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Abstract
The calculation of the discharge to a constant drawdown well or tunnel in the presence of an infinite linear

constant head boundary in an ideal confined aquifer usually relies on the numerical inversion of a Laplace trans-
form solution. Such a solution is used to interpret constant head tests in wells or to roughly estimate ground water
inflow into tunnels. In this paper, a simple approximate solution is proposed. Its maximum relative error is on the
order of 2% as compared to the exact analytical solution. The approximation is a weighted mean between the
early-time and late-time asymptotes.

Introduction
Constant head tests offer an interesting alternative to

the more standard constant rate pumping tests. They are
naturally applicable in artesian wells, where it is suffi-
cient to open the well and record its discharge rate and
optionally the drawdown in the aquifer. However, con-
stant head tests are also used frequently to test low-
permeability rocks. In this case, their main advantage is
that the effect of wellbore storage is reduced, and the part
of the transient data allowing characterization of the for-
mation occur earlier than with constant discharge test.
Moreover, constant head test theory in the presence of a
constant head boundary is used to estimate ground water
discharge to tunnels (Goodman 1965; Freeze and Cherry
1979; Lei 1999).

The basic transient model used to analyze constant
head test in an infinite domain is the well-known Jacob
and Lohman (1952) solution. This approach assumes that
the aquifer is an ideal, infinite, confined, isotropic aquifer
with a homogenous transmissivity and storativity.
Maréchal and Perrochet (2003) demonstrate the utility of
such a solution to model transient ground water discharge
into deep Alpine tunnels. Furthermore, Perrochet (2005)
has proposed a very useful and simple approximation of
the Jacob and Lohman solution.

When the well or the tunnel is located in the vicinity
of a large water body directly connected to the aquifer
(for example, the channel tunnel between Great Britain
and France or the more classical situation of a well test
close to a river), the analytical solution has to account for
a prescribed head boundary. The simplest model intro-
duced by Theis (1941) is an infinite linear constant head
boundary. In the case of a constant head test with a con-
stant head boundary, an analytical solution cannot be ob-
tained by applying image well theory in the same way as
it is done for constant rate tests. Summing up the draw-
down solutions of one extraction well and one injection
well violates the constant drawdown boundary condition
at the well. An elegant means of circumventing this prob-
lem involves deriving the solution in the Laplace domain
and applying the convolution method. These techniques
are well established (van Everdingen and Hurst 1949;
Raghavan 1993; Lee 1999) and have been applied, for
example, in the development of analytical solutions for
horizontal wells (Murdoch and Franco 1994). Murdoch
and Franco (1994) gave the Laplace domain solution for
constant drawdown test with a no-flow boundary. In this
paper, we consider the case of a constant head boundary
and propose a heuristic approximation. This solution is
then compared to the Laplace domain solution.

Laplace Domain Solution
The derivation of the Laplace domain solution uses

the well-known Laplace inversion and convolution tech-
niques (van Everdingen and Hurst 1949; Raghavan 1993).
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In this section, we provide a summary of the method and
results. The aquifer is assumed to be confined, homoge-
nous, and isotropic. It is limited by an infinite linear con-
stant head boundary, but the presence of the boundary
will be modeled only in a second step, and we start with
the usual infinite aquifer assumption. The test is initiated
by imposing and maintaining a constant drawdown, s0
[L], in the well. The well is assumed to fully penetrate the
aquifer, and the skin is supposed to be negligible. The
flow is assumed to be two dimensional. Following these
assumptions, the usual ground water flow equation can be
written in dimensionless form as:
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where the dimensionless variables are
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and s [L] represents the drawdown, r [L] the radial dis-
tance to the well, rw [L] the radius of the well, T [L2T21]
the transmissivity, t [T] the time, and S [2] the storativity.
We also define the dimensionless distance lD [2] to the
boundary and the dimensionless discharge qD [2] into the
well:
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with l [L] the shortest distance between the well and the
constant head boundary and q [L3 T21] the discharge in
the well. Because of the linearity of Equation 1, the draw-
down in the aquifer can be expressed as the convolution
product of the discharge in the well by the impulse draw-
down solution sDi of Equation 1:

sDðrD; tDÞ =
Z tD

0

qDðsÞsDiðrD; tD2sÞds ð4Þ

The constant head boundary condition at the well requires
that

sDðrD = 1; tDÞ = 1 ð5Þ

Substituting Equation 5 into Equation 4 leads to:
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whose Laplace transform is

1

p
= qDðpÞsDiðrD = 1; pÞ ð7Þ

where p is the Laplace parameter and the bar indicates the
Laplace transform. Furthermore, the impulse solution sDi
is simply the derivative of the unit step input solution sDu:

sDiðrD; tDÞ =
@sDuðrD; tDÞ

@tD
ð8Þ

or in the Laplace space (knowing that the unit step solu-
tion is zero for t = 0):

sDiðrD; pÞ = psDuðrD; pÞ ð9Þ

Inserting Equation 9 into Equation 7 yields:

qDðpÞ =
1

p2sDuðrD = 1; pÞ ð10Þ

For an ideal confined aquifer fully penetrated by a well
of finite radius, the Laplace transform of the unit step
response function is (van Everdingen and Hurst 1949):
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In the case of one discharging well and one recharg-
ing well separated by a distance 2lD, the unit step re-
sponse function is obtained by applying the superposition
principle:

sDuðrD; pÞ =
K0

�
rD

ffiffiffi
p

p �
p

ffiffiffi
p

p
K1

� ffiffiffi
p

p �2K0

�
ð2lD21Þ ffiffiffi

p
p �

p
ffiffiffi
p

p
K1

� ffiffiffi
p

p � ð12Þ

where K0 and K1 are the Bessel functions of the second
kind, respectively, of order 0 and 1. Inserting Equation 12
into Equation 10, we obtain the Laplace domain solution
of the discharge in the well
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For the sake of completeness, the drawdown in the aqui-
fer is expressed by taking the Laplace transform of Equa-
tion 4, which yields:

sDðrD; pÞ = pqDð pÞsDuðrD; pÞ ð14Þ

Inserting Equations 12 and 13 into the previous equation,
we obtain:
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Equations 13 and 15 can be inverted numerically with the
standard Stefhest (1970) or Talbot (1979) algorithms.

An Approximate Solution
For early time, and/or for a large distance to the

boundary (lD), the inverse Laplace transform of Equation
13 tends toward the usual Jacob and Lohman solution. Fur-
thermore, Perrochet (2005) has shown that the Jacob and
Lohman solution qJLD can be approximated by (Figure 1):

qJLD ðtDÞ’
1

lnð11 ffiffiffiffiffiffiffi
ptD

p Þ ð16Þ

For late time, and/or for small distance to the boundary,
the inverse Laplace transform of Equation 13 tends
toward the steady-state solution for a well close to a con-
stant head boundary:
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lim
tD/N

qDðtDÞ =
1

lnð2lD21Þ ð17Þ

A very rough approximation of the inverse Laplace trans-
form of Equation 13 could be to use the maximum of
Equations 16 and 17. Such an approximation would have
the advantage of simplicity but would show a discontinu-
ity of the derivative at the intersection of the two curves.
An alternative means of addressing this problem involves
approximating the discharge rate into the well by a
weighted average of the two asymptotes plus a correction
term:

qDðtDÞ =
A

ln ð11 ffiffiffiffiffiffiffi
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p Þ1
B
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To construct this approximation, we note that Equation
18 must tend toward Equation 16 for early time and
toward Equation 17 for late time. Equations 16 and 17
intersect when:
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A and B must tend to 1 and 0, respectively, when the ratio
defined on the left-hand side of Equation 19 is >1 (early
time). Furthermore, they must tend to 0 and 1, respec-
tively, when the ratio is <1 (late time). A possible choice
satisfying these criteria is to define A and B as follows:
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If the correction term C in Equation 18 is omitted, the
approximation systematically underestimates the dis-
charge during the transition period (when the ratio is
close to 1). The maximum underestimation occurs just
when the ratio is equal to 1. The correction term must be
a maximum when the ratio is equal to 1 and must drop
rapidly and symmetrically both for late and early times.

The product AB is a function that satisfies these criteria.
In addition, the function must be scaled so that its maxi-
mum value corresponds to the maximum error. Following
this principle, a possible correction term is:
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Figure 2 shows the behavior of Equation 18 super-
imposed with the inverse Laplace transform of Equation
13. The approximation captures the main behavior of the
exact solution. Figure 3 shows the transient evolution of
the relative error between the exact and approximate
dimensionless discharge in the well. The maximum rela-
tive error occurs during the transition period. During the
whole time period, the relative error is always <2%.
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Figure 1. Comparison of the tabulated values by Jacob and
Lohman (table 1, 1952) and the Perrochet approximation
(Equation 16).
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Figure 2. Dimensionless discharge in the well: comparison
of the exact solution (Equation 15) and the proposed approx-
imation (Equation 18).
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Figure 3. Relative error between the exact solution and the
proposed approximation.
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Discussion by Hund-Der Yeh, Institute of Environmental
Engineering, National Chiao Tung University, 300 Hsinchu,
Taiwan, hdyeh@mail.nctu.edu.tw; Shaw-Yang Yang, Depart-
ment of Civil Engineering, Vanung University, 320 Chungli,
Taiwan; and Yen-Ju Chen, Institute of Environmental Engi-
neering, National Chiao Tung University, Hsinchu, Taiwan

Renard (2005) studied discharge in a constant head
test with a recharging boundary in a radial confined aqui-
fer. He proposed Laplace-domain solutions for the draw-
down in an aquifer and the discharge for an aquifer with
one discharging well and a recharge boundary repre-
sented by one recharging well. In this comment, we wish
to point out problems that exist with the unit step re-
sponse function �sDu and the drawdown �sD, as given in the
equations 12 and 15 in Renard (2005). In addition, we de-
rive a time-domain solution of the discharge for the same
problem and suggest a numerical approach to evaluate the
solution with accuracy to five decimal places.

The definitions of the symbols used herein are identi-
cal to those given by Renard (2005). In the case of one
discharging well and one recharging well separated by a
distance 2lD, the observation well is at distance rD and
(2lD 2 rD) from the real well (discharging well) and
imaginary well (recharging well), respectively. By apply-
ing the superposition principle, the unit step response
function can be obtained as:
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where p is the Laplace variable and K0(�) and K1(�) are
the Bessel functions of the second kind of order zero and
one, respectively. The first term on the right-hand side of
Equation 1 represents the effect of discharge and the
second term represents that of recharge. Equation 1 is
valid only when the real, observation, and imaginary
wells are along a straight line. Renard (2005) gave a dis-
tance between the observation and the imaginary wells

as (2lD 2 1), which was incorrect. Therefore, equation
15 of Renard (2005) should read as:
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Renard (2005) presented the Laplace-domain solu-
tion of the discharge from the well in his equation 13 as:
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In addition, he also gave a simple approximate solu-
tion of the discharge rate into a well using a weighted
average of the two asymptotes plus a correction term as:

qDðtDÞ ¼
A

ln ð11 ffiffiffiffiffiffiffi
ptD

p Þ 1
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In fact, the analytical solution in the time domain for
Equation 3 can be derived using the Bromwich integral
method (Peng et al. 2002; Yang and Yeh 2002), and the
final result is:

qDðtDÞ ¼
2

p

ZN

0

e2tDu
2 J1ðuÞB2ðuÞ2 Y1ðuÞB1ðuÞ

B2
1ðuÞ1B2
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where J0(�) and Y0(�) are, respectively, the Bessel func-
tions of the first and second kinds of order zero, and J1(�)
and Y1(�) are, respectively, the Bessel functions of the first
and second kinds of order one. In addition, B1(u) ¼
J0(u)2 J0((2lD 2 1)u) and B2(u) ¼ Y0(u)2 Y0((2lD 2 1)u).
A numerical approach, including the singularity removal
scheme, the Gaussian quadrature, and Shanks’ method
(Peng et al. 2002; Yeh et al. 2003), can be used to eval-
uate Equation 5 with accuracy to five decimal places for a
very wide range of dimensionless time.
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I thank Dr. Yeh and his colleagues for pointing out
an obvious mistake in Equations 12 and 15 of Renard
(2005). They are right that the dimensionless radius rD
was incorrectly left out of these equations. The correct
equations (12) and (15), as indicated by Yeh et al., are
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However, I would like to emphasize that the main
point of Renard (2005) was to propose an approximate
expression (Equation 18) for the discharge rate in the
well during a constant head test in the presence of a re-
charge boundary. This equation was derived from the
analysis of the closed-form analytical solution in the Lap-

lace domain (Equation 13). These two equations are cor-
rect, and therefore the main results of Renard (2005)
remain unchanged.

Another aspect of the comment of Yeh et al. (this
issue) is that they develop and propose a new integral ex-
pression for the inverse Laplace transform of Equation 13.
They calculate this integral with high accuracy by com-
bining different numerical techniques. This is a valuable
improvement that allows, for example, checking the accu-
racy of different numerical techniques. But I argue that in
terms of practical application, the accuracy of the solu-
tion proposed by Renard (2005) is sufficient, considering
all the other possible sources of errors such as the hetero-
geneity of the aquifer, potential noise in the data, uncer-
tainty in the values of the effective parameters, or
irregular shape of the constant head boundary when ap-
plying those analytical solutions to interpret field data or
to make forecasts. The magnitude of the above-men-
tioned errors is certainly much higher than the maximum
error (2%) due to the approximation made with Equation
18. Finally, a clear advantage of Equation 18 compared
to Equation 5 of Yeh et al. is that it can easily be used in
any spreadsheet without having to program a sophisti-
cated algorithm.
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