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Well testing and well hydraulics play a major role in applied hydrogeology. While well hydraulics aims at
modeling the groundwater behavior in response to a perturbation — such as pumping — in a well, well testing
aims at using these models in an inverse approach to infer the properties of the aquifer or of the well itself.
The history of well hydraulics and well testing started in 1863 with Dupuit, who developed the first analytical
solution to model radial flow to a well in steady state. In 1935, Theis published the most important analytical
solution. The Theis solution assumes that the aquifer is confined, bidimensional, homogeneous, and isotropic.
Subsequently, numerous models have been developed with the aim to enlarge the domain of applications. This
article presents a brief review of these various models and describes their behavior in terms of drawdown and
log derivative of the drawdown. The log derivative is used as a tool to help in the identification of the most

appropriate model when analyzing field data.

INTRODUCTION

Well hydraulics is the part of groundwater hydraulics
(see Chapter 149, Hydrodynamics of Groundwater, Vol-
ume 4) that deals specifically with aquifer response to
hydraulic perturbations in a well. Well tests are field tests
in which the hydraulic response is measured and analyzed.
Well hydraulics and well testing are intimately related since
they respectively solve the direct and the inverse problem.
As any inverse problem (see Chapter 156, Inverse Meth-
ods for Parameter Estimations, Volume 4), the well-test
interpretation suffers from nonuniqueness. Usually this is
solved by assuming a very simple model with a very small
number of parameters as compared to the number of field
observations. The problem is then over-determined and has
a unique solution when a model has been chosen. The dif-
ficulty is to identify the model that best represents reality.
Often, different models will show the same type of response
and they will not be distinguishable (e.g. unconfined aquifer
and double porosity aquifer). In addition, the measurements
may not be sufficient to see all the typical phases of a given
model, either because the very early phase is too rapid and
is not recorded or conversely the late phase is not recorded
because the test does not last long enough. This long intro-
ductory remark highlights the fact that despite the relatively
large number of models that are available, the practitioner

will always be confronted with the dilemma of a nonunique
interpretation.

Since groundwater is mainly extracted by wells and
well testing represents the main field method for deter-
mining the hydraulic properties of the subsurface, much
research has been conducted in this area. We can trace
the first publication on well hydraulics to Dupuit (1863),
who proposed the first series of analytical solutions to
steady-state flow to a well in idealized confined or uncon-
fined aquifers. Since then, there has been a continuous and
parallel development of analytical models and well-testing
procedures. This is reflected by the numerous books pub-
lished, both in the fields of hydrogeology (Batu, 1998;
Butler, 1998; Dawson and Istok, 1991; Hantush, 1964;
Kruseman and Ridder, 1992; Lebbe, 1999; Lee, 1999; Wal-
ton, 1996) and petroleum engineering (Bourdet, 2002; Ear-
lougher, 1977; Horne, 1995; Raghavan, 1993; Streltsova,
1988).

The aim of this article is to provide an introduction to
this field. The article is not intended to be used as a manual
or to be exhaustive. Rather, it includes some of the most
important historical findings with sufficient details to permit
the reader to apply the techniques and understand the basic
concepts and equations. Additional aspects are covered in
a cursory manner, simply to direct the reader to pertinent
sources of information. Some aspects have arbitrarily been
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left aside such as anisotropy, pulse tests, sinusoidal tests,
horizontal wells, and so on.

The article is organized in five sections. The first
section presents an overview of well-testing procedures
and interpretation methodologies. The second introduces
the basic equations of groundwater flow to a well in an
ideal confined aquifer as well as the steady-state solution
for such a case. The third considers the Theis solution for
the transient regime in the ideal confined aquifer. The fourth
reviews different nonidealities that can affect the response
of an aquifer to pumping in a well. The last briefly considers
some other types of hydraulic perturbations.

WELL TESTING

Well tests are conducted with two major objectives. One is
to determine the properties of geological formations for a
broad range of applications from groundwater exploration
to waste-disposal-site evaluation. The other objective is to
evaluate the hydraulic properties of the production well
itself in order to design the exploitation scheme (depth of
the pump, pumping rate) or to evaluate the well efficiency.

The fundamental principle of well testing is the imposi-
tion of a hydraulic perturbation in the well and monitoring
the aquifer response. Testing procedure may be classified
according to the type of perturbation, and to the type and
location of response monitoring. Note that the typology is
not mutually exclusive.

e Single well test: The perturbation and the monitoring
are conducted in the same borehole.

e Interference test: The perturbation and the monitoring
are conducted in separate boreholes.

e Pumping test: The aquifer is perturbed by pumping. It
can either be a single well test or an interference test.
Generally the pumping rate is constant, but variable-
pumping-rate tests can also be interpreted. An injection
test is similar to a pumping test, but water is injected
rather than being extracted.

e Step-drawdown test: A single well test with a series of
successive constant pumping rates.

e Buildup or recovery test: It follows a pumping test.
After the pump has been stopped, the recovery to the
initial level is observed, either in the pumping well or
in observation wells.

e Constant head test: The head is maintained constant and
the water discharge is recorded in the perturbation well.
Head changes can be recorded in observation boreholes.

e Slug test: The perturbation is a sudden modification of
the head in the well, the response is the head variation
in the well itself or in observation boreholes.

e Packer test: It can be any of the above tests, but
it is conducted in an interval of the well isolated
with the help of packers. The packers are inflatable

or mechanical and allow testing a distinct zone within
a well.

Once data — time series of pressures or heads and/or
discharge rates — have been recorded from one of the above
tests, the interpretation procedure follows fours steps.

e Data preprocessing. The data are converted into ade-
quate units, outliers and trends are removed.

e Model identification. A conceptual and mathematical
model is chosen based on the geological information
available and based on a qualitative analysis of the data.

e Parameter identification. The physical parameters of the
model are obtained by fitting the theoretical response to
the observed response. This is a typical inverse problem
(see Chapter 156, Inverse Methods for Parameter
Estimations, Volume 4).

e Quality control. The adequacy of the model must be
checked. A statistical analysis of the discrepancies
between the model and the data is conducted in order
to test the validity of the interpretation.

While standard well-test analysis used to be based on
manual type curve matching or straight-line analysis, the
methodology is now mostly computerized for all the four
above introduced steps. As a consequence, new methods
have been intensively developed in the last twenty years.
The benefits of interactive graphics and data handling
with computers are obvious. Computerized analysis has
allowed handling large data sets directly recorded in the
field with electronic pressure gauges and data acquisition
systems. Moreover, it has allowed the introduction of
the systematic use of the logarithmic derivative of the
drawdown as a tool for model identification (Bourdet et al.,
1989). Numerical Laplace inversion has broaden the range
of models that would be tedious to program otherwise
(Dougherty, 1989; Moench and Ogata, 1984). Numerical
convolution has allowed interpretation of continuously
variable pumping rate test. Automatic model fitting with
different optimization algorithms became also possible
(McElwee, 1980; Rosa and Horne, 1991), opening the way
to a more objective model fitting as well as to a statistical
analysis of the results. Finally, computerized data analysis
has also allowed the application of general purpose or
specifically developed numerical models (see Chapter 155,
Numerical Models of Groundwater Flow and Transport,
Volume 4) to interpret field data (Lavenue and de Marsily,
2001; Lebbe, 1999; Pinder and Bredehoeft, 1968), or to
forecast the impact of wells on aquifers.

With the expansion of personal computing technol-
ogy, a large number of well test analysis software has
been developed both in the groundwater and petroleum
engineering fields. Some of them are freely available
through various institutional or academic internet sites
(http://water.usgs.gov/nrp/gwsoftware/,
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http://water.usgs.gov/software/, http://www.
http://
home.olemiss.edu/~acheng/software/index.html)
or under commercial licenses http://www.scisoftware.
com/products/cat_pump_test/cat_pump_test.html.
Amongst other commercial software, and based on the
author’s experience, one of the best available software
package from the petroleum engineering field is Saphir

(http://www.kappaeng.com/Saphir/index.asp).

kgs.ukans.edu/Datasale/suprpump.html,

THE IDEAL CONFINED AQUIFER
Groundwater-Flow Equation Around a Well

Following Dupuit (1863), we consider an idealized aquifer
(Figure 1a). The aquifer is assumed to be infinite in
lateral extent, fully confined (no recharge or leakage), two
dimensional (large extension compared to its thickness),
having a homogeneous transmissivity and storativity. At
time zero, pumping starts at a constant rate in the well.
If we assume that the heads are constant in space prior to
pumping, the flow field will be radial (Figure 1b). All flow
lines will converge toward the well as straight lines. If we
consider a cylinder of radius r centered on the well, the total
water flux Q(r) [L’T~'] flowing through the cylinder is
given by multiplying the area of the cylinder by the specific
discharge calculated according to Darcy’s law. This yields
the following:

oh
o) =—2nrT— (1)
or

where T [L>T~'] is the transmissivity of the aquifer
(hydraulic conductivity multiplied by the aquifer thickness).
Since the aquifer is fully confined, and since the water
is only slightly compressible, the mass conservation of
water between two cylinders during a time interval can be
expressed as
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Figure 1 Schematic illustration of an idealized confined
aquifer (a) and radial converging flow (b)to a fully
penetrating pumping well in such aquifer

with S[—] representing the storage coefficient and ¢ the
time. Combining equations (1) and (2) yields
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Equation (3) is linear, and has been derived by assuming
for didactic reasons that the heads were constant prior to
pumping. But this is not a necessity. In general, equation (3)
will be written instead in terms of drawdown s [L], defined
as the difference between the head & as it would have been
without pumping minus the actual head % in the aquifer
during pumping (Figure 2).

s(t) = ho(t) — h(1) “)

While 4 is the solution to equation (3) with complex
boundary and initial conditions, s is another solution with
much simpler initial and boundary conditions.

It is important to note that when an aquifer is uncon-
fined, the previous equations are not rigorously valid. They
can only be applied if the saturated thickness is large
compared to the drawdown. Other equations, which are
nonlinear, were derived by Dupuit, under additional sim-
plifying assumptions but are of limited applicability. In
the following, we restrict ourselves to the case of confined
aquifers unless we specify otherwise.

The Dupuit-Thiem Solution in Steady State

Once again, following Dupuit (1863), we consider the case
in which flow to a well is in dynamic equilibrium, that is,
steady state. The pumping rate Q is constant and the head
in the aquifer varies in space but not in time. Under this
assumption, the flow Q(r) through any cylinder must be
identical to the pumping rate Q. Hence, we can directly
integrate equation (1), and making use of the definition of
the drawdown to find

s(r) =—

In(r) + A )

2nT

fo t

Figure 2 Definition of the drawdown
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A is a constant of integration. To eliminate A, Dupuit
defines rather arbitrarily a radius R at which the head kg
is not affected by the pumping. A better technique was
proposed by Thiem (1906) who considered the drawdown
difference s; — s, between two observations points located
at distance r; and r, from the pumping well. This yields

r-— 2 (r—‘> (6)
27 (s2 — 51) r

Equation (6), known as the Thiem’s formula, allows
determination of the transmissivity T of an aquifer from
a constant pumping rate field experiment. Thus, one only
has to measure the drawdown difference between two
piezometers, and make sure that the difference remains
constant and to calculate 7 with equation (6). Despite
that this equation has been derived under steady state
assumptions, we will show in Section Relation between
Jacob and Thiem solutions that it is also valid for transient
conditions for homogeneous aquifers. However, in practice,
it should be applied with great care, as the calculated
transmissivity is strongly affected by heterogeneities as we
will discuss in Section Heterogeneous aquifers.

THE THEIS SOLUTION

The Theis (1935) solution considers the same geometry
as the Dupuit—Thiem solution, but under transient-flow
regime. It is the most important analytical solution for
well hydraulics because most other transient models tend
towards it either for early or late times. Therefore, it can
often be used even if the underlying assumptions are not
fully satisfied.

Assumptions and Solution

The Theis model assumes that the aquifer is confined,
infinite, homogeneous, and isotropic; the well is fully
penetrating the aquifer, the well has a negligible radius
and is 100% efficient; the pumping rate Q is constant. The
initial condition is set to zero drawdown everywhere within
the aquifer prior to pumping.

s(r,t=0)=0 )

The boundary conditions consist of zero drawdown at
infinity and a fixed flux equal to the pumping rate at the
well.

lim s =0 ®)

r—>0o0

9
lim 271Tra—s -0 ©)

r—0 r

The solution of equation (3) subject to initial and bound-
ary conditions (7-9) yields the Theis solution

2
S
s= 2 g (25 (10)
4T 4T
E, is the exponential integral function. Written in dimen-
sionless form the Theis solution is

w=rE (D (11)
2 4tp

where sp, rp, and fp represent respectively the dimension-
less drawdown, dimensionless radius, and dimensionless
time defined as

2n T r Tt

— s = —, n = 12
SD QS D - D oy (12)

with ry being the radius of the well. Note that the
logarithmic derivative of the drawdown is as follows
(Chow, 1952):

dsp dsp 1 r]%
— 2P _ exp[—-1D 13
() Pop 2P ( 41 (13)

Equation (11) describes how the drawdown evolves in
time and space as a function of transmissivity and stora-
tivity of the aquifer and as a function of the pumping rate.
Since Bourdet et al. (1983), equation (11) together with its
logarithmic derivative, equation (13), are usually plotted in
log—log scale as a function of #p/r3. It shows that the draw-
down increases with time and decreases with radial distance
(see Figure 3a). The derivative tends toward a constant
value of 0.5 for late time. The spatio-temporal behavior of
the cone of depression shows that the shape of the cone is
created very quickly, and then the cone moves downward.

Compression Zone and Radius of Investigation

An important question in well hydraulics and well testing
is the definition of the volume of aquifer that is affected by
pumping and influences the drawdown behavior. For that
purpose, it is useful to calculate the flux of groundwater
through a cylinder centered on the well, having a radius rp.
This flux, normalized by the pumping rate, is

_q(p) _ B
=7 —eXP( 4ID) (14)

Figure 4 shows the behavior of equation (14), three zones
are distinguishable and evolve with time. At small radial
distances, the normalized flux is close to 1. This indicates
that the flux is equal to the pumping rate; the aquifer simply
transfers water to the well. At infinity, the flux is close to
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Figure 3 A synthesis of some typical drawdown behaviors in response to constant pumping rate. The drawdown (solid
line) and the log derivative (dashed line) are plotted as a function of time in double-logarithmic or semilogarithmic
scale. (a) Theis model: confined ideal aquifer. (b) Unconfined, or double porosity aquifer. ¢c) Confined aquifer with a
no-flow boundary. (d) Confined aquifer with a constant head boundary. (e) Leaky aquifer: Hantush and Jacob (1955)
model. (f) Single well test with well-bore storage and possibly skin effects. (g) Single vertical fracture having an infinite
conductivity. (h) General Radial-Flow model with n < 2. (i) General Radial-Flow model with n > 2. (j) Single well test with
well-bore storage, infinite acting radial flow and constant head boundary (Reproduced from Gringarten et al. (1974), by

permission of American Geophysical Union)

zero. There, the aquifer is not yet active. At intermediate
distances, the fluxes vary from O to 1; water is mobilized
from the compaction of aquifer and elastic expansion of the
water itself. This is the so called compression zone, which
propagates with time.

The radius of investigation of a pumping test is a con-
cept introduced by Dupuit. It was defined as the radius
beyond which the drawdown is zero. For the Theis solution,
which never predicts drawdown to be strictly zero, there
are several possible and arbitrary definitions depending on

what is considered as being a negligible drawdown. An ele-
gant possibility is to define the radius of investigation as
the radius such that the rate of increase in drawdown with
time is maximal (Van Poolen, 1964). Using this definition
and calculating the distance at which the second temporal
derivative of the drawdown is zero, one finds the simple

result:
) ) [Tt
rp=2tp or r'=2 < (15)
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Figure 4 Normalized groundwater flux as a function of
radial distance from the well and time

Most alternative definitions of the radius of investigation
yield similar equations, being functions of the square root
of dimensionless time, but with scaling factors varying from
1.5 to 4.3. All these definitions illustrate the arbitrariness
of the concept, but interestingly they all locate the radius
of investigation within the compression zone.

More recently, the question of the extension of the inves-
tigation domain during a pumping test has been formulated
in the framework of spatial filtering functions and hetero-
geneous transmissivity fields (Beckie, 2001; Oliver, 1993).
These authors found that the investigation area is more or
less an ellipse that encloses the pumping and the observa-
tion wells, but the influence of the heterogeneities within
this ellipse is not spatially uniform.

Approximation of the Exponential Integral
Function

Applying equations (10) or (11) for well-test interpretation
or to design exploitation schemes requires the use of
the exponential integral function. It is generally directly
available in most mathematical software but, if necessary,
it can be calculated with a polynomial and rationale
approximations (Abramowitz and Stegun, 1970). For small
x, the approximation is

0<x<1

Ei(x) = —y —In(x) + a1x + arx?
+azxd +axt +asx’ +¢

le| < 21077

(16)

with y being the Euler constant and

y = 0.57721566 a; = —0.24991055 a4 = —0.00976004
a; = 0.99999193 a3 = 0.05519968  as= 0.00107857

a7
For large x, the approximation is
l<x<x
1 x* + a1x3 + azxz +azx +ay
E = —x -
1(x) xe <x4 + by x° + byx? + b3x + by te a®
le] < 21078
with
a; = 8.5733287401  a, = 18.0590169730
a3 = 8.6347608925 a4 = 0.2677737343 (19)

by = 9.5733223454
b3 = 21.0996530827

by, =25.6329561486
by = 3.9584969228

Asymptotic Behavior: the Jacob Solution

Equation (16) shows that the exponential integral E;(x)
tends toward —y —In(x) when x tends toward 0. In
practice, when the dimensionless number #,/rj is greater
than 10, the Theis solution can be approximated by a
simple logarithmic function. This is the so-called Jacob’s
approximation of the Theis solution (Cooper and Jacob,

1946).
2300 Io (2.25tT>
& r2s
(20)

K
An T

1 1 4tp
~—|In|—=]— or
Sp ) r]% Y
Note that when equation (20) is valid, the logarithmic
derivative of the drawdown becomes constant.
d9sp dsp 1 as 0
0

o) et 2D

= l‘D— =
3 In(ip) oy 2

This relation is used to analyze data sets. One calculates
the logarithmic derivative of the measured drawdown and
plots it as function of time. When the derivative becomes
constant, it indicates that the drawdown has reached a
logarithmic asymptote. In petroleum engineering literature,
the interval of the data set that shows a constant derivative is
identified as the Infinite Acting Radial Flow (IARF). During
this period of time, one can use safely the logarithmic
approximation (18) to interpret the data. If the derivative
does not remain constant, the logarithmic approximation
cannot be used.

Relation Between Jacob and Thiem Solutions

When Jacob’s approximation is valid in two observation
boreholes located at distances r; and r, from the pumping
well, we can use equation (20) to calculate the drawdown
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difference between the two piezometers. The result is a

constant value
0 ri
S —8§1=——1In| —
2nT ra

which is identical to what Thiem predicted using the steady-
state assumption (equation 6).

(22)

Interpretation of a Pumping Test with the Theis
Solution

The original method was based on the graphical superpo-
sition of the Theis type curve with the observed data on
two log—log sheets of paper. Nowadays, many software
will contain algorithms that apply the Theis method, but
we believe that, here, it is useful to illustrate how the inter-
pretation procedure can easily be implemented with any
spreadsheet, graphical, or mathematical software. As a pre-
liminary remark, note that equation (20) can be written as

t
s = alog (-) (23)
Ty
with
2.30
o= 2300 (24)
47T
2
reS
fo = 25
07 2057 (25)

a has the dimension of length [L], ;) has the dimension of
time [T]. A plot of the measured drawdown s as function
of the log of time will show a straight line with a slope a
for late time. fy will be the value of ¢ for which s = 0. We

-‘ @ Drawdown

€ 3H- Derivative
£ = E
2 25f =
2 . i .
5 2 f,j{ ®
©
©
S 15"
C -
g 1t
S + Y
% | £osariz®+ o
5 0.5} = -.':i
* 8
0—= i
102 l 103 10% Timein s
to=38.5102 One log cycle

(a)

can therefore very easily read the values of a and 7y from
the graph (Figure 5a). A simple interpretation procedure
is then:

1. Plot the drawdown measured in the field and its
logarithmic derivative as a function of time on the same
semilog scale graph.

2. [Estimate roughly on the graph the slope a of the
straight line, or read the value of the derivative when
it stabilizes, it is a/2.3. In the example shown in
Figure 5(a), we find a slope of about 1.75m.

3. Read the time # by extrapolating the straight line to the
intercept with the horizontal axis, that is, where s = 0.
In the example, we find 7y = 3.5 107s.

4. Calculate with the spreadsheet or mathematical soft-
ware the theoretical drawdown and derivative using the
values of a and ¢,.

a (0.5625:0)
s=—FE | ——
3 t

2.
as a ( 0.5625t0)
=—exp|—

dln(r) 2.3 t
If the exponential integral is not directly available
you can use equations (16) and (18). Superpose the
theoretical drawdown and derivative on the graph
previously done.

5. Improve the fit iteratively by modifying the values of
a and ty and by visual inspection on your graph or by
using a nonlinear least-square algorithm. It is possible
to switch (by using the graphical options of the plotting
software) from a semilog to a log—log plot if one wants
to represent the final plot in log—log scale but this is
not required. In our example, the final fit is shown in
Figure 5(b).

(26)
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Figure 5 Example of an interpretation of a data set with Theis method. (a) semilog plot of the drawdown and log
derivative of a data set, identification of the constant a and t,. (b) Superposition of the data with the model after

automatic fitting
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6. Should the fit be acceptable (both drawdown and
derivative), the transmissivity 7" and the storativity S
of the aquifer can be estimated with:

T = 2.300 = 0.183g (28)
dra a
g _ 2.252Tt0 (29)
r
NONIDEALITIES

Heterogeneous Aquifers

What is the validity of the assumption of homogeneity?
What is the meaning of the transmissivity obtained from a
pumping test interpreted with Theis or Jacob solutions when
the aquifer is heterogeneous? Meier et al. (1998) conducted
a numerical study to investigate these questions. They sim-
ulated numerically the flow to a well in a series of heteroge-
neous aquifers. They considered that the transmissivity field
is heterogeneous (Figure 6a) while the storativity is kept
constant. They imposed a constant rate in the well and cal-
culated the drawdowns in several piezometers (Figure 6b)
using a finite element code. The numerical experiment is
repeated for different types of transmissivity fields.

The main conclusion from this study is that the
apparent transmissivity, estimated from the slope of the
Jacob’s straight line, of the transmissivity fields that they

(a)

investigated is almost identical in all observation wells
even if the heterogeneity in transmissivity is important.
In these cases, the apparent transmissivity is very close
to the uniform-flow effective transmissivity of the hetero-
geneous media (see Chapter 154, Stochastic Modeling of
Flow and Transport in Porous and Fractured Media,
Volume 4). However, the straight lines are shifted from
one observation well to the next (Figure 6b), and there-
fore the estimated storativities vary within several orders
of magnitude. The apparent heterogeneity in storativity is
only a consequence of the heterogeneity in transmissivity.
When interpreting a well test, such apparent heterogene-
ity in estimated storativity may be used as an indicator of
the degree of heterogeneity of the transmissivity field. Fur-
thermore, when many observation wells are available the
geometric mean of the estimated storativity can be used
as an estimator of the real storativity (Sanchez-Vila et al.,
1999). A consequence of the shift of the straight lines
between observation wells due to heterogeneity, is that the
Thiem method that only accounts for drawdown difference
between two points will be strongly biased depending on
the location of the points. This effect is illustrated by a
laboratory experiment in a sand tank filled with a spatially
variable pattern of different sands (Silliman and Caswell,
1998). They show that the application of the Thiem for-
mula provides estimates of hydraulic conductivities that are
extremely variable and that can be significantly lower (even
negative) or higher than the local hydraulic conductivities.
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Figure 6 Effect of heterogeneity. (a) Example of a simulated map of transmissivity for a multilognormal field. The
W indicates the location of the pumping well. The triangles and the squares indicate the location of two series of
observation wells. (b) Calculated drawdown in all the observation points. The line labeled HOMOG represents the
calculated drawdown for the equivalent homogeneous medium (Reproduced from Meier et al., 1998 by permission of

American Geophysical Union)
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In steady state, an interesting result is provided by Dagan
(1982), who shows that the expected value of the hydraulic
head in a heterogeneous aquifer follows the usual Dupuit
solution (equation 5). Dagan also provides approximations
for the variance of the head and shows how it is influenced
by the heterogeneity of transmissivity and pumping rate.

Partially Penetrating Wells

When the well does not fully penetrate the aquifer
(Figure 7a), the flow field around the well has a vertical
component. Hantush (1961) showed that in such a case the
drawdown tends toward the classical Theis solution when

e the piezometer is located at a distance which is larger
than one and a half times the thickness of the aquifer;

e or the observation well is screened over the complete
thickness of the aquifer.

When the piezometer is close to the pumping well, the
drawdown is affected by the partial penetration depending
on the respective location of the well screen and the
piezometer (Figure 7b). The late time asymptote is a Jacob
straight line whose slope is the same as for a fully
penetrating well. A common mistake is to use the screened
interval thickness to obtain the hydraulic conductivity,
while the real thickness of the aquifer should be used (if it
is known).

Bounded Aquifers

When the aquifer is not infinite, the drawdown is affected
by the presence of boundaries. There are two typical cases:

the presence of a river recharging the aquifer (constant head
boundary) and the presence of an impervious geological
boundary (no flow boundary).

If we assume that all the other assumptions from Theis
are still valid, then the solution to these two problems is
obtained by the application of the superposition principle
and the theory of images. The concept is that the boundary
is mathematically equivalent to the presence of an imagi-
nary well located on the opposite side of the boundary. For
the case of a no flow boundary, the image well is a pump-
ing well, while for the case of a constant head boundary,
the image well is an injection well (Figure 8).

Using this theory, the solution for both cases is

0 r’s 0 s
S= <tT ) Pt B <tT> 0
with r; being the distance between the observation well
and the imaginary well, 8 = 1 for a no-flow boundary and
B = —1 for a constant head boundary.

For the case of a no-flow boundary, the behavior of the
drawdown is illustrated in Figure 3(c). It is characterized by
a doubling of the late time slope. Two segments of straight
line in semilog scale can be seen. The first one corresponds
to the Jacob approximation before the drawdown is affected
by the boundary. The second straight line corresponds to
the superposition of the pumping well and the boundary.
Figure 3(d) illustrates the constant head boundary case. The
drawdown stabilizes because of recharge from a river; the
derivative decreases continuously and follows a straight line
on a log—log plot.
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Figure 7 Schematic section through a confined aquifer partially penetrated by a pumping well. (b) Type curves of
Hantush’s solution for partial penetration in semilog scale for the geometrical configuration illustrated in the figure
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Figure 8 Schematical representation of a confined

aquifer bounded by a constant head boundary

Equation (30) implicitly assumes that the constant head
is imposed throughout the whole thickness of the aquifer
(Figure 8). A recent model considers a more realistic setup
that accounts for the geometry of the riverbed (width
compared to aquifer thickness) and an imperfect hydraulic
connection between the river and the aquifer (Butler
et al., 2001). This model allows propagation of drawdown
beneath a partially penetrating stream. The type curves of
predicted drawdown range from the fully penetrating stream
case (equation 30) to the Theis solution (equation 11)
as a function of aquifer geometry and stream leakance:
streambed hydraulic conductance multiplied by the square
of the streamed width divided by the transmissivity of the
aquifer below the stream.

Equation (30) can be extended for multiple boundaries.
When the boundaries fully penetrate the aquifer, analytical
solutions are obtained by the application of image theory.
The analytical solution is then the sum of a series of
drawdowns resulting from pumping and injection wells
located according to the geometry of the boundaries. If
one of these boundaries is a constant head boundary, the
drawdown stabilizes to a constant value and a steady state
is reached for late times. Closed expressions for these
asymptotic values are useful, for example for the design
of pumping schemes. For a single constant head boundary,
the late time asymptote is

=2 1, (2—L> 31)
2nT ro

with L being the distance between the well and the
boundary and r¢ the radius of the well.

In the case of the closed rectangular system shown on
Figure 9, the late time asymptote is obtained with the

L/
L/
L.V
o
b /
4
L

X

Figure 9 Geometry of a simplified rectangular system
with a pumping well, three no flow boundaries and one
constant head boundary

Perrochet approximation

2w Le=b
(0] e L L, L, 1 3L, L,
s = In — |, — > = >b>—
2xT 27 ry L, 2 4 4
(32)
with relative errors less than 1%.
When b = 0, the asymptote becomes
iy o
Ly L,
s= Ll b (33)
nT 2T 1y

Variable Pumping Rate

As a starting point, suppose that the pumping rate is
constant with a value Q; for 0 <t < t; and then the
pumping rate is suddenly increased to a value (O, at the
time ¢ = t;. Assuming that all the other Theis assumptions
are valid, the drawdown during the first phase of the test
can be expressed with the Theis solution:

0, r’s
s=—FE |—)tr<ng (34)
4 T 4Tt

Because of the linearity of the groundwater flow equation
for a confined aquifer, we can apply the principle of
superposition in time and the drawdown in the second phase
is simply the sum of the drawdown due to pumping Q; from
t = 0 and the drawdown due to the pumping rate difference

0, — Q) starting at r = 1.
r2s
E r>n
4T (t — 11)

_ 9 r’s 01— 0>
s = mE1 (m) +
(35)

dn T




HYDRAULICS OF WELLS AND WELL TESTING 11

We can generalize this idea to a continuously varying
pumping rate Q(r):

0(0) r’s
s=—"F [—
47 T 4Tt

1 "90

4]TT 0 8t

r’s
. El (m) dt (36)

Leakage Through the Confining Layer

Often aquifers are not fully confined, and receive a signifi-
cant inflow from adjacent beds. Hantush and Jacob (1955)
developed the first analytical solution for this situation.
Their model considers a confined aquifer overlain by an
aquitard and another aquifer (Figure 10). They assume that
the pumped aquifer is recharged from the unpumped aquifer
through the aquitard. The pumped aquifer is an ideal homo-
geneous isotropic and infinite two-dimensional aquifer. The
flow is assumed to be vertical in the aquitard, there is no
storage in the aquitard, the head remains constant in the
unpumped aquifer, and the flow remains horizontal in the
aquifer. The analytical solution to this problem contains a
new dimensionless number related to the aquitard property:

(37

with ¢’ the thickness of the aquitard and &’ its hydraulic
conductivity. Figure 3(e) shows the typical behavior of
the drawdown calculated with the Hantush and Jacob
model. After following the Theis solution at early time,
the drawdown stabilizes and the derivative drops very fast.
If the aquitard is impermeable or very thick or if the
observation point is very close to the pumping well, that
is, r/ B is small, then the solution reaches a plateau at very
late time. Conversely, if the aquitard is highly permeable

Z

Source bed v
(unpumped)

" Aquitard -

Pumped aquifer

AV P

Figure 10 Schematic of Hantush—-Jacob model

or very thin, or if the observation well is located at a great
distance from the pumping well, that is, r/B is large, then
the drawdown rapidly stabilizes to a constant value:

;

=Ko (%) (38)
with Ky the modified Bessel function of the second kind
and of the zeroth order.

Later on, improved solutions accounting for storage in
the aquitard, complex multilayer systems were developed
(Hantush, 1960; Neuman and Witherspoon, 1972). These
solutions provide the basic theory allowing indirect testing
of low permeability formations.

Unconfined Aquifer

Unconfined aquifers are commonly encountered in well-test
analysis. However, radial flow to a well in such an aquifer
is a complex physical and mathematical problem. The water
table will decline during pumping and therefore the domain
for which the equations have to be solved is not con-
stant. Furthermore, the saturated zone is in direct hydraulic
relation with the unsaturated zone (Figure 11) and finally,
even if the aquifer is horizontal, there is a vertical com-
ponent of the flow in the vicinity of the pumping well. A
complete analytical solution for the saturated—unsaturated
system was derived by Kroszynski and Dagan (1975). The
main conclusion of their work is that, even if it is more
exact to make a complete saturated—unsaturated analysis,
the difference in the position of the calculated water table
is small if we compare the prediction made by the complete
model with the prediction made by a model that does not
take into account the unsaturated zone.

The approach most often used is based on the concept of
a delayed water-table response. It was initiated by Boulton
(1954) and developed by Neuman (1972, 1974). The typical
behavior of the drawdown is shown in Figure 3(b). There
are three typical stages. In the early time, the drawdown
follows a Theis type curve corresponding to the release
of water from elastic storage. Then, there is a transition
with a flattening of the curve and a hole in the derivative.

(“o

Unsaturated zone

Saturated zone
1 1 [

& 4

Figure 11 Radial flow to a well in an unconfined aquifer
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For late time, the drawdown follows a second Theis curve
corresponding to the release of water from the drainage of
the unsaturated zone. The derivative becomes a constant.
One of the latest model developed for unconfined aquifers
is an extension of the Boulton and Neuman models for
a large diameter well and partially penetrating the aquifer
(Moench, 1997, 1998).

Well-bore Storage Effect

When the radius of the pumping well is large it contains
a significant amount of fluid (Figure 12a). During early
times, the aquifer’s contribution to the total discharge is
small (Figure 12b). Most of the water is pumped from the
well itself. Later, the aquifer’s contribution becomes dom-
inant. Papadopulos and Cooper (1967) developed a model
of this situation. Their model is identical to the Theis model
for the governing equation, initial condition, and boundary
condition at infinity. The difference is the boundary con-
dition at the well that account for finite well radius and
water storage in the well. This additional concept requires
the definition of an additional dimensionless parameter, the
well-bore storage coefficient:

}’2

Cp = —= 39
P o2s (39)

with r. being the radius of the casing and ryw the radius of
the well screen. Figure 3(f) shows a typical behavior of the
drawdown in the pumping well. The main characteristic of
this type curve is that for early times, the asymptote is a
straight line with unit slope in the log—log plot:

Sy = %z (40)

Tr,

The logarithmic derivative follows the same straight line
of unit slope. During this period, when the drawdown and
derivative follow the same line, the well-bore storage effect

S

Figure 12 Schematic of the well-bore storage effect

is dominant. This is followed by a transition where the
derivative departs from the straight line and makes a hump.
For late times, the derivative stabilizes and the behavior is
dominated by the aquifer contribution. The drawdown tends
toward the Jacob’s solution. Note that later on, boundary
effects can affect the solution. For example Figure 3(j)
shows the same type of behavior with an additional constant
head boundary that stabilizes the drawdown for the late time
and shows a drop of the derivative.

Skin Effect

The drawdown in the pumping well can be strongly
affected by the skin effect, that is, the existence of a
zone of lower hydraulic conductivity than the aquifer in
the immediate vicinity of the well (Figure 13). This zone
of low hydraulic conductivity may be due to poor well
development, deposition of particles or development of
bacterial films. Also, increased hydraulic conductivity in the
immediate vicinity of the well is possible and is accounted
for in the theory but have less impact on the drawdowns in
the well.

The concept of skin effect was introduced by van
Everdingen (1953). Later, Agarwal et al. (1970) developed
a solution including both well-bore storage and skin effect.
To quantify the skin effect and assuming steady state, it is
simple to show that the additional drawdown sp in the well
due to a cylinder of radius r; and having a transmissivity
T; is

Sp = ——=0 41)
with o being the skin factor:

. T—TS 7'_Y
o —< T >ln (rw) 42)

Note that o is positive if the well is clogged (7 <
T) and negative for the opposite case. The early time

pe— —h-O:q1+q2

Q i
W
1

g1

(b)
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Figure 13 Finite thickness skin model

behavior of the solution of Agarwal et al. is identical to
the Papadopulos—Cooper solution (1967). The late time
asymptote is a straight line (on semilog plot) parallel to
Jacob’s straight line but shifted by o.

sp = 3[n@dm) —yl+o (43)

As with the Theis model, the late time data allows
unique identification of the transmissivity of the aquifer
from the slope of the straight line, or from the value of the
logarithmic derivative. However, the position of the line is
both a function of storativity and of the skin effect. It is
therefore impossible to determine both the storativity and
the skin effect with a single well test.

An other important feature of the Agarwal solution is
that the shape of the type curves are identical for all
type curves having the same value of the product Cpe*®

Sk

s=AQ+ BQ?

Quadratic
head losses

(a)

Figure 14

when o > 0, and Cpe?® > 10°. Furthermore the shape of
these type curves (see Figure 3f) is identical to the original
Papadopulos—Cooper type curves only accounting for well-
bore storage effects. In practice, this means that the effect
of well-bore storage and skin effect are not distinguishable.

Quadratic Head Losses

In the model of Agarwal et al. the drawdown in the pumped
well increases linearly with Q. However, based on field
observations, Jacob (1947) indicates that the drawdown in
a pumping well generally increases as a function of the
square of the flow rate (Figure 14a).

s =AQ + BQ? (44)

This additional head loss can strongly affect the draw-
down in the borehole and therefore its efficiency. The
additional drawdown is attributed to inertial or turbulent
flow occurring in the zone just outside the well, through the
well screen and in the casing (Rorabaugh, 1953). This addi-
tional drawdown is commonly referred to as the quadratic
head losses or the nonlinear head losses in the well. The
nonlinear head-loss coefficient B allows quantifying the
importance of this effect. In petroleum engineering, this
phenomenon is mainly described for gas well testing and
is modeled with a rate dependent skin effect. In practice,
to evaluate the importance of these head losses, a step-
drawdown test is conducted. At first, the well is pumped at
a given flow rate for a given amount of time (Figure 14b);
subsequently the flow rate is modified and applied for
another given duration; then again the flow rate is changed
and and so on. Usually the minimum number of steps is
three, allowing to identify the nonlinear head-loss coef-
ficient and to check the adequacy of equation (44). The
interpretation of such step-drawdown tests relies on the late
time asymptote and on the superposition principle (Eden
and Hazel, 1973; Hantush, 1964). Some attempts have been
made to include the inertial term in a transient solution

~Y

~Y

(a) Drawdown in the well as a function of the discharge rate. (b) A step-drawdown test
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(Chachadi and Mishra, 1992), but the analytical approach is
not yet fully convincing as it does not respect the continuity
of heads throughout the well screen. The most promising
approach used to date is numerical. It includes the iner-
tial term within the aquifer and has been applied to a deep
fractured aquifer (Kohl et al., 1997).

The Double Porosity Model

In 1960, Barenblatt and his coworkers introduced a revolu-
tionary concept:

“Unlike in classical fluid flow theory, for each point in space,
not one hydraulic head but two, & and A’, are introduced.
The head h represents the average head in the fractures in
the neighborhood of the given point, whereas [...] &’ is
the average head in the matrix in the neighborhood of the
given point” (Barenblatt et al., 1960). This concept forms the
foundation of the double porosity approach. In their article,
Barenblatt ef al. assumed that the storativity of the fractures
was negligible. Warren and Root (1963) introduced a storativity
for the fractures and developed a model, which is still used
today.

The formulation of the double porosity models (see
Figure 15) is based on two coupled standard groundwa-
ter flow equations (one for the fracture, one for the matrix)
with an exchange term. The hydraulic conductivity and the
specific storage coefficient are defined separately for each
media. To simplify the system of equations, Warren and
Root assume that the water moves from matrix blocks to
fractures, but not from matrix block to matrix block. It is
furthermore assumed that the flow rate between the matrix
and the fractures is proportional to the hydraulic conductiv-
ity of the matrix, to the hydraulic head differences between
the two systems, and to a geometrical factor depending
on the size and the shape of the matrix blocks. This is
the so-called pseudosteady state assumption of Warren and
Root.

A typical drawdown curve is shown in Figure 3(b). It
has a sigmoidal shape. During early time, the water is
pumped from storage in the fractured system, the matrix
does not affect the flow. In the intermediate times, water is

Matrix

(@)

Figure 15

released from the matrix while the drawdown in the matrix
is small compared to drawdown in the fractures. During
the late time, the drawdown in the matrix approaches the
drawdown in the fractures and the aquifer behaves like
a single porosity aquifer with the combined property of
the matrix and the fractures. The log derivative shows a
typical depression before it stabilizes to the constant value
indicating that the drawdown reached the late time Jacob’s
straight line.

More recently, the model of Warren and Root has been
extended to account for well-bore storage and skin effect
(Bourdet and Gringarten, 1980). Another modification of
the model is to account for transient flow within the matrix
to the fractures (Boulton and Streltsova, 1977). In this
model, the head distribution is solved within the blocks
and therefore it is necessary to assume a given shape for
the blocks. Boulton and Streltsova consider a representation
of the fractured medium as alternating layers of matrix
rocks and fractures. Once again, the resulting type curves
show the typical sigmoidal shape and depression in the
logarithmic derivative.

General Radial-Flow Model

The General Radial-Flow (GRF) model (Barker, 1988)
is a generalization of radial-flow equations to any flow
dimension »n that includes the specific cases of linear flow
(n = 1), usual cylindrical flow (n = 2), and spherical flow
(n = 3), it extends as well to noninteger-flow dimensions
for intermediate cases (see Figure 16). The beauty of this
model is that it provides a unique solution for a large range
of possible behaviors with only one additional parameter
(the flow dimension n). In subsequent publications, the
GRF model was extended to include well-bore storage,
skin effects, and double porosity (Hamm and Bideaux,
1996). The solution of the standard GRF model (without
skin, well-bore storage and double porosity) with a constant
pumping rate in an infinite medium is

2—n
15
sp= -2 T (f—l,%) (45)
r (—) 2 4rp,

—all— Fracture

A fractured block illustrating the double porosity concept (Adapted from Cinco-Ley, 1996)
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Figure 16 Concept of radial flow in 1, 2, 3, and

generalization to n dimensions

with n being the flow dimension, I" (x) the gamma function,
and I'(a, x) the incomplete gamma function. Figure 3(h)
and Figure 3(i) show two examples of drawdown for n < 2
and n > 2 respectively. A typical characteristic of the GRF
model is that the log derivative of the drawdown follows
a straight line with a slope of 1 — n/2 in the diagnostic
plot. When n = 2, the GRF model converges toward the
Theis solution, and the log derivative becomes constant for
late time (O slope). Barker suggests that the fractional-flow
dimension may be related to the observed fractal properties
of fracture networks. However, the diffusivity of the GRF
model remains equal to k/S; even when the flow dimension
is fractional. An alternative analytical model based on a
fractal network of fractures has been proposed by Chang
and Yortsos (1990). Both models have been compared
with numerical simulations in fracture networks. Acuna and
Yortsos (1995) show that the model of Chang and Yortsos
agrees with drawdowns simulated on artificially generated
fractal networks (e.g., Sierpinski carpets). More recently,
Jourde et al. (2002) show that fractional-flow dimension
may even appear on a Euclidian network by using a
network of pipes simulating a network of pseudorandom
orthogonal fractures.

Individual Fractures

A more specific situation is the case of an individual
fracture intersected by the well and acting as a drain in a
larger porous aquifer. Several models have been developed
for this type of configuration (Gringarten, 1982). The case
of the drawdown in a well intersecting a vertical fracture
of infinite conductivity and finite length is illustrated in
Figure 3(g) (Gringarten et al., 1974). A 0.5 slope for the
drawdown and the derivative characterizes this solution at
early time on a log—log plot.

OTHER HYDRAULIC PERTURBATIONS
Recovery Test

Head recovery after a pumping test can be modeled using
the superposition principle. When the aquifer is confined,
from a mathematical point of view, the end of pumping
is equivalent to continuing pumping and simultaneously
injecting the same amount. This implies that the drawdown
can be calculated by adding drawdown due to pumping
plus drawdown due to a simultaneous injection at the same
location. In the case of the Theis assumptions, the solution
for the recovery is therefore

g r g (o (46)
Sp = — — |- = —
Py 4+ ] 27 4

where fg is the dimensionless time since the recovery
started and #p is the dimensionless production time. Equa-
tion (46) is exact and can be used to analyze a data set
and to estimate both 7 and S. An asymptotic solution is
however often used. When both exponential integrals, in
equation (46), can be approximated by a logarithmic func-
tion, one finds the late time asymptote:

1 IR+ 1tp 2.300 L+t
sp = —In s = log
2 IR An T 1
47)

with 7, being the time since the beginning of the recovery
and 7, the production time. This approximation allows
rapid interpretation of late time recovery by constructing
a semilog plot of the drawdown versus the log of the
ratio (# +t,)/t,, denoted as the Horner time in the oil
industry. Although, the slope is then proportional to the
transmissivity, the storativity cannot be estimated. Another
alternative to interpret recovery data has been proposed
by Agarwal (1980). He found that if the recovery time is
replaced by a corrected time #,:

I,
fg = —— (48)
th+ 1

The interpretation is thus greatly facilitated. One can
apply the standard interpretation models above described
for constant rate pumping tests, including the log derivative
for model identification. Note, however, that the approach
is not valid for bounded aquifers.

Constant Head Test

In some situations, the artificial perturbation imposed in
the well is not a constant discharge or recharge rate but
a constant head. Under these circumstances, the aquifer
responds by a groundwater discharge at a variable rate
into the well, and a variation of head within the aquifer.
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Both perturbations can be modeled. Considering an ideal
confined aquifer, the standard analytical solution for the
discharging rate in the well is the solution of Jacob and
Lohman (1952). Mishra and Guyonnet (1992) indicate
that using the drawdown normalized by the discharge rate
allows field data to be interpreted with the usual Theis
model. The discharge rate in the well can be evaluated with
excellent accuracy using the Perrochet approximation:

__ 1 _ 1
C 27Tsy  In(l + «/7ip)

gp (49)

with sy being the imposed drawdown at the well and
with relative error less than 1% over the range 10~* <
p < 10'2,

Additional solutions for the constant head case account-
ing for boundaries and transient effects are available in
Murdoch and Franco (1994).

Constant head situations are naturally encountered in
artesian aquifers. Constant head tests offer a useful alter-
native to pumping tests since they minimize the effect of
well-bore storage and therefore reduce the required duration
of a test. Another advantage is that constant head tests can
be carried out when the maximum admissible drawdown
may be limited. This can be the case when the hydraulic
conductivity is small.

Slug Test

The slug test method (Hvorslev, 1951) was developed
to rapidly estimate aquifer transmissivity. The principle
involves instantaneously perturbing the water level in a well
by an injection or an extraction of a known volume of water
(Figure 17). After the perturbation, the water levels are
recorded in the well or in a piezometer until they stabilize.

Depending on the geometry and type of aquifer, several
analytical solutions can be used for slug-test data interpreta-
tion. Practical recommendations concerning the design and
the performance of slug tests as well as a compendium of
available analytical solutions is available in Butler (1998).
Recent contributions include a detailed analysis of inertial
effects, given the rapid and often oscillatory behavior of
the head in the borehole itself (McElwee and Zenner, 1998;

Figure 17 Slug-test procedure

Zurbuchen et al., 2002). From a general point of view, slug
tests are very interesting because they take much less time
to carry out than pumping tests or constant head tests and
require less equipment. Consequently, they are cheaper to
conduct. One can therefore perform a large number of slug
tests in an aquifer in order to characterize the spatial distri-
bution of hydraulic conductivities (see e.g. Mas-Pla et al.,
1997). Slug tests also allow testing low permeability for-
mations that may not be tested within a reasonable period
of time using pumping test techniques. The main disad-
vantage of slug tests is that the radius of investigation is
much smaller than for a pumping test. As a consequence,
they are much more strongly influenced by skin effects or
local heterogeneities around the well (Butler and Healey,
1998). Another drawback of this technique is that it is dif-
ficult to estimate the storativity coefficient with sufficient
certainty.
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