therefore if a the-
ory shows that a relation exists between the dynamic metric and
some static connectivity metrics then one can use this relation in
an inverse manner to infer static connectivity information from
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field experiment. This constraints should then help making better
and more accurate forecasts.

In the search for good dynamic connectivity metrics, the aim is
therefore to define relevant and simple metrics that can ideally be
inferred in the field and which relate to static connectivity proper-
ties. In the following, we have classified these different metrics
first as a function of the physical setup (type of flow conditions)
and in each subsection we refine the classification as a function
of the physical process.

4.1. Uniform flow

Uniform flow occurs under natural conditions in the absence of
punctual sources or springs: typically, in the middle of an aquifer
far away from abstraction wells, punctual discharge or recharge
zones. Those conditions can be described as the limiting case of
the flow that would occur in an infinite statistically homogeneous
medium under a uniform head gradient. In this situation, the flow
velocity and head gradient are stationary around a mean value.
Their fluctuations are only controlled by the local heterogeneity.
It is the configuration that is most often used to investigate effec-
tive properties of heterogeneous materials. In practice, it can be
approximated in numerical experiments by imposing a uniform
head gradient on the boundary of a domain. Ideally, the boundary
conditions should be such that they allow to be as close as possible
to the infinite medium situation and can for example assume a
periodicity of the medium. If the heterogeneities are sufficiently
small as compared to the size of the domain, the boundary effects
due to the selection of one specific type of boundary conditions be-
comes negligible even on a numerical experiment on a block of fi-
nite size. Under those very general conditions, one can study the
effective flow and transport properties of a heterogeneous media
and use the results of those experiments to quantify its effective
behavior. By defining specific criteria which compare the effective
behavior of a medium with what could be expected under a stan-
dard situation (for example for a multi-Gaussian one), it is possible
to infer the degree of connectivity.

4.1.1. Effective hydraulic conductivity
For 2D flow in steady state, Knudby and Carrera [42] consider

three candidate metrics: (1) the value of the power used in power
averaging effective hydraulic conductivity, (2) the ratio of the effec-
tive conductivity Keff [m/s] to the geometric mean KG [m/s], and (3)
the ratio of the critical path conductivity to the geometric mean. In
their numerical investigation they show that the second and third
metrics provide similar results for high variances, but the second
is easier to evaluate from field observations. The first one does
not scale properly with the variance of the log of the hydraulic con-
ductivity and therefore they recommend to use the second metric.
Following this work, we limit ourselves to the description of that
metric, and we will denote it CF. It is defined as follows:

CF ¼ Keff

KG
: ð24Þ

Keff is evaluated by solving numerically the uniform flow problem
through the medium with permeameter type boundary conditions.
Constant heads are prescribed on the upstream and downstream
faces of the block, and no-flow boundary conditions are prescribed
on the other faces:

Keff ¼
Q
A

 l

h1 � h2
; ð25Þ

where Q [m3/s] is the total discharge flowing through the medium,
A [m2] the area crossed by the flow, l [m] the length of the block in
the direction parallel to the flow, and h1 � h2 [m] is the prescribed
head difference.
Since the effective conductivity of a heterogeneous medium is
always bounded by the harmonic KH and arithmetic KA means of
the local values, CF is always positive and bounded by the follow-
ing values:

KH

KG
6 CF 6

KA

KG
: ð26Þ

The greater the value of CF, the most permeable is the medium and
one can therefore expect that the high permeability values are
highly connected.

However, one must be careful with the interpretation of the va-
lue of CF. In this connectivity metric, KG was chosen to represent
the theoretical effective conductivity of a multi-Gaussian medium.
When the effective conductivity Keff is greater than KG, CF > 1 and
the medium should therefore be more connected than a multi-
Gaussian medium. On the opposite, if CF < 1 the medium should
be less connected than a multi-Gaussian one. This interpretation
is correct only when applied in two dimensions for isotropic media
(as it was correctly done in Knudby and Carrera [42]) since the geo-
metric mean is the effective property of such a media [115]. How-
ever, in 3D the effective hydraulic conductivity of a multi-Gaussian
isotropic medium with a log normal distribution is well approxi-
mated by a power average with a power of one third [116]:

Keff ¼
1
V

Z
KðxÞ1=3dV

� �3

: ð27Þ

This value is larger than the geometric mean. Using Eq. (24) in this
situation may be misleading since a value of CF greater than 1
would not mean that the medium is more connected than a 3D mul-
ti-Gaussian one. This issue occurs for example in the recent paper of
Bianchi et al. [117] who showed a value of CF slightly greater than 1
for a 3D bloc that was obtained by Sequential Gaussian Simulation.
This should not be misinterpreted, as it does not allow to conclude
that this bloc is more connected than expected.

To make the definition of CF more general, and applicable in any
dimension and for anisotropic media, KG should be replaced with a
value KMG of the theoretical effective hydraulic conductivity
accounting for these dimensionality or anisotropy effects in mul-
ti-Gaussian fields. Such expressions are available in the literature
and have been reviewed in several papers [118–120]. We propose
for example to replace KG by the simple approximation Kii

MG for the
effective conductivity in the principal direction of anisotropy ii
proposed by Ababou [121]:

Kii
MG ¼ KG exp r2

ln K
1
2
� 1

d
kh

ki

� �� �
; ð28Þ

where d is the space dimension (1, 2 or 3), ki is the correlation
length of the multi-Gaussian field in the principal direction i, kh is
the harmonic mean of all the correlation lengths, and r2

ln K is the
variance of the logarithm of the hydraulic conductivity. The
previous expression is a conjecture that is exact in most asymptotic
situations. For example, in 3D it is equal to Eq. (27) for a multi-
Gaussian medium. It has been tested positively against a wide range
of numerical simulations. Extending CF in this manner implies also
that it must be defined along specific directions, allowing to con-
sider directional differences in flow connectivity which are likely
to occur in natural media.

For binary mixtures, KG is the theoretical effective conductivity
only in the special case where the medium is two dimensional, iso-
tropic and that the two phases can be exchanged without a change
of the statistical properties of the medium. This is for example true
in a random isotropic mixture having exactly 50% of each phase
and in which there is not a statistical differences in patterns made
by the two phases. In the general binary case, KG should be there-
fore considered only as a normalizing factor and whether CF is
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greater or lower than 1 will highly depend on the proportions of
the two phases but will not be directly interpretable in terms of
relative connectivity structure as compared to a standard. Similarly
for 3D or for a complex mixture of several discrete facies, the
choice of the normalizing factor in Eq. (24) still requires some addi-
tional work.

4.1.2. Apparent hydraulic diffusivity
Instead of considering the total flux through the medium in

steady state, one can consider the temporal evolution of the
flux in transient regime and use it to estimate the apparent
hydraulic diffusivity to quantify the flow connectivity [56].
The diffusivity is related to the speed of a pressure wave trav-
eling through the medium. The underlying concept is that the
fastest the pressure wave the most connected is the medium.
The experimental setup is a rectangular domain, with initial
conditions at rest (hydraulic head = 1 everywhere in the do-
main). The head is fixed on one side of the bloc (h = 1), the
two perpendicular sides are no flow boundary conditions, and
suddenly at a time t = 0 the head is lowered from 1 to 0 on
the last face of the bloc. This creates a pressure drop that prop-
agates through the medium as a function of time. One can then
analyze the temporal evolution of the inflow Q(t) through the
boundary where the head remained constant (h = 1). The simu-
lation is conducted until a steady state flux QSS is reached. An
analytical solution exists for such a problem in a homogeneous
medium:

QðtÞ
QSS
¼ 1þ 2

X1
n¼1

ð�1Þne�n2p2Dt=L2
x

 !
; ð29Þ

where D = K/SS [m2/s] is the hydraulic diffusivity, i.e. the ratio be-
tween the hydraulic conductivity K [m/s] and the specific storage
Ss [1/m]. In heterogeneous transmissivity fields, Q(t) has a different
slope than in homogeneous ones because a part of the pressure
wave arrives earlier and because the steady state is reached later.
To get a quantitative estimation of the highly connected path, the
idea of Knudby and Carrera [56] is to use the early increase of the
discharge signal and to fit Eq. (29) on it to obtain an apparent diffu-
sivity. More precisely, they identify the time t5 at which 5% of the
relative flux Qðt5Þ

QSS
¼ 0:05 has been reached and solve the following

equation to estimate Da:

1þ 2
X1
n¼1

ð�1Þne�n2p2Dat5=L2
x

 !
¼ 0:05: ð30Þ

Finally, the value of Da is normalized by DG = KG/Ss:

DR ¼
Da

DG
: ð31Þ

Knudby and Carrera [56] note that Da is always greater than Deff = -
Keff/KG for a heterogeneous media, and therefore DR will always be
greater than CF.

4.1.3. First arrivals of solute
For solute transport under uniform flow conditions, Knudby and

Carrera [42] propose a global dynamic connectivity metric CT. It is
defined as the ratio between the average arrival time ta and the
early arrival time t5% of the first 5% of particles flowing through
the medium:

CT ¼ ta

t5%

: ð32Þ

The travel times are obtained from the results of an advective trans-
port simulation using a particle method. The average travel time is
given by dividing the travelled distance Lx by the mean velocity Keff/
U 
 (h1 � h2)/Lx through the medium:
ta ¼ U
L2

x

Keff ðh1 � h2Þ
: ð33Þ

with U is the porosity, and h1 � h2 is the prescribed head difference
between the two faces of the bloc. The effective hydraulic conduc-
tivity Keff is the one defined in Eq. (25). A high value of CT corre-
sponds to a strong tailing effect and fast first arrival time,
characteristic of the connected media.

In their numerical study, Knudby and Carrera [42] show that CT
allows identifying fields having a higher connectivity and therefore
they recommend to use that metric. They note also that the trans-
port connectivity CT and the flow connectivity CF metrics are
weakly correlated. This is one of their major argument to conclude
that connectivity is a process dependent concept requiring to de-
fine a series of different metrics. In a second series of numerical
experiments, involving the comparison of CF, CT and DR, Knudby
and Carrera [56] show that the apparent hydraulic diffusivity DR

provides more information on transport than CF, but it is better
correlated to CF than CT. The logarithm of DR is well correlated to
the logarithm of the product CT and CF. Generally speaking, DR is
a good indicator of flow channeling which strongly influences the
first arrivals of solute.

4.1.4. Flow channeling
The connectivity structure of the hydraulic conductivity field

has a direct impact on the structure of the flow field. When high
conductivity areas are well connected, one can see the emergence
of continuous channels of high velocities in a uniform flow. Such
channels will highly control the presence of fast first arrivals as de-
scribed in the previous paragraphs. To quantify the degree of chan-
neling, some authors use indicators focusing on the consequences
of channeling on the head and velocity statistics [122,123], or on
its impact on transport indicators [124]. Here, following Le Goc
et al. [125], we focus on the description of the channels them-
selves, and describe first the two indicators Dic and Dcc introduced
by these authors.

They consider a uniform flow in steady state. They divide
the flow field into n flow tubes, each carrying the same proportion
Q/n of the total flux through the medium. Dic is then defined as
follows:

Dic ¼
L

nS2ðWnÞ
; ð34Þ

where L is the size of the domain (square), and S2(Wn) is the partic-
ipation ratio of the width Wn of the various flow channels. The par-
ticipation ratio provides a statistical measure of the distribution of
the channel width biased toward the higher values. It is defined as
the ratio of the square of the first (non-centered) moment M1(Wn)
by the product of the zeroth M0(Wn) and second M2(Wn) moments:

S2ðWnÞ ¼
M1ðWnÞ2

M0ðWnÞM2ðWnÞ
; ð35Þ

where the moments are computed on a grid having N cells of vol-
ume Vi with:

MkðWnÞ ¼
XN

i¼1

WnðiÞkVi: ð36Þ

The motivation for using the participation ratio is to obtain a char-
acteristic length of the larger channels in the flow field without hav-
ing to predefine a specific threshold in their statistical distribution.
Dic can be interpreted as a characteristic distance between the
highly conductive channels which tend to be very narrow and to
concentrate a large part of the flow. It can also be seen as a measure
of the size of the obstacles in the direction perpendicular to the
flow.
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The second indicator Dcc focuses on the persistence of the chan-
nels in the flow direction:

Dcc ¼ L0 1� S2ðq0Þ½ �; ð37Þ

where q0 is the Lagrangian derivative of the flow rate along the flow
line, and L0 is the average length of the flow lines. This definition is
based on the identification of the regions of high changes in fluxes
corresponding to the extreme points of a flow channel. Dcc is a char-
acteristic length of the channels in the direction of the flow. These
two metrics have been tested numerically [125] for a wide range
of 2D continuous or fractured media and have shown that they
can efficiently quantify the degree of channeling (Fig. 14). Dic re-
flects the channel density, while Dcc reflects the extension of the
channels.

4.2. Radial flow

Radial flow conditions occur around a well when it is pumped
or when a fluid is injected. Under those conditions the flow field
is convergent (divergent) and the interaction between the flow
and the spatial heterogeneity of the aquifer is strongly affected
by those specific conditions. Because pumping wells are used in
a broad range of aquifer characterization techniques and engineer-
ing applications, the definition of connectivity metrics for those sit-
uations is very important.
Fig. 14. Indicators of channeling: illustration of Dic and Dcc for a connected field (a). T
derivative (c). The graph (d) shows how several flow experiments can be classified accord
flow lines (Modified from Le Goc et al. [125]).
4.2.1. Apparent storativity
Trinchero et al. [58] introduce a localized connectivity metric

for radial flow conditions around a well. Their technique is based
on previous studies by Meier et al. [126] who have shown on field
data (Fig. 15(a)) and on numerical experiments that an observation
well reacting sooner than another one located at the same distance
of the pumping well is better connected to the pumping well [126].
This behavior has been investigated analytically by Sánchez-Vila
et al. [127]. To quantify this effect, one has to interpret the draw-
down data using the classical Jacob’s method. It consists in fitting
a straight line to the late time drawdown data in semi-logarithmic
scale (Fig. 15(b)). The time t0 [s] at which the straight line intersect
the horizontal axis (drawdown = 0) allows to estimate the storativ-
ity coefficient Sest:

Sest ¼
2:25Tt0

r2 ; ð38Þ

with T [m2] the transmissivity of the aquifer estimated from the
slope a [m] of the Jacob’s straight line, T = 0.183 Q/a with Q [m3/s]
the pumping rate, and r [m] the distance between the pumping well
and the observation well. The sooner an observation well reacts to
pumping, the smaller is the time t0 and the smaller is the estimated
storativity Sest. By comparing the estimated storativity at different
locations, one can therefore compare how these locations are con-
nected to the well. For the multi-Gaussian field displayed in
he color represents the intensity of the Lagrangian Darcy velocities (b) and their
ing to these two metrics. L represents the domain size and L0 the mean length of the
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Fig. 15. Dynamic connectivity under radial flow conditions. (a) Results of a pumping test in a fractured media. The box represents the locations of the pumping well W and 3
observations wells. The drawdown curves for the three observation wells are plotted against time normalized by the squared distance between the pumping well and the
observation well. (b) Interpretation of a drawdown curve using Jacob’s straight line to estimate the flow connectivity. (c) A multi-Gaussian field used for the numerical
investigation. (d) map of flow connectivity metrics. (e) map of transport connectivity metrics. Modified from Trinchero et al. [58].
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Fig. 15(c), and for a pumping well located in the center of the figure,
one can compute the flow connectivity metric (Eq. (38)) at each
location. The resulting map (Fig. 15(d)) confirms that the regions
having a low conductivity values (in white in Fig. 15(c)) and not
well connected to the well (in the center of the field) have indeed
a high value of Sest. The main advantage of this metric is that it is
easily measurable in the field.

A theoretical relation between Sest and the hydraulic conductiv-
ity field has been derived analytically using a perturbation tech-
nique by Sánchez-Vila et al. [127]. It shows that the estimated
storativity at a given location can be expressed as a weighted mov-
ing average of the values of the transmissivities. The weights are
maximum along the line going between the pumping well and
the observation well but the final average is also largely influenced
by the values around the two wells. This explains rather well the
fact that the zones of equal values of Sest in Fig. 15d are mainly con-
centric with a strong lateral continuity.

4.2.2. Apparent porosity
For solute transport, under radial flow conditions, Trinchero

et al. [58] propose a localized connectivity metric. They define it
in the framework of a converging tracer test towards a well. They
consider the average travel time ta [s] between the injection well
and the pumping well. Then, they normalize it by the advective
travel time in radial flow conditions to get a porosity estimate Uest

[�]:

Uest ¼
Q W ta

p r2
i � r2

w

	 
 ; ð39Þ

where ri [m] is the radial distance between the pumping well and
the injection well, rw [m] is the radius of the well, and Qw [m2/s]
the pumping rate per unit of thickness. In this setup, the average
travel time ta is estimated as the first temporal moment of the
breakthrough curve, Cb(t):
ta ¼
R1

0 tCbðtÞdtR1
0 CbðtÞdt

: ð40Þ

When there is a high permeability path connecting the injection
well and the pumping well, Uest is small (and lower than the true
porosity), while on the opposite situation Uest is high (and larger
than the true porosity). Using a series of transport simulations,
they can map the value of this metric and identify the regions
which are highly connected to the pumping well (Fig. 15(e)). The
comparison of this map with the flow connectivity metric
(Fig. 15(d)) reveals very clearly the different processes. The white
areas are the zones that are well connected to the pumping well
while the black areas are poorly connected. The geometry of these
regions is essentially radial and follows areas delimited by stream-
lines converging toward the well. Using a perturbation approach,
Trinchero et al. [58] obtain an analytical approximation of Uest that
clearly shows that it is related to two terms. The first depends on
the transmissivity values located along the streamline between
the injection well and the pumping well. The second accounts for
the overall hydraulic response of the system and involves the ra-
dial flow connectivity metric Sest.
4.3. Producer and injector

Another typical flow configuration that is encountered in prac-
tical applications is the doublet. At least two wells are considered,
one is an injector and the other one is a producer. This is the basic
pattern, but often more wells are involved and a complex system
can be setup with groups of injectors and producers. From a theo-
retical point of view, these systems can most of the time be decom-
posed into smaller units including only one doublet and this is why
we will just consider the case of two wells in the following. Dou-
blets have many applications. They are used in the oil industry
for enhanced oil recovery, in geothermics to extract heat in deep
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systems, in mining to leach the uranium in place and extract it, for
decontamination problems or more simply for aquifer storage and
recovery of fresh water. Often, the connectivity between the injec-
tor and the producer is a key issue for practical purposes. In the oil
industry, if an injector is too well connected to the producer (for
example because of the presence of a karst conduit) the oil recov-
ery in the producer will be very inefficient since all the water in-
jected will directly flow to the producer without pushing the oil
in place. Similarly, if a geothermal well is badly connected to the
reservoir in place and to the pumping well, it will be very difficult
to exchange enough heat and the system will not be efficient. All
those considerations explain that there is a significant amount of
literature related to the connectivity between producer and injec-
tor wells and that there is not a single metric that has been widely
adopted since there are different problems covered by the same
terminology.

4.3.1. Recovery efficiency at 0.5 PVI
A simple indicator used in the oil industry is the recovery effi-

ciency at 0.5 pore volume injected (PVI). It is the amount of oil recov-
ered normalized by the total amount of oil in the reservoir, after
having injected a water volume of half of the pore volume of the
reservoir. This quantity can be estimated by running a two-phase
flow model and by computing the oil recovery curve at the pro-
ducer. On that curve, one can directly read the recovery efficiency.
Hovadik and Larue [57] shows that for channelized reservoir, this
indicator correlates very well with a static connectivity metrics
accounting for the volume of reservoir connected to the well.

5. Relations between static and dynamic connectivity metrics

In this section, we provide an overview of some relations that
have been proposed to relate the static and dynamic connectivity
metrics.

5.1. Effective conductivity of binary media

We have seen that the effective conductivity of a medium is di-
rectly related to the dynamic connectivity metrics CF. The effective
properties of binary media have been studied for many years and
several approaches have been developed to estimate them from a
statistical description of the medium. These methods are reviewed
in Renard and Marsily [119] or Sánchez-Vila et al. [120]. But most
existing formulas do not account for the static connectivity
metrics.

Noticeable exceptions were obtained in the framework of per-
colation theory. The proposed power laws for the effective conduc-
tivity account for the percolation threshold pc. In that line of
research, one of the most interesting result is the formula proposed
by Bernabe et al. [128] for a binary mixture. Below pc the inclusions
are predominantly disconnected and therefore they use the lower
bounds of Hashin and Shtrikman [129] to estimate the overall
hydraulic conductivity of the medium:

p < pc; Keff ¼ K0 þ
p

1
K1�K0

þ 1�p
3K0

; ð41Þ

where K0 [m/s] is the smaller conductivity and K1 [m/s] the larger
one. Above pc the inclusions are predominantly connected and
therefore they use the upper Hashin and Shtrikman bound [129]
but they account for the fact that the matrix still contains a propor-
tion pM of permeable inclusions. This is estimated in two steps. First
they use a power law derived from percolation theory which states
that around the percolation threshold, the volume fraction of high
permeability material belonging to the percolation cluster, p⁄, fol-
lows a power law:
p� ¼ p
p� pc

1� pc

� �b

: ð42Þ

b is equal to 0.14 in 2D and 0.41 in 3D. They assume that this
expression can be applied all the way between pc and 1. The propor-
tion of mixed material above pc can therefore be expressed as
follows:

pM ¼ 1� 1� p
1� p�

; ð43Þ

and the equivalent conductivity KM [m/s] of the mixture is ex-
pressed using again the lower bound of Hashin and Shtrikman:

KM ¼ K0 þ
pM

1
K1�K0

þ 1�pM
3K1

: ð44Þ

Finally, the effective conductivity of the medium above pc is taken
as the upper bound of Hashin and Shtrikman assuming a binary
medium made with a proportion p⁄ of the high conductivity K1 cells
connected to a large cluster and a proportion 1 � p⁄ of inclusions of
mixed conductivity KM:

p P pc : Keff ¼ K1 þ
1� p�
1

KM�K1
þ p�

3K1

: ð45Þ

Their formula compares well against numerical simulations and
experiments (Fig. 16(a)), but one can observe that there is a range
of values of p around pc such that the effective conductivities ob-
tained by numerical experiments is very large. The proposed for-
mula is only able to estimate the mean value in this situation.
One can therefore expect that including an additional static metric
of the connectivity of a specific realization within the previous for-
mula could provide a better forecast for these situations.

For 2D media, Knudby and Carrera [42] have compared the
effective conductivity of a series of 2D hydraulic conductivity
fields having various types of connectivity structure. On those
fields, they also computed the connectivity range n of the con-
nectivity function s(h) of the high permeability areas. They first
show that n does not correlate at all with the CT metric which is
proportional to the effective conductivity. This result is due to
the fact that the effective conductivity of a heterogeneous media
is not simply a function of the size of the high conductivity area
but is also highly controlled by the presence of barriers of low
permeability. This is well illustrated by the formula that was
proposed by Knudby et al. [110] to approximate the effective
conductivity of binary media:

1
Keff
¼ 1

Ka
� 1

KH

� �
1� D0norm

	 
2 � p2

1� p2 þ 1
KH

; ð46Þ

where p is the proportion of high permeable cells, and D0norm ½�� is
the ratio of the mean distance between the inclusions to the mean
distance between their centers, with both distances taken in the
direction of the average flow. In that formula, D0norm is a geometrical
parameter related to the size of the inclusions and their spatial
arrangement. The results of the numerical experiments of Knudby
et al. [110] show that Eq. (46) performs much better than most of
the formulas that were proposed earlier for these types of fields
(Fig. 16(b)). McKenna et al. [130] has extended this formula in a sta-
tistical framework in the case of truncated multi-Gaussian fields.

5.2. Effective conductivity of continuous media

To our knowledge there are only a few attempts to relate the
effective conductivity of continuous fields with their static connec-
tivity metrics.

Samouelian et al. [113] proceeds as follows. First, they normal-
ize the field linearly between the minimum and maximum values:



Fig. 16. Comparison of numerical experiments with analytical expressions for
binary media. (a) 10 
 10 
 10 networks, numerical experiments against Eqs. (41)–
(45). kLP is the permeability of the low permeability phase. [128] (b) 2D ellipses.
Comparison of several methods against numerical results (black line). Eq. (46) is
denoted DBU on the legend [56].
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kðxÞ ¼ KðxÞ � Kmin

Kmax � Kmin
: ð47Þ

Then they compute the Euler characteristic curve /(t) of the nor-
malized field k(x) to identify the value t0 such that /(t0) = 0. Follow-
ing the suggestion of Mecke and Wagner [131], they consider t0 as a
percolation threshold. In a second step, they extract from the uni-
variate distribution of k the critical mass fraction mc which is the
probability of having a value larger than t0:

mc ¼ Pðk P t0Þ: ð48Þ

If this value is small, it indicates according to Samouelian et al.
[113] that the continuous path must be straight and hence more
efficient, a decreasing value of mc is interpreted as an increase in
connectivity. Therefore, the effective conductivity should increase
with the inverse of mc. They combine these two topological indica-
tors in a factor q:

q ¼ a
t0

mc

� �b

� 1; ð49Þ

to be used in the classical power averaging estimation of the effec-
tive conductivity:

Keff ¼
1
V

Z
KðxÞqdV

� �1
q

: ð50Þ

The factors a and b are adjusted by non-linear regression so that the
formula reproduces as accurately as possible a training data set.
They obtain consistently some values for a in the order of 0.85
and for b on the order of 0.40.

Instead of considering only the critical value t0, Neuweiler et al.
[94] divide the univariate distribution of the hydraulic conductiv-
ities in classes. One of the classes corresponds to the connected
matrix and the other classes correspond to inclusions. The selec-
tion of the thresholds t1 and t2 defining the connected interval is
assumed to be known. The hydraulic conductivity of each class is
taken as the arithmetic average of the values within the class. To
illustrate the methodology, they use the same types of connected,
multi-Gaussian, and disconnected fields as Zinn and Harvey [92],
and they fix different thresholds for the three configurations. By
approximating the medium as a three or two components medium,
they use Maxwell’s approach [55,94] and get an estimate of the
conductivity which is very simple. In 2D, for a three media decom-
position their formula is the following:

Keff ¼ K1
1� A
1þ A

; ð51Þ

A ¼ p2
K2 � K1

K2 þ K1
þ p3

K3 � K1

K3 þ K1
; ð52Þ

where K1 is the hydraulic connectivity of the background connected
material, K2 and K3 are the hydraulic connectivities of the high or
low conductivity lenses isolated in the background material, and
pi is the volume percentage of materials i. By repeating similar com-
putations for the wetting and non-wetting phase and for different
capillary pressures they obtain the effective mobility function for
their multiphase problem. This approximation is compared to
numerical results for buoyant counter flow problem of DNAPL and
water and shows to perform reasonably well for the different types
of media that are considered.

5.3. Transport processes

Willmann et al. [132] have investigated the relations between
the transport behavior of a medium and its connectivity metrics.
Unfortunately, they only considered dynamic connectivity metrics
such as CF and CT introduced above. In their study, they consider
five types of media with different structures and types of connec-
tivity: multi-Gaussian with a small integral scale, stationary with
two nested variograms, non-stationary power variogram, non-sta-
tionary with conditioning data to create a channel, and a connected
field built by transformation of a multi-Gaussian one. For all those
fields, they simulated transport using an advection dispersion
equation at the local scale. They analyzed the breakthrough curves
and in particular the non-Fickian tailing that typically occur in con-
nected fields. To model this type of behavior they used memory
functions and characterized them with the slope of the late time
breakthrough curve as a function of the logarithm of the time. They
show the existence of a relation between this slope and the con-
nectivity metrics CT and CF. The slope decreases with both metrics
and stabilizes toward a value of 2.
6. Generating random media with a given connectivity
structure

In this section, we discuss the practice of stochastic simulations
of subsurface structures when connectivity information is avail-
able and must be respected. We shall make the distinction be-
tween soft and hard connectivity information. Soft information
corresponds to global knowledge about the connectivity struc-
tures, such as being above the percolation threshold or imposing
the possibility of long distance connectivities. This amounts to
honor statistically the connectivity metrics described above. The
theoretical considerations seen in Section 3 provide useful guide-
lines for performing simulations respecting global connectivity
information and we will discuss below how this can be done in
practice. Hard information corresponds to localized precise infor-
mation about connections. For example a tracer test was able to
prove that two wells are connected. Such binary information,
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either true or false, is more difficult to respect and calls for specific
techniques detailed below.

6.1. Honoring soft, global connectivity metrics

The first and easiest way to honor global connectivity metrics is
to tune the parameters of the model so as to be in adequation with
the target connectivity behavior. Earlier, we have seen that power
laws describe how the expectation of the percolation threshold on
a finite grid and its variance depend essentially on two driving fac-
tors controlling percolation: the difference pc � p between the per-
colation threshold and the proportion, and the ratio L/l between
the size of the grid and the size of the objects (or the range of
the covariance). In Section 3.5, we have shown that there is only
three connectivity behaviors, corresponding to three domains of
the proportion interval: below, around or above the percolation
transition. We also saw that discretization can play a role, but of
second order only. Larue and Hovadik [60] and Hovadik and Larue
[57] review a series of other factors shifting the ‘‘around percola-
tion domain’’ either to the lower proportions or to the higher
proportions:

� Anisotropy has a major impact. Generally speaking, the higher
the anisotropy, the higher the percolation threshold. Imposing
almost parallel channels in object-based models or sheeted res-
ervoirs with very high vertical non-stationarity of the intensity
of the point process driving the object model lead to a dramatic
shift of the S-curve to the right [60]. In essence, 3D reservoirs
are made ‘‘quasi 2D’’ reservoirs, thus shifting the percolation
threshold from the low 3D value (around 0.32) towards the
much higher 2D value (around 0.59).
� Imposing attraction or repulsion between objects as in [133]

will also have a major impact on connectivity. Object models
with repulsion, called compensational stacking of channels in
[60], will discourage intersection between objects, thus yielding
to relatively high proportions with poor connectivity. Attraction
between objects would lead to the inverse effect.
� Mixed objects with non-permeable phase, or multi-type object

models with non-permeable objects which could possibly erode
permeable ones will have more complex effects on connectivity.
On the one hand, presence of non-permeable facies will destroy
connections. But on the other hand more objects are needed for
a given proportion, thus creating new connections. The final
effect will depend of the relative proportions of the facies, size
and shape of the objects etc.

Another approach can be to use multiple-point statistics
[40,49,50,134] with a training image that displays the connectivity
patterns that are required in order to generate stochastic simula-
tions having the same patterns. However, the connectivity metrics
of the resulting simulations are strongly affected by the parameters
of the simulation algorithm (such as the size of the neighborhood)
[54] and the method does not ensure a priori that the connectivity
metrics of interest will be reproduced. A systematic study of the ef-
fect of the parametrization of the method on the reproduction of
the connectivity metrics has still to be carried out.

When tuning the parameters is not sufficient to honor the tar-
get connectivity metrics, a post-processing of the prior simulations
can be undertaken. Simulated annealing is a flexible stochastic glo-
bal optimization method that is suited to incorporate information
from different sources, both statistical or measured. We shall not
describe this optimization algorithm here; readers are invited to
refer to the original paper by Kirkpatrick et al. [135] or to classical
textbooks such as Robert and Casella [136]. Schlüter and Vogel [34]
used a simulated annealing algorithm to constrain 2D simulations
to honor the Euler characteristic and chord length distributions as
functions of the threshold which transforms a continuous simula-
tion into a set of binary ones. The constrained values are those
computed on training images which are either multi-Gaussian or
a connected field according to Zinn and Harvey [92]. It is shown
that matching only the Euler characteristic leaves too much free-
dom for the size of the cluster. The long connected bands are not
reproduced. This result confirms the theoretical distinction made
between /(X) and N(X) as connectivity metrics: the Euler charac-
teristic is in essence a local property of X, not a global one. Repro-
ducing the chord length in four directions (horizontal, vertical and
diagonals) in both the permeable and impermeable phases was
able to reproduce the elongated morphology of the connected clus-
ters, but their morphology appeared to be too rectilinear and too
fragmented. Considering either less directions or one phase only
lead to poor reconstruction. Respecting both statistics simulta-
neously improved very much the reconstruction. This approach
proved to be very efficient in honoring other connectivity metrics,
such as percolation threshold and connectivity function. Further-
more, breakthrough curves of a conservative solute in the vadose
zone under steady flow conditions were adequately reproduced.
Jiao et al. [137] include in the simulated annealing algorithm a con-
straint to reproduce in addition the connectivity function
C2(h) = s(h)K(h). They show that the connectivity function is a
key characteristic that must be accounted for to reconstruct tex-
tures that are found not only in granular media, but also in cosmol-
ogy and material sciences.
6.2. Honoring hard connectivity metrics

Simulated annealing is not a suitable tool for performing simu-
lations reproducing binary 0/1 hard connectivity information be-
cause no continuous objective function can be built from this
information. Two techniques have been proposed to simulate bin-
ary fields honoring connectivity constraints such as those imposed
by a tracer test. Allard [138] proposed a Markov chain Monte Carlo
(MCMC) Gibbs sampler [139] approach for the truncated Gaussian
model. The initial field is generated without accounting for spatial
correlation, but ensures that the connectivity constraints are re-
spected. The Gibbs sampler is then used to obtain, after a certain
number of iterations, a field that respects both the covariance func-
tion and the connectivity (or disconnectivity) information. At each
site, a new (truncated) Gaussian random variable is drawn, condi-
tionally on the fact that no condition is violated. On the examples
presented, convergence is reached in about 400 full passage of the
image. This algorithm can handle connectivity constraints of the
type x M y as well as non-connectivity constraints of the type
x & y. The respect of first and second moment of the Gaussian field
depends on how likely the set of connectivity constraints is. Let us
denote S this set, and suppose for the moment that S is the unique
condition x M x + h. The probability of S is simply the unconditional
connectivity function P(S) = s(h)K(h). This probability will be very
low if p� pc and increases dramatically around pc. If S is made of
several connection and non-connection constraints, such as in
the example illustrated in Fig. 17, P(S) reaches a maximum for a
certain proportion, which will be around the percolation threshold
where the variability of the connectivity metrics is maximum.

Fig. 18 shows the solutions obtained for the conditions of Fig. 17
for a truncated Gaussian model with a factorized exponential
covariance function and range parameter = 3 pixels. When the pro-
portion is close to or larger than the percolation threshold (middle
and right panel), one can observe that the parameters of the non-
conditional model are well reproduced. On the contrary, when
the proportion is well below the percolation threshold (left panel),
the histogram of the Gaussian values and the sill of the experimen-
tal variogram are shifted to higher values.
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A very similar approach is implemented in the industrial ver-
sion of the Boolean model presented in [133]. An initial configura-
tions of objects is first built according to some ad hoc procedure
such that all connectivity constraints are verified. Then, objects
are added or removed according to an MCMC birth-and-death pro-
cess. Additions or deletions of objects are only allowed if no con-
nectivity constraints are violated. In this implementation,
agreement between the model parameters (proportion, size of ob-
jects, anisotropy, attraction or repulsion) and the connectivity con-
straints is of paramount importance for achieving convergence and
respecting the input parameters.

These approaches, similar in spirit, present two difficulties. The
first one is that one must devise ad hoc methods for building an
initial configuration verifying the connectivity constraints. The sec-
ond is that, as it is the case for all MCMC algorithms, finding a cri-
terion for deciding if the algorithm has reached convergence is
difficult. Note that for both implementations, lack of convergence
should not be considered as a failure of the algorithm, but should
rather be interpreted as the inadequacy between the model param-
eters and the connectivity constraints.

In a very recent paper, Renard et al. [140] proposed an algo-
rithm related to direct sampling [49]. The general idea is to borrow
connected paths from a training image instead of iteratively build-
ing a simulation that satisfies both the connectivity and the struc-
tural constraints. The consistency is imposed by using as training
image (to search for connected paths) either an unconditional sim-
ulation constructed with the method that will subsequently be
used to generate the realizations, or the one used as input in a mul-
tiple-point algorithm such as impala [50], snesim [40] or the direct
sampling method [49]. The general algorithm is now described (see
Fig. 19) for the single two-point connectivity constraint x M x + h.
More details and generalization to multiple-point constraints can
be found in [140]. First, the cluster function C(x) is computed on
the training grid Gt . Then it is scanned in order to find all grid cells
xi such that C(xi) = C(xi + h) – 0. Let n be the number of those
points. If n = 0 the algorithm is stopped; obviously the training im-
age Gt is not compatible with the constraint. A new image must be
sought.

At this point, if n > 0 all the preprocessing is done and we enter
a loop that is applied for each simulation. The simulation grid is de-
noted Gs.

1. One value i is chosen at random between 1 and n. It corresponds
to the random, uniform selection of one replicate of a connected
pattern.

2. The whole cluster C(xi) is identified, but not copied as such
because: (i) it is not necessary to copy the whole cluster from
Gt to Gs to ensure the connection, and (ii) it is possible that
the selected cluster is larger than Gs.

3. A path is selected within C(xi); in order to minimize the number
of pixels which will play the role of conditioning data in the
next step, a path is selected by applying propagation algorithms
within C(xi).
Fig. 17. 2D connectivity constraints: the three points on the first diagonal must be
connected; the two other points must be disconnected.
4. The path is copied between x and x + h, thus creating the con-
nection between these two points.

5. All these cells are taken as conditioning data for the simulation
algorithm which is applied as usual, whatever the technique
and the model.

Fig. 19 illustrates the algorithm. Adaptations of this base-case
algorithm are able to account for hard conditioning data and for
multiple-point connectivity.

This algorithm is very efficient, much more than MCMC ones. It
is very general because it does not depend on the actual simulation
technique. It can for example be applied without any modification
to sequential indicator simulation or to truncated Gaussian or plu-
rigaussian methods [100]. It is however not adapted to object
based models, but extensions of the same idea, applied on the
graph of intersecting objects instead of the graph imposed by the
grid could probably be developed.

6.3. Honoring connectivity metrics and inverse problems

From a very broad perspective, the dynamic connectivity met-
rics are related to flow and transport state variables that can be
either measured in the field or derived from numerical simula-
tions. When a numerical model of an aquifer system is made, there
is almost systematically a phase in which an inverse problem is
posed so that the model reproduces the field measurements of
state variables. Because the dynamic metrics are not the input
parameters of the model, honoring them is nothing else than a spe-
cial type of inverse problem.

In certain circumstances, when the connected features are well
defined and when the data are sufficient, classical inverse tech-
niques are able to identify correctly the connected channels
[141] without any modification of the inverse method. There are
however other situations in which the presence of the channels
is not identified properly because the field observations are not
sufficient or because the underlying geostatistical model does not
assume the possibility of the existence of connected features [95].

Solving the inverse problem to reproduce dynamic connectivity
metrics or simply to insure that a groundwater model reproduces
the field observations usually involves a complex iterative proce-
dure that aims at minimizing the discrepancy between the field
observations and the model results [142,143]. This is similar to
the optimization procedure that can be used to constrain the sto-
chastic simulations of the media by static constraints as discussed
in Section 6.2. The difficulty here is that the forward computation
of the flow and transport responses allowing to infer the dynamic
connectivity metrics and to define the functional that has to be
minimized requires solving partial differential equations in tran-
sient state. This implies significant computational resources and
computing times. The problem is therefore normally much harder
than the one discussed for static connectivity.

Two alternative approaches have been followed over the last
years. One approach is to use the information available on static
connectivity to condition the stochastic model to this information
to accelerate and facilitate the resolution of the inverse problem.
The other idea is to develop methods able to directly generate
models that are coherent with the dynamic connectivity
information.

In the following, we describe these approaches in more detail.

6.3.1. Use of connectivity for model ranking and selection
As a preliminary step, to investigate the degree of variability of

the possible responses of an aquifer or a reservoir, one of the most
general approach is the use of Monte Carlo simulations. This is con-
ceptually very simple. Multiple realizations of the geological heter-
ogeneity and of the parameters are produced, and for each of them



Fig. 18. Realizations obtained with the Gibbs sampler approach. The five conditional points are represented by the circles; the circles filled in red must be connected and the
circles filled in white must be disconnected from the red circles; the cluster connecting the three points is in gray; the background is in black. From left to right the input
proportions are p = 0.2, p = 0.4 and p = 0.7. Exponential covariance function with a practical range of 9 pixels [138]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(a) 

(e) (d) 

(c) (b) 

Fig. 19. Step by step description of the base algorithm. (a) is a training image (100 
 100 cells), it has been generated by sequential indicator simulation with a spherical
variogram, an anisotropy oriented at 45 degrees, with variogram ranges equal to 10 and 3. (b) is an image of the simulation grid (30 
 30 cells) after one replicate of a
connected body has been translated and pasted in the simulation. The two white disks represents the points that must be connected. (c) represents the distance function
which is calculated inside the geobody to draw the random paths. (d) is one of these shortest paths. (e) is the final results of the simulation.
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the physical response is computed. By analyzing the variability of
the responses one gets a measure of the uncertainty. The method
is general, no assumption is made on the type of heterogeneity
nor on the type of physical models. But the method is slow. Many
model runs are required.

To speed-up the procedure, one can rank the parameters or geo-
logical models and select a few representative models before run-
ning the costly simulations. By doing so, one can avoid running
several models that are expected to have similar responses. In that
procedure, static or dynamic connectivity metrics can be used if
their calculation is fast [51,144–146].

de Jager et al. [147] propose a modeling flow chart that includes
a step in which the connectivity of the geological models of a chan-
nelized reservoir is assessed through the use of experimental de-
sign and surface response mapping. They find a weak relation
between the input parameters of the stochastic model of channels
and the connectivity metrics, while they obtain a good correlation
between the connectivity and the flow behavior. In a second step,
they show how the knowledge of the strong correlation between
flow and connectivity can be used to select models.

One recent progress in the development of model selection
techniques is to use distances between the approximated model
responses, e.g. a distance in terms of connectivity metrics between
two models. Streamline computations are used for example by
Park et al. [124] or Scheidt and Caers [148] to obtain rapidly an
approximation of the recovery curve at the producer. Then, instead
of using a single value to describe the connectivity of a given per-
meability field, they take the complete recovery curve fi(t) and they
consider that two media i and j having a similar curve have a sim-
ilar connectivity. In that manner, they do not consider a single va-
lue of connectivity but rather they compute the distance d(i, j)
between the two responses of the two media:

dði; jÞ ¼
Z tend

0
fiðtÞ � fjðtÞ
	 
2dt: ð53Þ

Because the streamline computations are very fast, this technique
allows to compare and group very rapidly a large number of differ-
ent permeability fields. The distances between the models allow to
map the models in an abstract space using the multidimensional
scaling technique. One can then use the proximity or distance be-
tween the models in this space to accelerate model selection, uncer-
tainty analysis or inverse problem solving [148]. Impressive results
are obtained by this approach. Using only a very small number of
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models (less than 10) selected using distance mapping, Scheidt and
Caers [149] are able to reproduce very accurately (and more accu-
rately than traditional ranking approaches) the uncertainty ranges
(quantified by the 10, 50 and 90 percentiles) of the cumulative oil
production for a field in West Africa which would require otherwise
a much higher number of model runs.

6.3.2. Accelerating inverse problem solving
There is a very wide range of techniques that have been devel-

oped to solve the inverse problem [142,143]. But from a conceptual
point of view, all the methods aim at searching one or an ensemble
of models or model parameters such that the physical response is
close to the observations. We can then see these techniques as
tools to a search in a very high dimensional space of model geom-
etries and parameters. In this space, all kind of models with differ-
ent degrees of complexities, physics and connectivity exist.

If some information is available about the connectivity then Alco-
lea and Renard [150] showed that it should be used to enhance con-
vergence rates. The setup is a regional flow in a channelized aquifer.
A well is pumped and the response is measured in several piezome-
ters. A Monte Carlo Markov Chain sampling technique is used to
modify iteratively a multiple-point simulation of channels with
the constrain to reproduce the head response in the piezometers.
Two configurations are compared. In the first, the algorithm is ap-
plied without considering the connectivity information between
the wells. In the second configuration, the technique described in
[140] is used to generate only permeability fields which are condi-
tioned by the connectivity. The results of the two approaches are
similar in terms of ensemble of simulations that have been retained
to fit the data and represent the uncertainty. However, the proce-
dure which included the connectivity information was faster be-
cause it was searching in the right subspace of possible models.

6.3.3. Direct method
Based on the work of Trinchero et al. [58] who defined a connec-

tivity metric for radial flow and one for transport, Fernandez-Garcia
et al. [151] extended those definitions to more general flow condi-
tions. They express the point to point flow connectivity metric as a
space integral of the transmissivity involving a weighting function
proportional to the sensitivity of the heads with respect to the nat-
ural logarithm of the transmissivity. The tracer connectivity metric
is expressed as line integral along the flow path between the two
points. In that framework, Fernandez-Garcia et al. [151] express
analytically the cross covariances between the local transmissivity
values, the flow connectivity metrics and the transport metrics (tra-
vel times) as a function of the covariance of the logarithm of the
transmissivities. This allows them to generate directly simulations
of the three variables conditional to field observations either of
transmissivity, travel times, or flow connectivity. This is extremely
powerful since it does not require to solve explicitly any flow or
transport equations with a numerical method. As shown by Fernan-
dez-Garcia et al. [151] this method allows to delineate accurately
and in a very straightforward manner the capture zone of a well
in a multi-Gaussian framework. But one of the very interesting part
of their results is that it also allows to analyze theoretically the im-
pact of data conditioning. It is shown for example, that the impact of
tracer data is maximum when they are obtained at locations differ-
ent from the transmissivity measurements.
7. Discussion and conclusions

7.1. How to define connectivity?

In this paper, we focused on the connectivity of hydraulic con-
ductivity or transmissivity fields. We provided a broad definition of
connectivity as a concept in relation with the existence of a path
for flow and transport from one location to another. To quantify
the connectivity, we have reviewed several static and dynamic
metrics. The static metrics are essentially derived from integral
geometry and percolation theory. We have shown that using a sin-
gle indicator of connectivity is often insufficient. Simultaneous
consideration of several metrics is necessary. Furthermore, we
have shown strong evidence against the use of the Euler number
as a connectivity characteristic. As pointed out several times, the
Euler number is essentially a local characteristic strongly related
to the regularity of the random set, or to the regularity of the con-
tinuous field. But it is not a global characteristic and it is not re-
lated to connectivity at long distance. We recommend the use of
the global probability of connection C between two cells, and we
recommend to compute those metrics both for the permeable
and the impermeable phases.

We showed on thresholded continuous fields that this metric is
strongly related to the percolation transition. Roughly speaking, if
C and Cc belong both to the interval [0.2,0.8], the binary field is in
the percolation transition domain.

The dynamic connectivity metrics are related to physical pro-
cesses such as flow and transport. Some of them can be estimated
from field experiments. They allow quantifying the departure of a
phenomenon from what is expected to occur in a standard situa-
tion, most often a multi-Gaussian field. Most dynamic connectivity
metrics are based on effective parameters such as the effective
hydraulic conductivity for flow. For solute transport the connectiv-
ity does not only affect the value of the effective parameters, but it
also implies a departure from the physical model used at the small
scale. Mass transfer between the connected mobile phase and the
less mobile water phase implies non-Fickian conditions which re-
quire the use of alternative transport models able to describe fast
arrivals and long tailing. Overall, the dynamic connectivity metrics
are often very specific and not necessarily easy to interpret since
there is not always a clear standard to which it should be
compared.

7.2. Is connectivity the key?

We have shown in this review that connectivity influences very
strongly a wide range of groundwater flow and transport pro-
cesses. With time, more and more configurations and types of pro-
cesses are investigated, and naturally the effect of connectivity
appears to be important for most of them. Why then, researchers
did not consider it before? In fact, if we consider the binary fields
which have been intensively studied, we see that connectivity does
not play a major role for very low or very high proportions. In those
situations the proportion is the main controlling factor. However in
the range of the intermediate proportions, the exact arrangement
of the connected bodies becomes very important. In summary,
connectivity itself is not sufficient to forecast the behavior of a
medium, but it should not be forgotten if one wants to make rea-
sonable forecasts of the behavior of a groundwater system.

7.3. A new vision of field hydrogeology and modeling

If connectivity is an important concept, there is a need to in-
clude its characterization as a specific step which should be carried
out in aquifer or reservoir studies.

More precisely, in addition to what is normally done in terms of
aquifer characterization, it seems clear that one should try to char-
acterize the dynamic connectivity metrics with field experiments.
It implies that data should be gathered at different scales in a
systematic manner. On the one hand, measurements of the physi-
cal properties of the aquifer at a local scale (laboratory test, slug
tests, column experiment, etc.) must be used to investigate the
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variability of the local values. From these data, their univariate and
bivariate distributions can be estimated. On the other hand, large
scale parameters should be obtained from the interpretation of
large scale experiments (long term pumping tests, tracer tests,
etc.). The comparison between the large scale effective values
and the forecasts of the effective parameters obtained from local
measurements allows then to quantify the degree of connectivity.

Such an analysis will not allow to define precisely where the
connected structures are and therefore it must be completed with
additional localized information. One approach is to use the dy-
namic connectivity metrics which relates the response of the aqui-
fer at different locations (travel times, local diffusivity), and use
this specific information to condition the models.

Finally, this approach must integrate classical investigations
such as geological analysis or geophysical mapping with the spe-
cific aim of identifying and quantifying the presence of connected
or disconnected features. Quantifying the proportions of the differ-
ent facies, the geometry of the bodies, and defining a clear concep-
tual geological model (channels, lenses, etc.) is extremely
important because it controls indirectly the degree of connectivity
as we have seen when analyzing the properties of various binary
models.

In terms of modeling, constraining the connectivity of the mod-
els should also become an important step. Ideally, all this work
should allow finally to exclude heterogeneity models whose con-
nectivity features are not compatible with the observations.

7.4. Research needs

All the research conducted so far and partly reviewed here al-
lows to better understand the role of connectivity and its quantifi-
cation. From a very broad perspective, the major questions that
need to be answered now are the following:

1. What is the impact of connectivity on 3D continuous fields for
various standard models? Very few studies considered 3D con-
figurations [152,117]. From partial studies and theoretical con-
siderations, we expect the connectivity behavior to be
quantitatively and perhaps qualitatively different in 3D than
in 2D. For example, percolation of the permeable phase implies
that the background is not connected in 2D while it can be con-
nected in 3D.

2. How to quantify the relation between static and dynamic con-
nectivity metrics? This quest must be pursued to better under-
stand the fundamental relations between heterogeneity,
anisotropy, connectivity and the effective behaviors of hetero-
geneous materials.

3. What are the different connectivity structures that one should
expect underground? This is a very difficult question since aqui-
fers are normally not fully accessible. Recent advances in image
acquisition such as lidar technology can bring new insights into
this question [153,154]. However, the true connectivity of 3D
fields cannot be directly inferred from 2D images since there
is no stereological relations between 2D and 3D connectivity.
Therefore new approaches need to be developed.

4. How a general methodology including new experimental proce-
dures and modeling approaches to quantify the connectivity in
the field and to constrain the models will improve forecast? So
far the research that is the closest to reach that aim is the work
of Fernandez-Garcia et al. [151].
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Appendix A

Most of the connectivity metrics presented in this review can be
computed with freely available software or can be coded with min-
imum effort in MATLAB (The Mathworks, Inc.). In this Appendix A,
we provide a brief list of links allowing the reader to find the rele-
vant references.

The basic functions required to compute the connectivity indi-
cators in MATLAB are the functions bwlabel () to compute the clus-
ter identification function C(x) and bweuler () to compute the Euler
number. The computation of the connectivity function s(h) is very
simple to code once the cluster function is computed. Some pseu-
do-code is given in Western et al. [13] and other details in Ali and
Roy [19]. Computing the scalar metrics C (Eq. (4)) is also very sim-
ple, one has simply to sum the number of pixels having the same
value of C(x) to get the size ni of each connected component i.
The sum of all the square values of these numbers divided by the
square of the total number of permeable pixel np is equal to C.

For those who prefer to use open source codes, they can refer to
Deutsch [51] for a FORTRAN code to compute the cluster identifi-
cation function C(x) on 3D grids and to rank simulations. This pro-
gram computes also some basic statistics such as the number,
dimension or tortuosity of the connected components. Pardo-Igu-
zquiza and Dowd [109] provide another FORTRAN code (CON-
NEC3D) to compute the connectivity function s(h) of 3D grids as
well as a number of statistics related to the dimension of the con-
nected components, the cluster identification function and the per-
colating connected components. For the Euler number, one can use
the code developed by Vogel et al. [112] to compute the Minkowski
functions. Details about the algorithm are also provided in Legland
et al. [155].
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