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Valencia, Spain
3University of California, Lawrence Livermore National Laboratory, Livermore CA, US

The characterization of porous or fractured media is a site, scale, and project-specific process aiming at a
quantitative description of the geometry and properties of the geological structures controlling groundwater flow
and solute transport. The characterization process involves four main steps (i) the definition of the domain and
the goals of the characterization; (ii) the collection and analysis of field observations allowing the construction
of a geometrical model; (iii) the collection and analysis of field measurements allowing to construct a property
model; and (iv) the collection and analysis of field data relative to the state of the system and their integration
within the geometrical and property models (inverse problem). When data are sufficient and structures are
relatively well known, deterministic techniques of interpolation can be successfully applied to construct the
geometric or the parameter models. However, because of the lack of sufficient data, stochastic models are often
employed to characterize the heterogeneity that usually exists; such models also facilitate the quantification of
the uncertainty in model predictions. Without describing the details of every technique, this article provides an
overview of the tools most often used for the characterization of porous or fractured aquifers.

INTRODUCTION

Aquifer characterization can be defined as the process
of data acquisition, analysis, and integration leading to
a description of aquifer geometry and properties. This
process may be relatively straightforward and limited to
mapping the extent of an aquifer, its thickness, and esti-
mating average properties such as transmissivity and stora-
tivity. It may as well be a much more complex task,
integrating data obtained from various field investiga-
tions and involving intensive numerical modeling. The
level of complexity of the characterization process is
related to the goals of the study, the geological con-
ditions, and the level of confidence required by the
stakeholders. For example, evaluating the safety of a
deep underground nuclear waste repository requires higher
characterization efforts than estimating the amount of
groundwater exploitable in a small shallow aquifer. Fur-
thermore, the characterization efforts are oriented toward

specific aquifer properties and objectives depending on the
project. In the nuclear waste repository project, it may
be important to have an accurate description of the dif-
fusion properties of the geological materials, while this
aspect may be irrelevant for the water resource project.
Similarly, the thermal properties of the underground will
have to be characterized in the framework of a geother-
mal project, but are not relevant in the case of groundwater
protection.

The above examples demonstrate that characterization
is a site, scale, and project-specific activity, the aim of
which is not to describe all the properties of the system,
but to focus on the major structures and properties relevant
to the processes of interest. This requires the collection
of specific field observations, their analysis, and their
quantitative integration into a synthetic descriptive model
of the reality.

Most of the difficulties associated with subsurface
characterization stem from the high spatial variability of the

Encyclopedia of Hydrological Sciences. Edited by M G Anderson.
 2005 John Wiley & Sons, Ltd.



2 GROUNDWATER

subsurface environment. This heterogeneity is an intrinsic
property of geological formations and results from the
complexity of the geological processes (sedimentation,
diagenesis, rock deformation, etc.). Additionally, only
sparse information is available from outcrops, boreholes,
or geophysics. The lack of information combined with the
intrinsic heterogeneity is the source of uncertainty that
makes the characterization of subsurface hydrogeological
systems challenging.

The aim of this article is to present an overview of the
usual steps and techniques used for the characterization of
porous and fractured media. Subsequent articles within the
encyclopedia cover technical aspects of data acquisition
and modeling techniques used for data integration. Some
specific technical points such as interpolation methods are
covered in more detail, as they are not treated elsewhere
within the encyclopedia.

The article encompasses six sections. The first section
introduces the main steps involved in the characteri-
zation and highlights some key features and difficul-
ties. Subsequent sections discuss deterministic, stochastic,
and genetic techniques. The final section is devoted to
inverse modeling.

CHARACTERIZATION PROCEDURE

The Typical Steps of Characterization

The goal of characterization is to build a model in which the
parameters involved in the processes under consideration
are specified everywhere within the domain of interest.
The four major steps of the characterization procedure are
illustrated in Figure 1.

The first step is the definition of the project goals, domain
of investigation, and the selection of the relevant processes
and variables. Then, characterization consists of collection,
interpretation, and analysis of measurements from vari-
ous data sources. It is useful to distinguish between static
(time invariant) and dynamic (time dependent) properties.
This definition is not strict: some static properties in a
given context (e.g. the aquifer geometry) may be consid-
ered as dynamic in another context (e.g. aquifer geometry
during land subsidence; see Chapter 158, Anthropogenic
Land Subsidence, Volume 4). Another useful distinction
is the separation between measurable quantities (state vari-
ables) and physical parameters that cannot be directly mea-
sured but that parameterize physical laws (e.g. hydraulic
conductivity).

The second step is the definition of the geometry of the
structures controlling groundwater flow and transport. It
relies on local geological observations, general geological
knowledge related to the type of environment encountered,
and geophysical investigations (see Chapter 148, Aquifer
Characterization by Geophysical Methods, Volume 4).

Project aim
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Relevant properties

Interpretation of data,
classification, interpolation

Geometrical model 
main structures

Providing properties 
to the structures

Properties model
static parameters

Direct problem

Dynamic model
dynamic parameters

Geological description
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Surface and borehole
geophysics

Surface and borehole
geophysics

Hydraulic and
tracer testing
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tracer testing

Core analysis

Boundary conditions

Borehole monitoring

Inverse problem

Figure 1 A schematic diagram of the characteriza-
tion process

The end product is a geometric model that encompasses
all relevant features: including aquifer, aquitard, channels,
faults, lenses, and so on.

In the third step, field experiments such as hydraulic
testing (see Chapter 151, Hydraulics of Wells and Well
Testing, Volume 4) laboratory experiments, geochemical
sampling, and tracer testing allow determination of the
physical properties (static and dynamic) of the main struc-
tures. Of course, the separation between geometric mod-
eling and defining properties is not straightforward in
practice, as the knowledge of the properties is often
required to decide whether a geological object is a rel-
evant structure, and whether it is necessary to define its
geometry.

The final step is the integration of the dynamic obser-
vations (state variables such as hydraulic head) with the
static properties. The ultimate goal is that the geomet-
ric model and the property model must be in agree-
ment with the dynamic observations. The main objective
is therefore to link the geometry, the physical parame-
ters, and the state variables through a system of partial
differential equations that can be solved analytically or
numerically (see Chapter 152, Modeling Solute Trans-
port Phenomena, Volume 4; Chapter 155, Numerical
Models of Groundwater Flow and Transport, Vol-
ume 4; Chapter 150, Unsaturated Zone Flow Processes,
Volume 4; and Chapter 157, Sea Water Intrusion Into
Coastal Aquifers, Volume 4). The model is then used in an
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inverse procedure (see Chapter 156, Inverse Methods for
Parameter Estimations, Volume 4) in order to improve
the property model and/or the geometric model so that the
calculated state variables match the observed ones under
certain criteria.

Typical Goals of the Characterization

Depending on the type of aquifer, and on the project goals,
different properties may be relevant, but in most cases the
basic goal is to characterize the water conductive features.
This means that for a porous media the most relevant prop-
erty is the hydraulic conductivity. For fractured media, the
relevant properties are the intensity of fractures, their exten-
sion, their connectivity, their apertures, and the hydraulic
conductivity of the matrix. Table 1 provides a summary of
the typical goals for subsurface characterization.

Deterministic versus Stochastic Methods

The geometric model, the property model, and the dynamic
model can be defined within a deterministic or stochastic
framework. In the deterministic framework, a unique
geometry and property map are considered. On the other
hand, in the stochastic framework (see Chapter 154,
Stochastic Modeling of Flow and Transport in Porous

and Fractured Media, Volume 4), the unique estimate is
replaced by an ensemble of equally probable realizations,
generally characterized by a statistical model. The main
advantage of the stochastic approach is that it provides
a formal means to quantify uncertainty. In practice,
however, stochastic and deterministic approaches are often
complementary: some parts of the characterization process
are described deterministically while others are described
statistically.

The Scale Issue

One important difficulty that arises during the characteri-
zation process is the integration of observations and mea-
surements that have been collected at different scales. It is
important to distinguish four main scales of interest (Hal-
dorsen and Lake, 1982; Dagan, 1989): the microscale, the
macro or laboratory scale, the mega or local scale, and the
giga or regional scale (Figure 2).

Scale issues arise because a physical law that describes
a process at one scale may differ when it is averaged or
upscaled over a large volume. Furthermore, when the form
of the equation remains identical between different scales,
values of the physical parameters have to be averaged in a
way that is physically consistent. Most often the relevant
parameters are not additive and cannot be simply averaged
by a standard mean.

Table 1 Typical goals for the characterization of fractured or porous media
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Figure 2 Definition of the characterization scales
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To further illustrate these principles, at the microscopic
scale the governing equations for groundwater flow are
the Navier–Stokes equations (Figure 2). These are param-
eterized using the fluid viscosity and density, which are
the relevant properties at the pore scale. Characterization
techniques at this scale include microscopy, X-ray tomog-
raphy, 3D pore space reconstruction, and so on. Moving to
the macroscopic scale, it is possible to demonstrate the-
oretically that under low Reynolds number, the flux of
groundwater through a porous medium obeys Darcy’s law
(Matheron, 1967; Mei and Auriault, 1989). The relevant
physical parameters that remain are the fluid viscosity and
density, but the geometry of the microscopic pore net-
work is now characterized by two macroscopic properties,
namely, the permeability and the porosity. Again, moving
to a larger scale (mega or gigascopic) it is still possible to
prove that the new governing equation is identical in form
to Darcy’s law (Matheron, 1967; Sáez et al., 1989), but the
permeability represents now an average of the small-scale
permeabilities that account for their spatial distribution in

the aquifer, and becomes a tensorial quantity in most cases,
even when it is a scalar at the smaller scale. Many upscaling
tools exist depending on the type of permeability distribu-
tion, but the most accurate techniques require a detailed
knowledge of the spatial distribution of the permeability
(Renard and de Marsily, 1997).

One of the best examples of a detailed study of scale
dependence of the permeability is provided by Tidwell
and Wilson (1999). They used an automated mini air
permeameter in order to map the permeability of the face
of a tuff sample. They measured the permeability with
different injection devices (seals) having different radii.
In this way, they characterized the permeability field of
a sample face at different scales. Figure 3(b) and 3(c)
present two permeability maps obtained using different
seal sizes. It is apparent from the figures that when the
seal size increases, heterogeneities are smoothed out. The
statistical description of the permeability field is a function
of the scale of observation. The mean slightly decreases
with increasing scale (Figure 3e), the variance significantly
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Figure 3 Characterization of the permeability field of a tuff sample at several successive scales. (a) Photograph of the
sample face (30 cm times 30 cm); (b) and (c) permeability maps, measured with an injection device having an inner tip seal
radius of 0.15 cm and 0.63 cm respectively, showing the smoothing of the permeability contrast with increasing size of
measurement device; (d) semi-variograms of the permeability fields as a function of the tip seal radius, r; (f) expectation
and variance of the permeability as a function of the tip seal radius (Reproduced from Tidwell and Wilson, 1999 by
permission of American Geophysical Union)
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decreases (Figure 3e), and the correlation length increases
(Figure 3d).

On a much broader range of scales, several authors
(Clauser, 1992; Sánchez-Vila et al., 1996; Schulze-Makuch
and Cherkauer, 1998) indicate that the average hydraulic
conductivity of a formation increases with scale (Figure 4).
These observations contradict the results of Tidwell and
Wilson (1999). However, the apparent increase must be
analyzed with caution because many experimental data at
the laboratory scale are biased towards low values (Zlotnik
et al., 2000).

The dependence of hydraulic conductivity with scale is
not the exception; the characterization of most parameters
strongly depends on the scale of observation. Last but not
the least, the elements on which the static and dynamic
models have been discretized will, in general, be larger
than the support on which measurements have been taken.
Therefore, the values assigned to the model elements will
always represent some type of averaged, or upscaled value
of the underlying hydraulic conductivity distribution. This
implies that larger the elements, the smoother their spa-
tial distribution. Large elements should be sampled from
probability distributions with smaller variance and larger
continuity than small elements. When all elements in the
model are of the same size and shape, the only deci-
sion to make is the choice of a random function model;
however, when the model has been discretized with ele-
ments of different sizes, care should be taken to ensure the
proper spatial variability for each element size. The rigorous
method of defining the parameter values is to establish an
upscaling rule to allow the transfer of the statistical charac-
terization that can be inferred from the measurements, at the
measurement support, up to the simulation support. Unfor-
tunately, in most cases this extrapolation is never made, and
the statistical characterization of the measurement values

is transferred into the simulation support without any cor-
rection, incurring in what some authors have termed “not
accounting for the missing scale” (Durlofsky, 1992).

DETERMINISTIC CHARACTERIZATION

In this section, we review a few deterministic tools used
to define the geometry of a hydrogeological system and to
describe the distribution of properties within the geologi-
cal formations.

Zonation

The whole domain is splitted volume into subvolumes cor-
responding to different geological objects that can represent
hydrostratigraphic units or subunits.

Recently, automatic algorithms have been developed to
construct the zonation in three dimensions using geological
observations along outcrops, borehole logs, and interpreta-
tive vertical sections (Courrioux et al., 2001). Every point
that identifies an interface between two zones is represented
in three dimensions by a pair of points located on each
side of the interface and labeled with a number correspond-
ing to the identifier of the zone. An initial partition of the
three-dimensional space is constructed with the help of a
Voronoı̈ diagram and interfaces are subsequently smoothed.
An example of the application of this method is provided
in Figure 5.

Interpolation

Often data are available at points. The data must be inter-
polated in order to reconstruct either a geometric surface
or the spatial distribution of a parameter. The interpo-
lation problem is widely encountered in many fields of
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Figure 4 Apparent scale effect in hydraulic conductivity (Reproduced from Schulze–Makuch and Cherkauer, 1998 by
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Figure 5 Geometric model of the Cadomian belt con-
structed automatically using Voronoı̈ diagrams. Every
grey level corresponds to a different geological unit
(50 × 60 × 12 km3) (Reprinted from Courrioux et al., 2001.
 2001, with permission from Elsevier) A color version
of this image is available at http://www.mrw.interscience.
wiley.com/ehs

sciences. Consequently, a wide variety of techniques are
available. Among the techniques most often used are
linear piecewise interpolation, inverse distance weight-
ing, polynomial interpolation, splines, natural neighbor,
kriging, and radial basis functions. These techniques
are implemented in numerous software packages such
as Surfer (http://www.goldensoftware.com), ArcGis
(http://www.esri.com), Idrisi (http://www.clark
labs.org), GMS (http://chl.erdc.usace.army.
mil), Earth Vision (http://www.dgi.com), and FeFlow
(http://www.wasy.de)

The relative efficiency of interpolation techniques has
been investigated in many articles, one of the most recent
is the article by Jones et al. (2003) who compared the appli-
cation of inverse distance weighting, natural neighbor, and
kriging for the characterization of four different contam-
inant plumes in three dimensions (Figure 6). This study
illustrated that at three sites the kriging technique gave the
lowest error; the inverse distance weighting gave the low-
est error at one site and performed well otherwise. The
natural neighbor method was the least accurate. Note that
kriging is considered here as a deterministic method, since
only the interpolated values are used but not the estimated
uncertainty. The conclusions of Jones et al. are not really
surprising since kriging (as will be discussed more in detail
in the Section “Geostatistics”) is a method whose principle
is to minimize estimation errors. What should be assessed is
the validity of the variogram analysis of Jones et al. when
the inverse distance method performed better than kriging.
Nonetheless, the main point of interest of their study is that
it showed that inverse distance methods, which are very fast

Figure 6 Example of three-dimensional interpolation
(kriging) of contaminant concentrations in the cape cod
aquifer allowing the location of a contaminant plume to
be characterized. The dots represent the data points; the
grey zone represents the volume where the interpolated
concentrations exceed a threshold (Jones N.L. et al., 2003;
reprinted from Ground Water with permission of the
National Ground Water Association.  2003)

and do not require a variogram analysis, perform rather well
and can provide an acceptable interpolated map at least in
the preliminary stage of a study.

Discrete Smooth Interpolation

A particularly interesting interpolation technique in the
framework of geological objects is the so-called Discrete
Smooth Interpolation or DSI (Mallet, 2002). The principle
of DSI is to construct a discrete representation of an object,
a triangulated surface for example, and to impose some
constraints on the object. For example, certain nodes are
given some fixed positions while others exist, but their
location is not known a priori. On a node, the orientation of
the surface can be defined as a constraint, while its position
is unknown. Some constraints such as a minimum distance
can be imposed between objects as well. The basis of the
DSI algorithm is to minimize the roughness of the discrete
object subject to predefined constraints. Generally speaking,
the roughness itself is defined as the sum of the squared
distance between any point of the graph and the center of
gravity of its immediate neighbors.

DSI is an extremely versatile technique. It can be used
to interactively model the geometry of complex geolog-
ical structures including layers and faults. As an exam-
ple, Figure 7 shows the three-dimensional geometry of the
Soûltz horst (Alsace, France). Site characterization is car-
ried out in the framework of a hot dry rock geothermal
energy project. In this case, the reservoir geometry was con-
strained by borehole observations and five seismic profiles.
After having identified the different faults and horizons on
the seismic profiles, DSI was used to interpolate the tri-
angulated surfaces corresponding to faults and geological
boundaries between layers (Renard and Courrioux, 1994).
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A

Figure 7 Three-dimensional geometry a network of 18
faults and five stratigraphic layers. The top surface
represents the topography, the geometric model extends
to a depth of 2 km and has an extension of 6 km by 2 km
(Reprinted from Renard and Courrioux 1994.  1994, with
permission from Elsevier) A color version of this image is
available at http://www.mrw.interscience.wiley.com/ehs

Plausibility Constraints

When interpolating, a common problem is to respect not
only the raw data but also some knowledge related to
the type of variable that is interpolated. For example,
the hydraulic conductivity or the concentration cannot
be negative. Another example is the interpolation of the
geometry of a three-dimensional surface describing a fault
from a series of points in space. In order to be acceptable,
it must belong to a certain type of surface such as planes,
spheres, cylinders, and surfaces of revolution (Figure 8) as
the fault surface has been created by the relative movement

T(M) +M

Ω

Figure 8 Examples of admissible surfaces for a fault
(Reprinted from Thibaut et al., 1996.  1996, with
permission from Elsevier)

of two rigid blocks (Thibaut et al., 1996). Mallet (2002)
discusses how to implement such constraints within DSI.
As a last example, the interpolation of hydraulic head
data must honor boundary conditions. Delhomme (1979)
demonstrates how the kriging technique can be modified to
account for such constraints (Figure 9).

STOCHASTIC CHARACTERIZATION

Stochastic modeling allows assessing uncertainty. In this
section, we present an overview of the statistical models
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Figure 9 Comparison of (a) standard kriging and (b) kriging under boundary conditions to interpolate piezometric head
data (By courtesy of JP Delhomme, 1979)
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Figure 10 Frequency distribution (experimental and Gaussian model) of porosity of a series of Berea sandstone samples
(Reprinted from Bahralolom and Heller 1991.  1991, with permission from Elsevier)

most currently used for the characterization of porous and
fractured media. We start the review with standard statistics,
and follow with object-based models, geostatistics, and
finally a short overview of the emerging field of multiple
points geostatistics.

Statistics

The first kind of stochastic analysis, which is conducted
when characterizing a hydrogeological system, is to inves-
tigate the univariate and nonspatial statistics. The most
simple and complete statistical tool during this first step
is to analyze the experimental probability density functions
(pdf). The pdf allows the analyst to infer the degree of
variability of the property, the type of probability law that
would best represent the data, the possible multimodality,
and so on. When conducting such analyses, special tools
must be used when dealing with data that fall into a finite
mathematical space (i.e. compositional data, fracture orien-
tations). In the case of fracture orientation, the field data are
a series of orientation angles (strike and dip). The usual way
to represent these statistics is a contoured stereographic pro-
jection that allows the main families of fractures, their mean
orientation, and variability around the mean to be defined
(see Chapter 154, Stochastic Modeling of Flow and
Transport in Porous and Fractured Media, Volume 4).

When the experimental statistics have been analysed,
simple statistical models can be used to represent the data.
For example, Figure 10 shows an example of porosity pdf

taken from a number of sandstone samples. The resulting
plot indicates that, in this case, a Gaussian distribution,
defined by its mean and variance, can be used to model the
porosity distribution.

The statistical analysis of fracture observations along
boreholes, tunnel faces, or maps requires some specific
tools. For example, the statistics are calculated from
data that are usually gathered on 1D or 2D space, but
they need to be corrected by stereological techniques
in order to estimate the 3D statistics. Chilès and de
Marsily (1993) provide an excellent overview of specific
statistical (and geostatistical) techniques used to analyze
fractures and fracture networks. One of the particular
aspects of fracture network statistics is that they often
exhibit a very wide range of scales and therefore their
statistics can be described by power laws (Figure 11)
relating over certain domains (Bonnet et al., 2001; Bour
et al., 2002).

A second step of the statistical characterization is to
investigate the multivariate statistics to define correlations
between them. The variables can be numerical proper-
ties and also categorical properties such as lithofacies or
hydrofacies indicators. When a large number of numerical
variables are available (e.g. geophysical logging), a system-
atic statistical analysis complemented with the application
of a classification algorithm may allow the various relevant
litho or hydrofacies identifications in a semiautomatic way.
The same statistical techniques are applied to characterize
water types within an aquifer (Güler et al., 2002).
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Figure 11 (a) Map of a fracture network in a sandstone outcrop (90 × 90 m2) in Norway and (b) density length distribution.
The power law begins when the fracture length is greater than 5 m (Reproduced from Bour et al., 2002 by permission of
American Geophysical Union)

Object-based Models

Object-based models attempt to reproduce the geological
architecture of the aquifer by locating objects with shapes
that resemble geological bodies using rules about their posi-
tion, size, and shape, and also rules of attraction, repulsion,
and spatial proportions. These objects are assimilated to
specific geologic facies, which are later assigned porosity
and hydraulic conductivity values.

The most common algorithms used in object-based mod-
els are Boolean models. These models work with determin-
istic shapes defined by stochastic parameters. For instance,
the early models by Haldorsen and Lake (1984) reproduce
sand/shale reservoirs in which shales are included as par-
allelepipeds with random locations and sizes. Generating
such a model starts by randomly drawing a point in space
and then drawing at random the three sizes of the paral-
lelepiped (representing a shale inclusion) that is located at
the drawn point. This procedure is repeated until a prede-
termined sand/shale proportion is reached. These models
have evolved substantially to include (i) more elaborate
shapes, which may better resemble the geological bod-
ies (Figure 12) and (ii) complex rules regarding allowed
relative positions of the objects, that is, following a strati-
graphic sequence, erosion rules, and so on (Jussel et al.,
1994; Scheibe and Freyberg, 1995).

Realizations generated with object-based models are
appealing to geologists; however, their main drawback
is the difficulty to condition these realizations to large
amount of data: it is very difficult to randomly draw objects
obeying all rules and honoring borehole information. Other
drawbacks are that lithofacies do not conform to the simple
geometries used, lithofacies are not randomly distributed in
space, and that these algorithms are difficult to generalize
and must be custom designed for each depositional pattern.
Some of these drawbacks have been addressed by Tyler
et al. (1994) with different degrees of success.

(a) (b)

Figure 12 Two examples of object-based models. (a) Sim-
ulated structure of a point bar deposits. The dark grey
represents low permeability while the light grey represents
high permeability region. The cube represents approxi-
mately 1 cubic m (Reproduced from Scheibe and Freyberg,
1995 by permission of American Geophysical Union).
(b) 3D fracture network. The fractures are assumed to be
disks. The network is simulated according to the inferred
statistics of fracture orientation, length, and density
(Reproduced from Ezzedine, 1994 by permission of Amer-
ican Geophysical Union) A color version of this image is
available at http://www.mrw.interscience.wiley.com/ehs

Geostatistics

The word geostatistics, or geographical statistics, was
defined by Matheron in 1962 to designate a set of statistical
techniques used for ore reserve evaluation. The key concept
is to quantify, in statistical terms, how the information pro-
vided by a sample located in space and/or time influences
the statistics of possible values of the same variable at any
distance from this data point. This information is quantified
with a variogram or a covariance function. The same tools
can also be applied to a set of different variables accounting
for spatial cross-correlation between variables. These tech-
niques and formulations are described in various references
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(Matheron, 1962; Journel, 1989; Goovaerts, 1997; Kitani-
dis 1997; Chilès and Delfiner, 1999; see Chapter 154,
Stochastic Modeling of Flow and Transport in Porous
and Fractured Media, Volume 4).

In practice, dedicated software is available either as inter-
active packages such as Isatis (http://www.geovarian
ces.com), WinGslib (http://www.gslib.com), Gocad
(http://www.gocad.com), Fsstools (http://www.fss
intl.com), Earth Vision (http://www.dgi.com), or as
source libraries such as gslib (http://www.gslib.com)
and the geostatistical template library GsTL (http://pan
gea.stanford.edu/∼nremy/GTL/GsTL home.html).

Applying geostatistics first involves an exploratory data
analysis. If we greatly simplify the procedure, the data
exploration consists of analyzing the experimental vari-
ogram of the data in order to identify the most appropriate
variogram model. The exploratory data analysis can be
applied either to a continuous variable or to an indicator
variable that represents the presence or absence of a geo-
logical object (lithofacies).

When the variogram model is inferred, kriging is used
to interpolate at any location conditioned to data within
the neighborhood and the variogram. Kriging provides an
estimation of the expected value of the variable and its
variance that represents the possible error of estimation at
the same location. Maps obtained by kriging have already
been shown in Figure 6 and Figure 9.

When the characterization process requires an estima-
tion of a property P1 that does not linearly depend on the
property P2 for which data is available, it is necessary to
use nonlinear geostatistical techniques. For example, the
statistical expectation E() being a linear operator (i.e. an
arithmetic average), and if P2 is a nonlinear function of P1,
that is,

P2 = f (P1) (1)

then the expectation of P2 is not equal to the transform of
the expectation of P1:

E[P2] = E[f (P1)] �= f (E[P1]) (2)

It means that it is erroneous to apply a nonlinear function
to a kriged map in order to estimate the expected value of
the transform.

To circumvent this problem, the most general nonlinear
geostatistical technique is the use of stochastic simulations.
Instead of estimating the expected value, the principle is to
generate a series of equiprobable realizations that are con-
structed in order to honor the data points, the variogram, and
the pdf of the data. One can then apply the nonlinear trans-
formation to each of these maps and calculate the statistics
of the results. Another important aspect is that the kriged
field is smoother than the data (Figure 13). The simulated
field, instead, has the same spatial structure (variogram) as

observed in the data (Figure 13), as well as the same pdf,
but it is only one possible reality, one equiprobable realiza-
tion. Estimation (kriging) and simulation are therefore not
applicable for the same purposes. Kriging is useful to map
the expected value and to identify the main trends in a field.
Simulations are useful when predictions, such as flow and
transport simulations, must be applied on the field.

When applied to generate equiprobable realizations of a
continuous variable, some geostatistical models rely heavily
on the use of a multi-Gaussian distribution. This multi-
Gaussian character has some unwanted side effects that
should be carefully considered before use, namely, the
lack of connection of the extreme values at the tails of
the probability distributions, that is, it is very difficult for
multi-Gaussian-based realizations to display flow channels
or flow barriers (Gómez-Hernández and Wen, 1998; Wen
and Gómez-Hernández 1998).

As an alternative to multi-Gaussian models, indicator-
based geostatistical models were developed. In indicator-
based geostatistics, the different classes (or categories) in
which the range of variability of the parameter under study
could be divided, are independently characterized, thus
controlling the spatial correlation of all classes, particularly
those at the extreme ends of the distribution. Each indicator
class is characterized by its own variogram function. One
of the earliest applications of indicator-based geostatistics
was discussed by Gómez-Hernández and Srivastava (1990)
in the context of the simulation of a sand-shale sequence.

The main advantage of all geostatistical methods is
their ability to be conditional to parameter measurements.
Thus, the realizations not only have the spatial patterns
characterized by the variogram function but also honor the
parameter data. As a consequence, the larger the number
of conditioning data, the more alike are the generated
realizations and less the uncertainty on the predictions based
on these conditional realizations.

Multiple-point Geostatistics

A recent development of geostatistics that goes beyond the
variogram-based geostatistics (whether Gaussian or indi-
cator) deserves a section of its own. The major criticism
to geostatistical methods has come from the proponents of
object-based simulations criticizing the difficulty in repro-
ducing intricate geological patterns when the only control-
ling tool is the variogram (a two-point statistics measure).
For instance, it is very difficult to generate meandering-
like depositional patterns, or realizations respecting certain
stratigraphical ordering of the facies generated. A solu-
tion to this problem was proposed by Strebelle (2002) that
departs from traditional geostatistics. Conditional probabil-
ity values are computed directly from conditioning data
using the exact geometrical pattern of the surrounding data
with respect to the point being estimated. (In traditional
geostatistics, these conditional probabilities are computed
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Figure 13 A typical example showing the differences between a map of Cadmium (Cd) interpolated with ordinary kriging
(a) and simulation (b). The figure shows the differences in pdfs and variograms calculated a posteriori for the two maps.
The solid line represents the variogram model and the dotted line represents the experimental variogram calculated a
posteriori on the interpolated fields (Reproduced from Goovaerts, 1997 by permission of Oxford University Press)

by considering only the separation vectors between each
pair of data, and between each datum and the point being
estimated.) Evaluating the conditional probability in the
way proposed by Strebelle requires establishing the prob-
ability distributions for any possible data configuration.
Since this is impossible to perform from sample data,
Strebelle suggests the use of training images derived from
outcrops, expert knowledge, or even a geologist’s drawing.
He also suggests to only use the nearby data; therefore,
reducing the number of conditioning data configurations
for which the probability distribution has to be derived.

Multiple-point geostatistics is capable of generating real-
izations that are very similar to those obtained with object-
based algorithms, with the advantage that it can be made
conditional by construction, therefore surpassing the main
problem of object simulation.

The main criticism to multiple-point geostatistics is
the selection of a training image from which to infer
the multiple-point statistical model, especially in three
dimensions. Outcrops are good for 2D realizations, but
there are no three-dimensional outcrops, and it is not
trivial to combine multiple 2D training images into a
single 3D one. A possible solution to the problem of 3D
training images would be to use a genetic model or an
object-based model to generate a realization from which
to infer the multipoint statistical model. Multiple-point
realizations based on such a model will look like the
ones obtained from the genetic or object-based models,
but will be conditional to well data. Another caveat is
that its implementation for practical applications is full of
difficulties and computational tricks if CPU-times are to be
kept reasonable.
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Figure 14 Reconstruction of the internal architecture of the sedimentary complex of the San Francisco Bay, California
by a process-imitating model (Reprinted with permission from Koltermann, C. E., and S. M. Gorelick. 1992. Paleoclimatic
signature in terrestrial flood deposits. Science 256, 1775–1782.  1992 AAAS) A color version of this image is available
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GENETIC MODELS

Genetic models, which should not be confused with the
genetic algorithms used in global optimization, assign
parameter values to the elements of the model by simulating
the genesis of the aquifer. One of the first models capable of
generating realizations of facies is SEDSIM. This program
was developed by Tetzlaff and Harbaugh (1989), and it
simulates the genesis of a sedimentary basin by modeling
the processes of erosion, transport, and sedimentation.
SEDSIM moves fluid particles over a 2-D grid, in which
sediments from multiple types continuously mix. The basic
principle of SEDSIM is that a fluid element moves down
the slope as velocity increases its capacity to erode and
pick up sediments, then when it finishes descending the
slope, it slows down, its transport capacity decreases, and
the sediments are deposited.

These models are mechanicist, in the sense that they
reproduce the mechanical processes involved in the gen-
esis of sedimentary basin. They must be run over tens of
thousands of years, and require initial and boundary condi-
tions that are difficult to estimate, as well as identifying of
the external stresses that drive the processes. For example,
information of the initial spatial distribution of the mate-
rial that will be eroded is needed, as well as information
about pluviometry over the entire simulation time. Because
most of these inputs are impossible to determine and, at
most, they are drawn from predefined probability distri-
butions, these models cannot be called deterministic, even
though they use deterministic models to obtain the spatial
representation of the parameters.

One of the successful applications of the method
(Figure 14) was performed by Koltermann and Gorelick
(1992). They simulated the genesis of an alluvial fan-aquifer
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system in north-central California (US). For this purpose,
they had to collect local and regional geologic and climatic
data, and hydrologic history of the study area. They also had
to address sea level change, fault motion, sediment load-
ing, compaction, porosity relations, and paleoclimate-driven
fluctuations in floods and sediment loads. In addition, they
had to simulate flood events using a stochastic streamflow
time series. The geometry and geology of the fan-aquifer
was simulated for 6 00 000 years. The output grain size dis-
tributions from the process model were transformed into
porosity and hydraulic conductivity values using petrophys-
ical relations.

Genetic models such as the ones described here are
computationally intensive; however, they produce realis-
tic images of large-scale sedimentary structures provided
the model inputs are carefully constrained. The realiza-
tions are realistic at a large scale; however, locally it is
very difficult to condition them to specific porosity or con-
ductivity values at certain locations. This last caveat of
genetic methods could be their major drawback. Lately,
some researchers have been working on the problem of con-
ditioning, such as Karssenberg et al. (2001). Others have
developed agent models in order to trigger the behavior of
the sediments while reducing the computational load (Teles
et al., 2001).

INVERSION METHODS

Inverse theory is concerned with the problem of mak-
ing inferences about physical systems from data (directly
measured or remotely sensed). Since nearly all data are
subject to some uncertainty, these inferences are usually
statistical. Further, since one can only record finitely many
(noisy) data and since physical systems are usually mod-
eled by continuum equations, no inverse problems are really
uniquely solvable: if there is a single model that fits the
data, there will be an infinite number of them. Our goal
then is to characterize the set of models that fit the data
and satisfy our prejudices as well as other information. This
section describes how to determine model parameter val-
ues. Models are assumed to be valid; the only unknowns are
parameter values that define the models. For completeness,
we introduce some concepts and terminology commonly
used in inverse/forward problem community. Detailed cov-
erage of the inverse problem using deterministic tools and
stochastic tools is given in Chapter 156, Inverse Methods
for Parameter Estimations, Volume 4 and Chapter 154,
Stochastic Modeling of Flow and Transport in Porous
and Fractured Media, Volume 4 respectively.

Well-posed versus Ill-posed Problem

Prediction based on a given set of parameter values
is called forward modeling. Determination of parameter

value from observed data is called inverse modeling.
Inversion requires minimizing the discrepancy between
predictions and observations. Inversion can be achieved
in two ways. On one hand, a modeler iteratively modifies
parameter values (such as hydraulic conductivity), and runs
a forward model (i.e. ModFlow, FeFlow) until attaining
best “fit” or “match”. This kind of process falls into
the trial and error methods. Such forward modeling is
sometimes tedious and time consuming. On the other hand,
an inverse algorithm can be adopted to automatically or
semiautomatically obtain the parameter values from the
observed data and an initial set of trial parameters values.
The procedure also provides an estimate of parameter
uncertainty and resolution.

A well-posed inverse problem requires “existence” of
the problem, the “uniqueness”, and the “stability” of
the solution or algorithm. Obviously, in view of the
observed data and our understanding of a real-world
physical system, a problem is presumed to exist, for
example, detection of contaminant plume in groundwater
suggests that contamination must have happened in the past.
The question then is how to relate the observation to the
migration history of the contaminant. A cause generally has
an effect. Can an effect result from different causes? Is it
unique in theory or model? Even if it is, have we counted
and resolved all parameters that define a model?

Inverse uniqueness has two levels: the model itself
and the model-defining parameters. The latter is related
to the stability of a solution algorithm. How sensitive
are parameters to uncertainty of observed data? Are the
errors amplified during inversion? Is the inversion algorithm
efficient in terms of ease of usage and cost of running the
inversion program (complexity)?

Deterministic versus Stochastic Inversion

An inverse model attempts to obtain a spatial distribu-
tion of the parameter values, so that the simulated state
of the system, using forward flow and transport models,
reproduce the observed state of the system at those loca-
tions. Because the relationship between state variables and
parameters is not linear, conditioning parameter realiza-
tions to state variable data is not trivial, and, in general
involves nonlinear optimization algorithms, in which the
objective function and its gradient are very expensive to
evaluate.

To address the inverse problem, two main frameworks
have been developed and they are either deterministic or
stochastic. In the deterministic framework, the structure
of the spatial variability of the parameters is fixed. For
example, the aquifer is divided into a number of zones,
and each zone is supposed to have a constant hydraulic
conductivity; then, the algorithm seeks the best hydraulic
conductivity values for which the solution of the flow equa-
tion reproduces the state data (Carrera and Neuman, 1986).
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However in a stochastic framework, the spatial variabil-
ity of the parameters is statistically mapped. For example,
the overall average and variance, and the variogram of
the final realization are specified; this characterization is
not enough to fully determine the parameter values at
every cell. Then, a spatial realization is sought meeting
the statistical constraints, conditional to the parameter val-
ues, and so that the forward model of the state of the
system matches the observed values. Many alternative real-
izations can meet the statistical constraints and reproduce
the state data. The self-calibrating method by Gómez-
Hernández et al. (1997) was developed for this purpose. To
make these inferences quantitative in either deterministic
or stochastic framework, one must answer three fundamen-
tal questions:

1. How accurately is the data known, that is, what does
it mean to “fit” the data?

2. How accurately can we model the response of the
aquifer system? In other words, have we included all
the physics in the model that contribute significantly to
the data?

3. Finally, what is known about the system independent
of the data? This is called a priori information and is
essential since for any sufficiently fine parameterization
of an aquifer system there will be unreasonable models
that fit the data too. Prior information is the means by
which we reject or down-weight unreasonable models.

Examples of Stochastic Inversion Methods

It has already been pointed out that the final hydraulic
property realization cannot disregard the measurement data;
they are the only factual knowledge available about the
aquifer. However, aquifers are systems, the state of which
is described by the spatial distribution of piezometric heads,
and by the concentration of the solutes dissolved in water.
In general, there is more information about the state of
the system than about the parameters that controls it.
Therefore, it appears necessary to generate spatial distri-
butions of the parameters that are not only conditional
to parameter values, but also consistent with the (partial)
knowledge about the state of the system. We will illustrate
this stochastic inversion by constraint through three exam-
ples (see Chapter 154, Stochastic Modeling of Flow and
Transport in Porous and Fractured Media, Volume 4 for
more details).

Cokriging methods. Rubin and Dagan (1987a, b)
used the analytical approach to solve the perturbed flow
equation. They calculate h′ = h − E[h] and Y ′ = Y −
E[Y ] at the points of h, head, and Y , log of transmissivity,
measurements and determined analytically the covariance
function of h′ and the cross-covariance (h′, Y ′) as a function
of the covariance of Y . The covariance of Y is function of

a set of parameters q (integral scale of Y and its variance).
This is actually sufficient to estimate the transmissivity
field by cokriging. The cokriging estimator then gives the
optimal estimation of Y at any point as follows:

Y (x) =
nY∑

i=1

λiYi +
nH∑

j=1

υj (hj − E[hj ]) (3)

where the λi and the nj are optimal weights that depend
on the position x. The cokriging equations that provide the
value of the optimal weights simply require that the covari-
ance functions of Y , of h, and of h − Y be known. They
are developed by Rubin and Dagan (see Chapter 154,
Stochastic Modeling of Flow and Transport in Porous
and Fractured Media, Volume 4). Rubin and Dagan then
calculate by cokriging all the values of Y at the measure-
ment points where Y is known and where it is therefore
possible to compare the known value with the one esti-
mated by cokriging – without using the known value of this
point in the cokriging equations. As the cokriging estima-
tor is a function of the q parameters, these parameters can
thus be optimized to minimize the errors between the esti-
mated and measured Y values. The Maximum Likelihood
method was used for their optimization (see Chapter 154,
Stochastic Modeling of Flow and Transport in Porous
and Fractured Media, Volume 4). Once the q param-
eters are known, the cokriging equations give an esti-
mation of Y at all points and a map of Y is obtained
(Figure 15).

Bayesian Inversion. For a statistician, an inverse
problem is an inference or estimation problem. The data are
finite in number and contain errors, as they do in classical
estimation or inference problems; the unknown typically
is infinite dimensional, as it is in nonparametric regres-
sion. The additional complication in an inverse problem
is that the data could be directly and indirectly related
to the unknown. Bayesian techniques have become more
attractive for the hydrogeological communities through the
elegant work of Tarantola (1987). One of the fundamental
tenets of Bayesian inference is that uncertainty always
can be represented as a probability distribution; in par-
ticular, the Bayesian approach treats the model as the
outcome of a random experiment. The essential defining
property of a Bayesian is to talk about the probability P

(H |E) of a hypothesis H , given evidence E. Whether one
adheres to a Bayesian view, estimators that arise from
the Bayesian approach have an attractive property, that
is, the posterior pdf is at least as informative as prior
one. In this case, the likelihood function is called diffu-
sive or totally noninformative, and the prior estimates are
exactly equal to the posterior estimates. It is emphasized
that the method does not always guarantee better esti-
mates for a couple of reasons. First, the Bayesian approach
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Figure 15 Estimated transmissivity T in ft2 day−1 (a) and the conditional variance of ln[T] (b) based on cokriging
and maximum-likelihood estimation (Reproduced from Rubin and Dagan, 1987b by permission of American
Geophysical Union)

provides a pdf, not a single-valued estimate. Second, the
improvement achieved in the posterior pdf is dictated by
the quality of external factors such as the accuracy of
the geophysical survey and the petrophysical model in
the case of geophysical–hydrogeological stochastic joint
inversion.

Bayesian inversion is illustrated in Ezzedine et al. (1999).
Their hierarchal approach is intended to integrate and trans-
form the well log data to a form in which it can be updated
by the geophysical survey, and this tends to be a convo-
luted process. They started with generating images of the
lithology, conditional to well logs. Each lithology image is
then used as the basis for generating a series of shaliness
images, conditional to well log data. Shaliness images
are converted to resistivity images using a site-specific
petrophysical model relating between shaliness, resistivity,
and lithology, to create the necessary interface with the
cross-well resistivity survey. The lithology and resistivity
images are then updated using cross-well electromagnetic
resistivity surveys. They explored the limits of the approach
through synthetic surveys of different resolutions and error
levels, employing the relationships between the geophysical
and hydrological attributes that are weak, nonlinear, or both.
The synthetic surveys closely mimic the conditions at the
Lawrence Livermore National Laboratory (LLNL) Super-
fund site. Ezzedine et al. (1999) showed that the proposed
stochastic Bayesian approach improves hydrogeological site

characterization even when using low-resolution resistivity
surveys (Figure 16).

Self-calibrating Stochastic Inversion
The self-calibrated algorithm (Gómez-Hernández et al.,
1997) is the first algorithm specifically aimed at the
generation of hydraulic conductivity fields conditional
to hydraulic conductivity and transmissivity data with-
out resorting to any approximation of the state equa-
tion or linearization of the relationship between head and
conductivity. It has been later extended to the genera-
tion of realizations conditioned to concentration data by
Sahuquillo et al. (1999) and Hendricks Franssen et al.
(2003).

In the self-calibrating approach, multiple realizations of
the parameters controlling groundwater flow movement and
mass transport, that is, hydraulic conductivity, transmissiv-
ity, or specific storage, are generated conditioned to values
of the parameters and of the state variables. That the real-
izations are conditioned to the parameter values means that
all realizations display the patterns of variability and cross-
correlation observed in the field and modeled by a random
function, and, at the same time, each realization honors the
measured parameter values at their measurement locations.
That the realizations are conditioned to the state variables
means that the solution of the groundwater flow and mass
transport equations with the parameter realizations gener-
ated results in the prediction of the state of the system that
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honors the spatiotemporal measurements of the state vari-
ables. Achieving such a dual conditioning amounts to solve
a deterministic inverse problem for each realization, some-
thing that can only be done after a careful parameterization
of the spatial variability of the realizations and efficient
computational algorithms.

CONCLUSION

Looking back at the models described here, it is con-
cluded that the best alternative to characterize the spatial
variability of a given parameter is through the use of
hybrid models. It is important to capture the architecture
of the different facies in the aquifer, as it is to capture
the variability of the parameters within each facies. Hybrid
models start by using a genetic model, an object-based
model, or any of the geostatistically-based models capable
to generate facies realizations, to generate the spatial dis-
tribution of the different facies present in the aquifer; then
a geostatistical model (either Gaussian or non-Gaussian)
is used to fill in each facies with spatial distributions of
the parameters. An example of this approach can be found
in Cox et al. (1994), who used the cross-sectional geo-
logic images created with a genetic model to estimate the
parameters of an indicator-based spatial statistical model.
Then, conditioning and generating multiple realizations of
hydraulic conductivity were achieved with a geostatisti-
cal model.
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