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Abstract When characterizing and simulating underground reservoirs for flow sim-
ulations, one of the key characteristics that needs to be reproduced accurately is its
connectivity. More precisely, field observations frequently allow the identification of
specific points in space that are connected. For example, in hydrogeology, tracer tests
are frequently conducted that show which springs are connected to which sink-hole.
Similarly well tests often allow connectivity information in a petroleum reservoir to
be provided.

To account for this type of information, we propose a new algorithm to condi-
tion stochastic simulations of lithofacies to connectivity information. The algorithm
is based on the multiple-point philosophy but does not imply necessarily the use of
multiple-point simulation. However, the challenge lies in generating realizations, for
example of a binary medium, such that the connectivity information is honored as
well as any prior structural information (e.g. as modeled through a training image).
The algorithm consists of using a training image to build a set of replicates of con-
nected paths that are consistent with the prior model. This is done by scanning the
training image to find point locations that satisfy the constraints. Any path (a string of
connected cells) between these points is therefore consistent with the prior model. For
each simulation, one sample from this set of connected paths is sampled to generate
hard conditioning data prior to running the simulation algorithm. The paper presents
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in detail the algorithm and some examples of two-dimensional and three-dimensional
applications with multiple-point simulations.

Keywords Geostatistical simulation · Multiple-point statistics · Connectivity data

1 Introduction

One of the most important features to determine when characterizing an underground
reservoir with respect to its flow properties is the connectivity of the high permeable
or low permeable structures. It has long been recognized that failing to capture the
connectivity may bias the results of any underground fluid flow and transport mod-
eling project (Journel and Alabert 1990; Gómez-Hernández and Wen 1998). Missing
the fact that two locations are connected (a sink-hole and a spring, or an injection well
and a producer) will have a large impact when modeling the response of the system
around those locations. Also, an inadequate characterization of the overall connectiv-
ity structure of a subsurface domain will drastically change its large scale equivalent
properties (Gómez-Hernández and Wen 1998; Zinn and Harvey 2003; Neuweiler and
Cirpka 2005; Nurafza et al. 2006; Kerrou et al. 2008) and have an important impact
on the global behavior of the system. These ideas have been the base for a con-
tinuous struggle to improve the characterization of heterogeneous reservoirs. They
were the main driving forces in the 1980s to start developing indicator or boolean
stochastic simulation techniques (see de Marsily et al. 2005 for a review). Conse-
quently, many practical applications of stochastic techniques today are based on a
hierarchical procedure in which the lithofacies are simulated first and the continuous
properties, such as the porosity or the permeability, are modeled within the facies in a
second step, allowing large contrast and discontinuities to be accounted for. This al-
lows one to avoid systematically connecting the intermediate values as with the stan-
dard multi-Gaussian techniques for continuous variables (Journel and Alabert 1990;
Journel and Deutsch 1993).

While the intuitive concept of connectivity is straightforward, its numerical
definition is not unique. Different measures are of different relevance depend-
ing on the physical processes (flow, multiphase flow, transport) that occur in the
medium (Knudby and Carrera 2005). If we focus only on geometrical measures,
it is known that the variogram and the covariance functions are not sufficient to
distinguish patterns having different connectivity structures (Western et al. 1998;
Krishnan and Journel 2003). Two alternatives have been proposed in the litera-
ture. One considers connectivity functions as defined in percolation theory (Al-
lard and Heresim Group 1994; Stauffer and Aharony 1994; Western et al. 2001;
Knudby and Carrera 2005; Neuweiler and Cirpka 2005), while the other defines
a directional multiple-point connectivity function (Krishnan and Journel 2003). To
summarize the information contained in the connectivity function (the one defined
in percolation theory), several authors use its integral scale (Western et al. 2001;
Knudby and Carrera 2005).

Since the physics of flow and transport is significantly influenced by connec-
tivity, it is important to infer a connectivity measure from field data and then to



Math Geosci (2011) 43:879–903 881

simulate fields that honor it. Connectivity can be inferred from tracer tests. The
first item of information extracted from tracer breakthrough is of a binary type: ei-
ther some tracer has been recovered and there is a connection between the injec-
tion point and the observation point, or no tracer has been recovered, and it indi-
cates that under the present flow conditions there was no set of streamlines con-
necting the two points at the time of the experiment or that the travel time be-
tween the two points was longer than the duration of the experiment. Therefore,
the absence of recovery does not necessarily imply the absence of a connected path
of permeable medium between the two points. In addition to such binary connec-
tivity information, the tracer test provides the rate of recovery, the distribution of
travel times, and the peak concentration; this information is usually processed as
data for an inverse problem that allows the numerical model to be further con-
strained.

To our knowledge, only one technique has been proposed to simulate parameter
fields that honor a connectivity constraint such as the one imposed by a tracer test.
The method, which was proposed by Allard (1994), is general but has been applied
only in the context of a truncated Gaussian model. The principle is to run an itera-
tive Gibbs sampler. The initial field is generated without accounting for the structural
information, but it ensures that the connectivity constraints are respected. The Gibbs
sampler is then used to obtain, after a certain number of iterations, a field that re-
spects both the structure and the connectivity (or disconnectivity) information. One
difficulty is that the iterative procedure may be slow and that it may not converge
if the stochastic model is incompatible with the connectivity constraint. Note that
this lack of convergence is not a limitation of the method but a problem related to
selection of the model.

In this paper, we restrict ourselves to the simplest type of model: a binary
medium under stationarity assumption. One phase is supposed to be highly per-
meable, while the other phase has low permeability (a typical sand–shale de-
posit). We then present and discuss several tools to measure and define the ge-
ometrical connectivity of these media. In a second step, we present a fast tech-
nique that allows the imposition of connectivity data when generating stochas-
tic realizations of a binary medium. Even though the method is presented in the
framework of multiple-point statistics, it is general and can be used with a wide
range of simulation techniques, such as sequential indicator simulations, truncated
plurigaussian simulations, or any other method that allows conditioning with hard
data.

The overall motivation is to improve the characterization techniques to account
for connectivity constraints. The proposed tool should facilitate and accelerate in-
verse problem solving (such as history matching) by providing a reduced space in
which the inverse procedure will search for solutions reproducing observed physical
quantities (pressures, breakthrough curves, etc.). By providing an initial field repro-
ducing connectivity, and by providing tools to perturb these fields while preserving
the connectivity, the inversion can be made easier. This has been shown in the work
of Alcolea and Renard (2010), who compared the results of an inversion method us-
ing a prior distribution that either accounted or did not account for the connectivity
information.
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2 Definitions

Assume for simplicity that the domain Ω of interest is partitioned by a regular Carte-
sian grid. Each cell represents an elementary volume (�x�y�z). In each cell, there
are only two types of porous medium, represented by an indicator variable I that can
either take the value 1 (the cell is highly permeable) or 0 (the cell is almost imperme-
able). We define a point or a cell in the domain by its location x which is a vector of
three spatial coordinates.

2.1 Two-Point Connectivity

Two cells x and y in Ω are said to be connected (notation: x ↔ y) if there exists
at least one path of adjacent grid cells that allows the path to go from x to y always
remaining in the permeable phase. Two cells are defined as adjacent if they are in con-
tact through one of their faces. We do not consider in this work cells adjacent by their
edges (in three-dimensional) or corners (two-dimensional and three-dimensional).

When the function I (x) is known, a computationally efficient way of checking
that any two cells are connected is to construct a cluster identification function C(x)

that identifies with a unique value every group of adjacent cells. The concept of a
group of adjacent cells is well known in percolation theory under the terminology
of a cluster (Stauffer and Aharony 1994). The same concept is known in petroleum
engineering literature as a geobody (Deutsch 1998). In both cases, it is a set of cells
connected together by their faces. The function C(x) is equal to zero for all the non
permeable cells and is equal to a constant integer value for each cluster. The value
C(x) is different for each cluster; it is the identifier of this cluster. The function C(x)

is chosen such that it increases regularly from 1 to the total number of clusters within
Ω (Fig. 1). The details of an efficient computer implementation of the calculation of
C(x) from I (x) are given in Hoshen and Kopelman (1976). Once the function C(x)

is defined, testing the connectivity between two cells x and y is equivalent to testing
if C(x) is equal to C(y) (and positive). This approach is extremely efficient in testing
the connectivity between many cells.

Fig. 1 Example of a binary medium. (a) The indicator function I (x) representing the two phases. (b) The
cluster identification function C(x) that allows to identify the different connected parts
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2.2 The Connectivity Function

To measure how the connectivity evolves as a function of a lag vector h between two
points (h = y − x), we can use the connectivity function or pair connectivity g(h).
The connectivity function is defined, in the framework of percolation theory, as the
probability that any permeable cell x taken uniformly in Ω is connected with (i.e.
belongs to the same cluster as) another cell located at x + h (Stauffer and Aharony
1994).

g(h) = P
(
x ↔ x + h | I (x) = 1

) = P
(
C(x) = C(x + h) | I (x) = 1

)
. (1)

By applying the conditional probability rule, g(h) can be written as the ratio

g(h) = P(x ↔ x + h , I (x) = 1)

P (I (x) = 1)
= P(x ↔ x + h)

P (I (x) = 1)
= 1

p
P (x ↔ x + h), (2)

where p = P(I (x) = 1) is the fraction of permeable cells. To write the second equal-
ity we use the fact that the event x ↔ y is a subset of the event I (x) = 1, and therefore
the probability of the intersection of the two events is equal to the probability of the
first.

3 Connectivity Conditioning Algorithm

We consider now the problem of imposing connectivity when simulating a binary
medium. For that purpose, we propose an algorithm that is based on the idea of
borrowing connected paths from a training image instead of iteratively building a
simulation that satisfies both the connectivity and the structural constraints. The ad-
vantage of the approach is that it is numerically efficient and that it ensures consis-
tency between the geometry of the paths and the random function model. The con-
sistency is imposed by using as the training image (to search for connected paths)
either the one used as input in a multiple-point algorithm such as impala (Straub-
haar et al. 2011), snesim (Strebelle 2002), filtersim (Zhang et al. 2006), the di-
rect sampling method (Mariethoz et al. 2010), or an unconditional simulation con-
structed with the method that will subsequently be used to generate the realiza-
tions.

The connectivity function (1) given in the previous section allows us to check
the compatibility between the connectivity data and the training image (from which
a path is borrowed). This verification can be included in the initialization phase of
the algorithm (see Sect. 3.1 below). Hence, the method will be applied only if the
connectivity constraints are sufficiently coherent with the conceptual model. First,
we propose a base algorithm for the situation where connectivity data involve only
two points. Next, we extend this algorithm to account for multiple-point connectivity
data.
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Fig. 2 Step by step description of the base algorithm. (a) Training image (250 × 250 cells) (Strebelle
2002). (b) Image of the simulation grid (100 × 100 cells) after one replicate of a connected geobody has
been translated and pasted in the simulation. The two red circles mark the points that must be connected.
(c, d) Distance function from each conditioning point, which is calculated inside the geobody to draw the
random paths. The two red circles mark the points that must be connected. The black circles show the
location of the points in the geobody for which the distances from each of the conditioning point are the
same (or differ of 1 pixel). (e) One of the path binding the two conditioning points. (f) Final result of the
simulation. The green circles highlight the connecting path

3.1 Base Algorithm for 2-Point Connectivity

The base algorithm can be described as follows (Fig. 2).

• The input data are
• A pair of connected points (x, x′) located on the simulation grid Gs .
• A binary training image (Fig. 2a), i.e. an indicator function I (x) defined over a

grid Gt (typically larger than Gs ).
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The aim is to simulate an indicator variable I (x) over Gs such that x and x′ are
connected (x ↔ x′). We start by initializing the algorithm.

1. We define the lag vector d = x′ − x.
2. We check the compatibility of the training image and the constraint of connectivity

between the two points x and x′. For this, we use the connectivity function (1) to
compute the probability of connection in the training image for a pair of points
distant from a lag d : if g(d) is below a given threshold, we consider that the
connectivity data are inconsistent with the training image and then the algorithm
stops; otherwise, the algorithm continues to the next step.

3. We calculate the cluster function C(z) on Gt . It allows all the connected
(geo)bodies existing in the training image to be defined.

4. We then scan the training image Gt to find all the grid cells zi such that C(zi) =
C(zi + d) > 0. In other words, we look for all the locations in the training image
which feature x ↔ x′. The number n of such replicates is stored, as well as the
location of all the zi values (i = 1, . . . , n).

5. If n = 0, then the algorithm stops because this means that the training image
(stochastic model) is not compatible with the constraint. The problem can be
solved by considering a larger training image or changing the stochastic model
(providing a different training image, or changing the ranges of the model).

At this point, all the preprocessing is done and we enter a loop that is applied for each
simulation.

(i) One index i is chosen randomly between 1 and n. It corresponds to the random
selection of one replicate of a connected pattern (all the replicates have the same
probability of being chosen).

(ii) The whole cluster is identified by C(z) = C(zi) and copied from Gt to Gs as
long as its location is such that zi in Gt corresponds to x in Gs (Fig. 2b).

(iii) Because Gt is generally larger than Gs , it is possible that a large cluster con-
nected in Gt is no longer connected in Gs . Therefore, we must check if x and x′
are really connected. If such is not the case, we need to start again with another
replicate.

(iv) Because the whole replicate may occupy a large portion of the simulated image
after having been copied, keeping the whole replicate in the simulation would
restrict very significantly the possible variability within Gs . Instead, we build
a path within the replicate and set all the cells along the path to 1 (Fig. 2e).
Because we consider that the connected paths go through the faces of the grid
cells, there are many paths that might go from x to x′ while remaining within the
connected geobody. To consider a maximum number of paths while minimizing
their length (to ensure the maximum of variability later on), we proceed as fol-
lows: The idea for building the path is first to define a point xm that is within the
geobody Gs and at equal distance from x and x′, and then to build the path by
starting from this midpoint and creeping in both directions toward x and x′. For
any pair of grid cells (u, v) in the geobody Gs , we compute a distance d(u, v)

defined as the minimal number of faces of grid cells to be crossed to bind u and
v while remaining within the geobody. Any path connecting x and x′ contains a
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Fig. 3 Special case for building a connecting path. The same training image and same conditioning points
(marked in red) that must be connected are used as in the example of Fig. 2. (a) Image of the simulation grid
after one replicate of a connected geobody has been translated and pasted in the simulation. (b) Distance
function from the right conditioning point. The black circles show the possible starting points for the
random walkers used for building the path: many of them are in a “dead arm” of the connected geobody

grid cell xm such that the distance from x and the distance from x′ differ of at
most 1, i.e.

∣∣d(xm,x) − d(xm,x′)
∣∣ ≤ 1. (3)

The path binding x and x′ is built by randomly selecting a pixel xm in the con-
nected geobody satisfying (3) (Figs. 2c and 2d). From this location, a walker
goes down from xm to x (resp. x′) along a slope whose altitude is the distance
to the point x (resp. x′). At each step a point having an altitude inferior to the
current location is randomly selected.

(v) All these cells (Fig. 2e) are taken as conditioning data for the simulation algo-
rithm which is applied as usual, whatever the technique and the model (Fig. 2f).

The path binding x and x′, built as described in point (iv) above, can contain
closed loops. This can occur when the random walkers from xm to x and from xm

to x′ go through the same cell. In such a situation, all the pixels upstream in the
path from the cells common to the two random walks are not retained, because
these pixels are superfluous to ensure the connectivity between x and x′. In other
words, if xc is the last common node in the two random walks going from xm,
then the nodes from xm to xc (not included) along these two paths are removed
and xc is considered as the “new middle point” of the path binding x and x′. Fig-
ure 3 shows such a case where many of the potential starting points for the random
walkers are located in a “dead arm” of the connected geobody. Note that there are
two levels of uncertainty for building the path: first, a connected pattern is chosen
from the training image randomly (point (i) above), then the choice of a path inside
the selected geobody as described in point (iv) above again ensures some variabil-
ity.

3.2 Accounting for Hard Conditioning Data

The data set may contain hard data locations (without connectivity constraints) that
must be taken into account to locally condition the simulations in addition to the
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connectivity constraints. We must ensure that the simulation will satisfy the usual
conditioning constraints as well as the connectivity constraints. Two approaches are
proposed to extend the algorithm to this situation.

The first approach, which strictly ensures the consistency between the model and
the simulation, is to scan the training image with the whole set of constraints and
to look for replicates that satisfy the connectivity conditions and the local values.
We then keep only the replicates that satisfy these criteria and proceed as described
above. The problem is that the number of replicates that satisfy all conditions reduces
very rapidly when the number of conditioning points increases. Very large training
images would be needed, and this technique is therefore not practical.

The second approach, which consists of modifying the values of the replicate (con-
nected geobody) locally where we have conditioning data, is done before selecting the
random path. Practically, we simply put all the hard conditioning data into the simu-
lation grid, after having pasted the replicate (geobody) that connects the two points:
this constitutes an additional step, between step (ii) and step (iii) in the base algorithm
described above. This ensures that the non permeable cells within the conditioning
dataset remain-non permeable. The path binding the two points naturally avoids these
cells and allows the creation of a simulation that satisfies both the connectivity and
the local conditioning. There may be cases where the conditioning data disconnect
the geobody. This needs to be tested, and the conditioning data must correspond to a
situation similar to the replicates that did connect on Gt but not on Gs .

In those cases, the replicate needs to be removed from the list, and the procedure
has to be started again with a new replicate. Since we put the hard conditioning data
independently of the choice of the pasted geobody, this second approach does not
strictly ensure the consistency between the model and the set of all conditioning data
(including the additional ones given by the algorithm). However, we have observed
that the method performs adequately, at least when the amount of hard conditioning
data is not too large.

3.3 Accounting for Multiple-Point Connectivity

In some situations, more than two points must be connected together. As for the
hard conditioning data, an approach that strictly ensures the consistency between the
model and the simulation would start by pasting a geobody from Gt into Gs that
contains all the points that must be connected. But again, the chance of finding such
geobodies, even in a large training image, rapidly decreases when the number of
connected points increases, making this technique unusable.

We propose a simple way to generalize the base algorithm for the cases where the
connectivity constraints involve more than two points. First, we consider the situation
where three points x, x′, x′′ must be connected. To honor such a constraint, we pro-
ceed as follows: we start by building a path {x = u1, u2, . . . , uN = x′} binding x and
x′, following the base algorithm (steps (i–iv)), and then we build a path that connects
x′′ to the path {x = u1, u2, . . . , uN = x′} before running the simulation algorithm.

This involves building a path that connects a point x′′ to a set of points {x =
u1, u2, . . . , uN = x′}. For this, the base algorithm needs to be adapted.
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1. We choose a cluster in Gt that features one of the connections x′′ ↔ uj , j =
1, . . . ,N , i.e a cluster that contains a point z such that C(z) = C(z + uj − x′′) for
at least one j . Then, we paste this geobody entirely in Gs such that the location of
z in Gt corresponds to the location of x′′ in Gs .

2. We put the path {u1, . . . , uN } (and the eventual hard conditioning data) into Gs ,
and, as in the base algorithm, we check if x′′ and one of the points uj is really
connected.

3. For each cell v in the connected geobody, we compute the distance d(v, x′′) de-
fined as in the base algorithm and the distance d(v, {u1, . . . , uN }) defined as the
minimal number of faces of grid cells to be crossed to bind v and one of the points
in {u1, . . . , uN } while remaining within the geobody. Then, we randomly choose
in the geobody a point xm that verifies

∣∣d(xm,x′′) − d
(
xm, {u1, . . . , uN })∣∣ ≤ 1, (4)

and then, using a random walker, we go down from xm to x′′ and from xm to one
of the points in {u1, . . . , uN } along a slope whose altitude is given by the distances
d(., x′′) and d(., {u1, . . . , uN }), respectively.

The points u2, . . . , uN−1 are not known in advance because these locations are de-
termined using a method having a random component (base algorithm, steps (i–iv)).
Then, in order to consider all the clusters in Gt that feature one of the connections
x′′ ↔ uj , j = 1, . . . ,N , we have to scan the training image for each new simulation.
To avoid repeating the scan of the training image, we consider only the clusters in
Gt that feature at least one of the connections x′′ ↔ x and x′′ ↔ x′. Then, we can
include the following computation in the preprocessing treatment preceding the loop
applied to all simulations:

1. We define the lag vectors d1 = x − x′′ and d2 = x′ − x′′.
2. We scan the training image Gt to find all the grid cells zi such that C(zi) = C(zi +

d1) > 0 or C(zi) = C(zi + d2) > 0, and we store the number l of such replicates
as well as the location of all the zi values (i = 1, . . . , l).

3. If l = 0, then the algorithm stops (for the same reasons as in the base algorithm).

A sketch of the proposed algorithm with three points x, x′, x′′ that must be connected
is presented in Fig. 4. We choose to first connect the two closest point x, x′ for the
L1 distance, and then to connect the third point x′′ to the path binding x and x′. An
alternative could be to first select the pair of points having the highest probability of
being connected according to the connectivity function.

The generalization to n-point connectivity is obvious. If x1, . . . , xn are n points
that must be connected together, we first build a path connecting x1 and x2, and then,
for i = 3, . . . , n successively, we build a path connecting xi to one point of one of the
previous paths. Then, the union of all these paths ensures the connectivity between
the n points, and constitutes additional conditioning data for the simulation algorithm.
Some computation in the preprocessing phase of the algorithm is required: to connect
the point xi , all the grid cells z in Gt such that C(z) = C(z + xj − xi) > 0 for at least
one j in {1, . . . , i − 1} are stored. For the following examples, we first connect points
that are closer to each other.
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Fig. 4 Sketch of the algorithm for connecting three points. The same training image (Fig. 2a) as in pre-
vious examples is used. The three red circles mark the points that must be connected. (a) Image of the
simulation grid (100 × 100 cells) after one replicate of a geobody connecting the two closest points has
been pasted in the simulation, and a path in green binding these two points inside this geobody built using
the base algorithm. (b) Image of the simulation grid after one replicate of a geobody connecting the third
point and one of the two others has been pasted in the simulation, the path built in (a) in yellow, and a path
in green binding the third point to the yellow path. (c) The additional conditioning points that have been
added to ensure the connectivity of the three points. (d) Final simulation. The green circles highlight the
points shown in (c)

4 Tests

By construction, the algorithm described in the previous sections will always ensure
that the connectivity constraints are honored. The randomization of both the choice
of the connected component and of the paths between the cells have been designed to
minimize the risk of creating systematic bias in the statistics of the realizations. The
main objectives of the following tests are therefore (1) to illustrate the behaviour of
the algorithm in different situations, (2) to check that the method does not create ar-
tifacts, and (3) to evaluate the computational efficiency of the method. The algorithm
proposed in this paper is implemented in the parallel multiple-point simulation code
impala (Straubhaar et al. 2011), which is used for all cases presented.

4.1 Two-Dimensional Tests

In the first test, we use the channel image (250 × 250) of Fig. 2a as a training image
and we consider a simulation grid of size 100 × 100 cells. Three levels of multigrids
are used, and the search templates have a disc shape and contain 100, 60 and 20
nodes for the coarse, intermediate and fine multigrids, respectively. We consider the
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Fig. 5 Comparative example for 2-point connectivity; multiple-point simulations with impala: (a) ac-
counting only for conditioning data, (b) accounting both for conditioning data and for connectivity con-
straints (proposed algorithm). In both cases, two realizations are shown. The red circles represent the
location of the conditioning data. The grid size is 100 × 100 cells. The training image (250 × 250) shown
in Fig. 2a is used

two conditioning data, located at the coordinates (30,30) and (70,70), with a value
of 1 (permeable cell). We generate 100 realizations for the three following situations:

(1) Conditional only to the data (without taking into account for the connectivity).
(2) Conditional both to the data and to the connectivity constraints obtained by the

rejection method: it consists simply of creating a realization conditional to the
local values and keeping it if and only if it satisfies the connectivity constraints.

(3) Conditional both to the data and to the connectivity constraints obtained by the
proposed algorithm.

Two realizations in cases 1 and 3 are shown in Fig. 5. When connectivity constraints
are not imposed (case 1), the two points can be connected (Fig. 5a left) or not (Fig. 5a
right). For the three cases, we compute the E-type and the variance map of the 100
simulations, i.e. the mean p(x, y) and the variance v(x, y) = p(x, y)(1 − p(x, y)) at
each grid cell of the 100 simulations. These maps are shown in Fig. 6.

For a second test, we add 100 conditioning data located at the coordinates (50, .),
extracted from an unconditional simulation. No connectivity constraint is considered
for these data. With identical connectivity constraints as in the previous example,
we generate 100 realization with each method. The results are presented in Fig. 7
(simulations) and Fig. 8 (E-type and variance maps). Finally, a third test is done with
three permeable cells that must be connected, located at the coordinates (30,30),
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Fig. 6 Comparative example for 2-point connectivity; multiple-point simulations with impala; E-type
(left) and variance maps (right) of 100 simulations: (a) accounting only for conditioning data, (b) obtained
by the rejection method, (c) obtained by the proposed algorithm. The black circles represent the location
of the conditioning data. The grid size is 100 × 100 cells. The training image (250 × 250) shown in Fig. 2a
is used

(70,70) and (20,60) (no other conditioning data are taken into account). Then, we
consider 3-point connectivity constraints. The results are presented in Figs. 9–10.

For these three tests, the means of the global proportion of permeable cells are
presented in Table 1. This table shows that for the three tests, the connectivity con-
straints give realizations with a few more permeable cells, and this becomes more
marked with the proposed algorithm. The slight difference for the presented method
is due to the additional conditioning data (permeable cells) that are used to en-
sure the connectivity, and the fact that we do not use a servo–system to correct
the proportions in order to match a user target (Strebelle 2002). By comparing the
E-type in Figs. 6, 8 and 10, we observe that the proposed algorithm slightly favors
certain locations for the connecting channels. The variance maps in theses figures
show that the variance is slightly smaller with the proposed algorithm than with the
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Fig. 7 Comparative example for 2-point connectivity with 100 usual hard conditioning data; multiple–
point simulations with impala: (a) accounting only for conditioning data, (b) accounting both for con-
ditioning data and for connectivity constraints (proposed algorithm). In both cases, two realizations are
shown. The two isolated red circles represent the location of the conditioning data that must be connected
and 100 usual hard conditioning data (without connectivity constraints) having same x-coordinate (middle
of x-axis) are highlighted in red. The grid size is 100 × 100 cells. The training image (250 × 250) shown
in Fig. 2a is used

rejection method in the neighborhood of the point that must be connected. How-
ever, we observe that the variance can locally be greater with the proposed algo-
rithm than with the rejection method. This counterintuitive result is explained as
follows: By adding the path, the probability of having a permeable cell can locally
increase as compared to the rejection algorithm. If such is the case and this prob-
ability p for the proposed algorithm is lower than 0.5, the variance p(1 − p) in-
creases.

For each test, the locations of the binding paths built by the proposed algorithm
are shown in Fig. 11, using the E-type of the 100 simulation grids containing all
conditioning data (initial + additional) only. This shows the variability of the paths.
In particular, the figure shows that the selected paths cover a wide area not restricted
to the rectangle delimited by the points to be connected. We also observe in this figure
that the binding path frequently ends with a horizontal line at the extremities (close
to the points that must be connected). This is due to the fact that we want to add a
minimum number of conditioning data points when building the path, see point (iv)
of the base algorithm (Sect. 3.1). However, it is important to emphasize that these
straight lines exist within the geobody picked from the training image (point (ii) of
the base algorithm).

For these three tests, the rejection method required 291, 331 and 357 realizations,
respectively, to obtain 100 of them that respect the connectivity constraints (2-point
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Fig. 8 Comparative example for 2-point connectivity with 100 usual hard conditioning data; multiple–
point simulations with impala; E-type (left) and variance maps (right) of 100 simulations: (a) accounting
only for conditioning data, (b) obtained by the rejection method, (c) obtained by the proposed algorithm.
The two isolated black circles represent the location of the conditioning data that must be connected and
100 usual hard conditioning data (without connectivity constraints) having same x-coordinate (middle of
x-axis) are highlighted in black. The grid size is 100 × 100 cells. The training image (250 × 250) shown
in Fig. 2a is used

connectivity, 2-point connectivity with additional usual conditioning data and 3-point
connectivity, respectively). The computation time necessary for one realization is
practically the same when imposing connectivity constraints with our method, indi-
cating that the overhead cost related to finding the path is negligible. Thus, for these
tests, the rejection method is slower by a factor of about 3 compared to the proposed
algorithm.

4.2 Three-Dimensional Tests

We consider the 200 × 400 × 140 training image representing thin channels shown in
Fig. 12 (value 1 for the permeable cells, and 0 for the non permeable cells). As for the
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Fig. 9 Comparative example for 3-point connectivity; multiple-point simulations with impala: (a) ac-
counting only for conditioning data, (b) accounting both for conditioning data and for connectivity con-
straints (proposed algorithm). In both cases, two realizations are shown (the red circles represent the loca-
tion of the conditioning data). The grid size is 100 × 100 cells. The training image (250 × 250) shown in
Fig. 2a is used

2D examples above, we use impala to generate 100 realizations: (1) conditional only
to the data; conditional both to the data and to the connectivity constraints, (2) by
rejection method, (3) with the proposed algorithm. We consider a simulation grid of
size 50×100×50. Three levels of multigrids are used, and spherical search templates
containing 250, 56 and 26 nodes for the coarse, intermediate and fine multigrids, re-
spectively. We test 2 and 5-point connectivity, considering the following conditioning
data with a value of 1 located at the coordinates:

• (20,10,30), (30,90,20): Figs. 13–14,
• (20,10,30), (30,90,20), (15,40,35), (25,25,25), (35,70,15): Figs. 15–16.

For both tests, the means of the global proportion of permeable cells are presented
in Table 2. In general, we can make the same observations as for the previous 2D tests.
The differences in the central region of the E-type and variance maps is more marked
here, probably because the points that must be connected are farther apart in these
3D tests. The number of realizations required by the rejection method to have 100 of
them connected were 196 and 200 for the cases, with 2 and 5 data, respectively. Note
that additional connectivity constraints do not imply that the connected realizations
are more difficult to obtain. On the contrary, additional conditioning data can facilitate
the connection.
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Fig. 10 Comparative example for 3-point connectivity; multiple-point simulations with impala; E-type
(left) and variance maps (right) of 100 simulations: (a) accounting only for conditioning data, (b) obtained
by the rejection method, (c) obtained by the proposed algorithm. The black circles represent the location
of the conditioning data. The grid size is 100 × 100 cells. The training image (250 × 250) shown in Fig. 2a
is used

Table 1 Mean over 100 simulations of the global proportion of permeable cells in percent for the 2D
examples. Header line: number of data with connectivity constraints for rejection method and proposed
algorithm, hd means hard conditioning data without connectivity constraint

2 data 2 data
+ 100 hd

3 data

Standard algorithm 30.47 31.13 30.38

Rejection method 31.33 32.10 31.43

Proposed algorithm 31.95 32.96 32.57
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Fig. 11 Location of the binding paths (additional conditioning data) built by the proposed algorithm;
E-type of 100 simulations with all conditioning data (initial + additional) only: (left) for 2-point con-
nectivity example of Figs. 5–6, (middle) for 2-point connectivity with 100 usual hard conditioning data
example of Figs. 7–8, (right) for 3-point connectivity example of Figs. 9–10

Fig. 12 3D binary training
image of size 200 × 400 × 140

Table 2 Mean over 100 simulations of the global proportion of permeable cells in percent for the 3D
examples. Header line: number of data with connectivity constraints for rejection method and proposed
algorithm

2 data 3 data 5 data

Standard algorithm 15.23 15.60 16.35

Rejection method 16.09 16.61 16.87

Proposed algorithm 17.04 17.82 20.34

5 Extensions of the Method and Outlook

Even though the method was described only for a binary variable in this paper, it
can be directly applied to categorical variables. The most important limitation for the
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Fig. 13 Comparative 3D example for 2-point connectivity; multiple-point simulations with impala:
(a) two realizations accounting only for conditioning data, (b) two realizations accounting both for con-
ditioning data and for connectivity constraints (proposed algorithm). (c) Connecting paths built by the
proposed algorithm (in red (left) for the simulation (b) left, in blue (right) for the simulation (b) right).
Two conditioning data located at coordinates (20,10,30), (30,90,20) (permeable cells) are considered
in the simulation grid of size 50 × 100 × 50. The training image (200 × 400 × 140) shown in Fig. 12 is
used. The connectivity between conditioning data is respected in simulation (a) left and not respected in
simulation (a) right
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Fig. 14 Comparative 3D example for 2-point connectivity; multiple-point simulations with impala;
E-type (left) and variance maps (right) of 100 simulations: (a) accounting only for conditioning data,
(b) obtained by the rejection method, (c) obtained by the proposed algorithm, The black points rep-
resent the location of the conditioning data. The grid size is 50 × 100 × 50 cells. The training image
(200 × 400 × 140) shown in Fig. 12 is used

moment is that the method is designed for stationary fields. If the simulation must
be carried out in a field with strong non stationarity (for example in orientations or
proportions), it needs to be extended and adapted, either by splitting the problem into
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Fig. 15 Comparative 3D example for 5-point connectivity; multiple-point simulations with impala:
(a) two realizations accounting only for conditioning data, (b) two realizations accounting both for
conditioning data and for connectivity constraints (proposed algorithm). (c) Connecting paths built by
the proposed algorithm (in red (left) for the simulation (b) left, in blue (right) for the simulation (b)
right). Five conditioning data located at coordinates (20,10,30), (30,90,20), (15,40,35), (25,25,25),
(35,70,15) (permeable cells) are considered in the simulation grid of size 50 × 100 × 50. The training
image (200×400×140) shown in Fig. 12 is used. The connectivity between conditioning data is respected
in simulation (a) left and not respected in simulation (a) right
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Fig. 16 Comparative 3D example for 5-point connectivity; multiple-point simulations with impala;
E-type (left) and variance maps (right) of 100 simulations: (a) accounting only for conditioning data,
(b) obtained by the rejection method, (c) by the proposed algorithm. The black points represent the loca-
tion of the conditioning data. The grid size is 50 × 100 × 50 cells. The training image (200 × 400 × 140)
shown in Fig. 12a is used

a series of smaller problems in which stationarity can be assumed locally and by
employing intermediate points located along the boundary of the domains in which
we assume stationarity, or by generating unconditional simulations with the same non
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stationarity, and by picking connected patterns in such a simulation instead of from
the training image.

Another possible extension of the algorithm would be to use a concept of fuzzy
connectivity. Indeed, for most real media, there is never a fully impervious phase.
That means that it may be useful to be able to define a new type of connectivity (fuzzy
connectivity) between two points by not stating that these points are within the same
clusters but by stating that there is a path between these points which is faster than be-
tween other pairs of points located at the same Euclidean distance within the domain.
The concept of fuzzy connectivity would allow the algorithm to work even when
the constraints of 2-point connectivity are not strictly compatible with the structural
model. For example, if we consider a training image representing permeable sand
lenses, we would expect this algorithm to place several lenses close to each other in
order to allow for a fast path between two points even if the points that should be
connected are at a distance much larger than the characteristic size of one single lens.
Another use of this new concept would be to extend the algorithm to the case of a con-
tinuous variable. One possible approach would be to define some typical travel time
for each value of the medium. This would allow for the calculation of the travel time
required between any two cells in the domain. We would then sample the fastest path
or the path that has a certain duration instead of sampling a path within a geobody.

6 Conclusions

The proposed method allows for the generation of stochastic simulations that honor
connectivity constraints. The connectivity is ensured by adding conditioning data
prior to running the simulation algorithm. Hence, the proposed algorithm is computa-
tionally efficient and very general because it does not depend on the actual simulation
technique. It can, for example, be applied without any modification to sequential in-
dicator simulations or truncated plurigaussian methods.

We have shown that the time required to run our algorithm is significantly shorter
than the time required to run a rejection algorithm. However, these differences are
highly dependent on the specific configuration and more precisely on the number of
points that must be connected and their probabilities of being connected. They also
depend on the model of spatial continuity adopted. If the points to be connected are
very close to each other, they may have a high probability of being connected, and the
rejection algorithm is then very efficient (most realizations will be connected). On the
contrary, if two points have a low probability of being connected, the rejection algo-
rithm is highly inefficient and cannot yield connected simulations with a reasonable
number of realizations. The connectivity function can be used to decide on the best
technique to use when 2-point connectivity is considered.

Some slight differences have been observed when comparing the results obtained
with our method and those obtained by the rejection method. First, some paths in
the simulation grid are favored for connecting the points. Using a larger training im-
age should reduce the differences. Moreover, the variance in the regions close to the
points that must be connected is smaller when using the proposed algorithm than with
the rejection method. However, it can be the opposite in other regions. Second, the
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global proportion of permeable cells (in the simulation grid) is higher when using the
proposed technique than with the rejection method. If the number of points that must
be connected increases, the proportion of permeable cells increases too (larger bias).
This is an indirect consequence of the use of a large number of conditioning data
for imposing the connected paths which induces that artifact. Hence, the proposed
algorithm should be used with care when the connectivity constraints require a large
number of points to be connected.
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