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Abstract. Hydraulic conductivity (or intrinsic permeability) determined in a
standard permeameter is biased if the anisotropy is not taken into account. This
bias can be a significant source of error in the characterization of any type of
aquifer or reservoir. Theoretical arguments show that it is possible to determine
the complete permeability tensor of a sample by measuring the average filtration
velocity and the average gradient vectors during steady state flow experiments. The
full permeability tensor is calculated with a linear least squares algorithm. To date,
a prototype has been built that shows promising results, but the level of accuracy
of the measurements is not yet sufficient to fully demonstrate its applicability. The
primary advantages of this new technique are that no preliminary assumptions with
respect to the principal directions of anisotropy are required prior to testing and

that it does not require sophisticated test equipment.

1. Introduction

While clear evidence of the small-scale anisotropy of
hydraulic conductivity has been established since the
1950s [de Boodt and Kirkham, 1953; Hutta and Grif-
fiths, 1955a, 1955b: Greenkorn et al., 1964], most per-
meameter measurcments assume one-dimensional flow
inside the sample even when estimating anisotropy [Au-
zerais et al., 1990; Hurst and Rosvoll, 1991; Burger and
Belitz, 1997]. The main dircctions of stratifications are
identified by visual inspection, and samples arc taken
parallel and perpendicular to the bedding planes. The
directional hydraulic conductivity (scalar) of cach sam-
ple is determined with a standard permecamecter by ap-
plying Darcy’s law and assuming one-dimensional flow
K = (Ql)/(A Ah), where K [L T~'] is the hydraulic
conductivity, @ [L* T~'] is the flow rate across the
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sample, A [L?] is the surface perpendicular to flow, {
[L] is the length of the sample, and Ah [L] is the hy-
draulic head difference between inlet and outlet. This
calculation is correct only if the sample is isotropic, or
if the principal axes of anisotropy coincide with the
direction of the applicd gradient. When these condi-
tions are not met, the hydraulic conductivity can be
significantly underestimated. To avoid the assumption
of one-dimensional flow and to measure the small-scale
anisotropy, different techniques have been proposed and
are reviewed by Rice et al. [1970], Bear [1972, pp. 150-
151] or Bernabé [1992]. The most convincing experi-
mental technique was published recently by Bieber et
al. [1996]: they used a point tracer injection and X-ray
tomography to observe the shape of the plume inside the
sample. If it is a sphere, the medium is isotropic; if it
is an cllipsoid the medium is anisotropic. By solving an
inverse problem the full tensor of hydraulic conductivity
is obtained. However, this technique requires sophisti-
cated equipment thus imparting practical limitations.

The aim of this paper is to proposc the theoretical
foundations for a new technique. The theory is illus-
trated through usc of a numerical experiment. Some
preliminary laboratory results demonstrate the poten-
tial of the theory as well as the limitations of our in-
strumentation.
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Figure 1. Numerical evaluation of the error made by measuring the permeability of an

anisotropic sample with a standard permeameter. (a) System of coordinates and principal com-

ponents of the permeability.

(b) Shape of the cylindrical sample showing the finite element

discretization as well as the distribution of hydraulic head. (c-e) Ratio of the apparent perme-
ability by the major component of the real tensor (k,,/ki) as a function of the angle a. The
three plots correspond to different shape factors {/d of the sample.

2. Preamble

Before presenting the new methodology, it is worth
clarifying what happens when a standard permeameter
is used to determine the permeability of an anisotropic
medium. For this purpose, we made a series of nu-
merical simulations assuming a cylindrical sample (as
is often the case in practice). To simplify the prob-
lem, the hydraulic conductivity tensor is assumed to
have one major principal component k; [L T~!] and
two identical intermediate and minor principal compo-
nents k» [L T7']. In such a case, the symmetry of
the system allows the principal direction of anisotropy
to be defined with only one angle « between the axis

of the cylinder and the direction of k; (Figure la).
The shape of the cylinder is defined by two param-
eters: its diameter d [L] and its height [ [L]. For
several combinations of these parameters a numerical
simulation with the mixed hybrid finite element code
CASTEM [Commissariat ¢ ’Energie Atomique, 1997]
was performed to calculate the total flux through the
cylinder @) with a fixed constant head on both ends of
the cylinder and to estimate the apparent conductivity
kap = (Q1)/[w(d/2)*Ah]. This value is the conductivity
that one would measure with a standard permeameter.

Figure 1b shows the distribution of the hydraulic
head for one of the simulations with I/d = 1. As im-
posed by the boundary conditions, the top and bottom
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Figure 2. Example of the distribution of the specific
discharge vectors inside a sample with a principal direc-
tion of anisotropy oriented at an angle of 45° with the
side of the permeameter and [ = d.

of the cylinder have a constant head, while the distribu-
tion along the side of the cylinder (where a no-flow con-
dition is imposed) is tilted. If the sample were isotropic,
the head would vary linearly from top to bottom.

Figures 1c, 1d, and le show the relative error kqp/k:
as a function of the dimensionless parameters [ /d, k1 / ko,
and a. When the angle o = 0, k; is aligned with the
axis of the permeameter and the apparent conductivity
is equal to the real conductivity. As « increases, the er-
ror becomes a function of «, of the shape of the sample
l1/d, and of the conductivity contrast ki /k». This error
is generally small for small values of « with clongated
samples (Figure 1¢) but can significantly increase when
the sample has a diameter larger than its height (Figure
le).

Before presenting the new methodology, it is also im-
portant to note that in a standard permeameter the
specific discharge vectors are not constant inside the
anisotropic sample (as they would be in an isotropic
sample) and that they are systematically oriented in a
direction imposed by the principal directions of aniso-
tropy (Figure 2). Similarly, the head gradient inside an
anisotropic sample varies in space.

3. Methodology

In this approach, we define the hydraulic conductivity
of the sample as its equivalent hydraulic conductivity
tensor K (boldface is used to denote vectors and tensors,
and italics are used to denote scalars). "According to
Rubin and Gdémez-Herndndez [1990], K is the constant
of proportionality between the averaged head gradient
and the averaged specific discharge q inside the volume
V" of the sample:

26,445

= [ ax)dV =-K l/ Vh(x) dV, (1)
v v V Vv

where K is a second-order positive tensor and x is the
space Cartesian coordinate.

This definition requires knowledge of the entire dis-
tribution of h and q inside the sample; however, the vol-
ume integrals involved in this definition can be replaced
by surface integrals [Sdnchez-Vila et al., 1995]. For ex-
ample, the averaged head gradient in the z direction
Vh, (note that the overbar signifies spatial averages) is
the scalar product of the averaged gradient by the unit
normal vector n, in the x direction:

Th, = i/ Vh - n, dV. 2)
V Vv

Integrating by parts allows replacement of the volume
integral by a surface integral:

VR - = /hnw'ndS—/hV-nde
vV /s v
(3)
= % Shnz~ndS,

where S is the boundary of the sample, n, is the unit
vector in the z direction, and n is the unit vector nor-
mal to the elementary surface of integration dS. Know-
ing the geometry of the sample and the distribution of
heads on its surface is therefore sufficient to calculate
the average head gradient inside the sample.

Similarly, the averaged specific discharge in the z di-
rection q, is defined by a volume integral:

1
V Vv

However, an integration by parts shows that it can be
replaced by a surface integral under steady state condi-
tions (V- q = 0):

1
q, = V{/@q-ndS—/'xV'qu]
5 v

1
V/qu-nds.

Again, this integral can be easily evaluated knowing the
geometry of the sample and measuring the distribution
of the fluxes on the boundary of the sample.

At this stage of the methodology, we know that we
can determine the components of the averaged specific
discharge vector and the components of the averaged
head gradient during a flow experiment. The vectorial
equation (1) provides a system of three equations with
six unknowns: the components of the hydraulic conduc-
tivity tensor. This linear system is underdetermined.
Because the hydraulic conductivity tensor should be
independent of the flow conditions, we propose to use
different boundary conditions leading to different flow
directions and to calculate the hydraulic conductivity

(3)
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Plate 1. Photograph of the full tensor permeameter prototype. In this case, the permeameter is
filled with lem thick layers of two different types of glass beads inducing an artificial horizontal
anisotropy.

tensor which verifies at best, according to least squares
criteria, equation (1) for all flow directions. The im-
plementation of the least squares system is discussed in
appendix A.

4. A Prototype of a Tensorial
Permeameter

To test this methodology, a prototype tensorial per-
meameter was designed. The system consists of a plex-
iglass cubic box (inner dimension of 20 cm x 20 cm X
20 ¢cm) with a removable top. The lateral walls have a
thickness of 1 ¢cm, and the top and bottom walls have
a thickness of 1.5 cm. Sixty-two piezometers are evenly
distributed on all the faces and the edges of the cube
(Plate 1). One circular opening (6.5 mm in diameter)
located in the middle of each of the six faces can be used
to connect a constant head device. The cube is filled
with glass beads. A rubber membrane (2 mm thick)
fixed on the cap of the permeameter is used to com-
press the packing when the permeameter is closed. The
experimental procedure involves performing a series of
steady state flow experiments by successively applying
fixed heads at selected inlet and outlet ports. The head
at the inlet is kept constant with a Mariotte bottle. The
outlet is kept at atmospheric pressurc. The heads are

read on piezometric scales (mm accuracy). Technical
difficulties were encountered in obtaining heads at the
inlet and outlet ports. As such, a syringe was used, lo-
cated near the middle of the port just behind the porous
medium. The total flux through the sample was mea-
sured by weighing the mass of water flowing through
the sample for a given period of time.

To calculate the average head gradient and the aver-
age specific discharge vector, we have to discretize (3)
and (5) taking into account the geometry of the perme-
ameter and the boundary conditions that were imposed.
Figure 3a shows a sketch of the permeameter; each face
has been labeled from S4 to Sr. We consider now the
situation where we impose a flow between the centers of
face S4 and S¢. S; denotes the surface of the opening
in the center of S4 where we apply a constant head hy,
and S denotes the surface of the opening in the center
of S¢ where we impose hs. Finally, S3 represents all
other boundaries where a no-flow condition exists. In
summary, we have the following set of boundary condi-
tions:

Over S, h=h,
Over Sy  h=hs, (6)
Over S3 q-n=0
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where n is the unit normal vector. Note that S =
SiuUS2US; and S = S4U---USF are two separate
subset patterns of the total surface S of the cube. Sy
to S; represents one pattern corresponding to the hy-
draulic boundary conditions, while S,y to SF represents
a sccond pattern corresponding to the geometric faces
of the cube.

Now, we can calculate the average head gradient. Let
us start with the 2 component Vh,:

— 1
Vhw:—;/hnw'ndS. (7)
Vs

To simplify the surface integral, we need to break it
down for each face S4 to Sp of the cube. The scalar
products of the unit normal vectors n, and the normal
vector to the face n are equal to zero for the faces Sa,
Sr, Sc, and Sg; and equal to -1 for Sp and 1 for Sp.
Therefore the averaged head gradient in the z direction
is equal to the difference between the averaged heads
on the faces Sp and Sp divided by the volume of the
cube:

h:i(/ hdS — hdS> 8)
v SB Sp

W:v =7 (9)

or

where L is the length of the edge of the cube and h; rep-
resents the average head on face S;, i € {A,C, D, E, F},

rhere
A 1

hi=—= [ hdS.
A

The components in the y and z direction are obtained
with:

(10)

he = ha
L
hg —hr
-7
The components of the average specific discharge vec-
tor are obtained in practice by simplifying (5). First,
the integral is decomposed in a sum of integrals over
the elementary surfaces Sy, Ss, and S3. The integral
over S3 vanishes because of the no-flow boundary con-

Vh, = (11)

Vh, = (12)
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Figure 3. Schematic of the new permeameter indicat-
ing the two conventions used to name the faces of the
cube (a) geometry and (b) boundary conditions.
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dition. Then we assume that the coordinates (z, y, 2)
are constant over the small inlet and outlet surfaces S,
and S;. We get

. = = —z2),
ay = %2; (y1 - y3) 3 (13)
ﬁ: = % (Zl - ZQ) ’

where () is the total flux through the permeameter.

5. Numerical Test

Numerical tests were performed in two and three di-
mensions with different types of boundary conditions,
all showing that the methodology works. For illustra-
tion purposes, we present only one three-dimensional
(3-D) experiment with the same geometry and bound-
ary conditions as the prototype. We meshed the 20-
cm side cube with 15,625 regular finite elements. The
medium is homogeneous and anisotropic.

We arbitrarily fix the hydraulic conductivity tensor
such that it has three different principal components
kv = 100, k2 = 10, and k3 = 1. We do not give any
unit to these conductivities since we are only interested
in the comparison between the calculated and reference
conductivity. The main axes of anisotropy are obtained
through a series of three successive rotations: the first
centered around the z axis with an angle of 7/6, the
second centered around the y axis with an angle of 7/3,
and the third centered around the x axis with an angle
of w/4. Finally, the resulting hydraulic conductivity
tensor K¢pye is imposed in the numerical model:

20.125  —-37.2016 —9.6449
Kirue = | —37.2016 79.1875 129375 | . (14)
-9.6449 129375 11.6875
Note that the eigenvectors are
—0.433013
vy = 0.883883 ,
0.176777
—0.250003
ve = | —0.3016188 |, (15)
0.918357
0.866025
vy = | 0.353552
0.333557

The flow equation is solved with CASTEM. Plate 2
shows the calculated distribution of heads on the surface
of the cube when the center of the faces E and F are
the inlet and outlet. On the basis of the calculated
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Plate 2. Calculated heads distribution displayed on
the faces of the permeameter in the case of a full 3-D
anisotropy.

heads and fluxes and the application of the proposed
methodology we get the following tensor:

20.1364 —37.2252 —9.64899
Kest = | —37.2252 79.2364 12.946 (16)
—9.64899  12.946 11.6888

with eigenvalues k; = 100.062, k> = 9.99985, and k3 =
1.00005. The eigenvectors are

—0.43301
0.883888 |,
0.176761

Vi =

—0.250008
-0.3016172 |,
0.918561

Vo =

0.866024
0.353555
0.333595

Vg =

This numerical example shows that the methodology
allows us to estimate correctly the tensor of hydraulic
conductivity. The calculated tensor is very close to the
original, and the eigenvalues and eigenvectors are also
very well reproduced.
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Face C

All our numerical experiments with isotropic and
anisotropic homogeneous media, in two and three di-
mensions, systematically show an excellent agreement
between the input hydraulic conductivity tensor and
the estimated one. Tests with heterogeneous stratified
media also provide good results [Renard, 1998].

6. Laboratory Experiments

Using the prototype, we conducted three series of ex-
periments. In the first experiment the permeameter was
filled with an homogeneous packing of 1-mm-diameter
glass beads. In the second experiment we made 1-cm-
thick horizontal strata by alternating 1-mm-diameter
glass beads and smaller beads having diameters between
0.4 and 0.6 mm. In the third experiment the permeame-
ter was filled with 1-mm glass beads partitioned by with
five plastic sheets having specific holes and oriented at
an angle of 18.8° with the horizontal plane (Figure 4).
For each case, at least three flow experiments along the
three principal directions were conducted.

For each experiment, special care was taken in pack-
ing the beads. We used a sand raining procedure al-
ready reported by Stauffer and Dracos [1986]. A special
apparatus was employed. The beads were funneled into
this device where they fall freely for a fixed distance

[l

755

750

T45

Ta0

g

Plate 3. Distribution of measured hydraulic heads.
The circles correspond to the locations of the measure-
ments. The isolines are obtained by linear interpolation
between the measurements.
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Figure 4. Schematic of the technique used to create an
artificial inclined anisotropy with five plastic sheets. (a)
Vertical cross section through the permeameter (paral-
lel to face A). (b) Map view of the plastic sheets with
the four openings.

and then pass through a series of sieves before reaching
the surface of the packing. With this method, a dense
packing is produced. For the tensorial permeameter we
had to position and move this device manually because
its diameter was smaller than the surface of the perme-
ameter. The medium is then flushed with CO3 to avoid
trapping air bubbles. Finally, the medium is slowly sat-
urated with water from bottom to top.

To check the results of the tensorial permeameter,
we need to have reference values. For this purpose,
the hydraulic conductivity of each glass bead packings
was measured independently with a standard cylindri-
cal permeameter. The packings were made with the
same tool and procedure as that for the tensorial per-
meameter. For each packing, a series of six to nine ex-
periments with different head gradients were realized.
For each experiment the propagation of head gradients
and flow rates uncertainties are calculated. The hy-
draulic conductivity and its uncertainty are obtained
with a standard least squares procedure. The conduc-
tivities that we obtain are (9.5+0.7) x 1073 m/s for the
1-mm beads and (2.08 £0.05) x 1072 m/s for the 0.4- to
0.6-mm beads. In the same device we determined the
conductivity perpendicular to the layers of the horizon-
tally stratified media: (3.1+0.2) x 1072 m/s. This is in
agreement with the harmonic average of the conductivi-
ties of the two types of medium with a smaller error bar
than the calculated value: (3.4 +0.5) x 1072 m/s. The
reference conductivity parallel to the layers was calcu-
lated by taking the arithmetic mean of the two conduc-
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tivities and propagating the errors: (5.8 +0.4) x 1073
m/s.

Now we report the results of the third series of ex-
periments in the tensorial permeameter involving the
inclined anisotropy. Plate 3 shows the distribution of
the hydraulic heads on the surface of the sample. The
influence of anisotropy is clearly visible since the iso-
lines of constant head are not parallel to the edges of
the cube but inclined. Applying the proposed method-
ology to the measurements, we get

30+£5 -06+06 -0.7+0.7
K.t = —0.6£0.6 217 2+1
—-0.7£0.7 2+1 14+ 2
x107%  (m/s).

(18)
The uncertainties are calculated through the propaga-
tion of errors due to head measurements and interpola-
tion. The eigenvectors of the tensor are oriented such
that the principal direction of anisotropy is inclined
with an angle of 16°with the horizontal direction. This
is encouraging since we expect an angle of 19°. Fur-
thermore, from the calculation we obtain a nonzero K¥*
value. K and K*7 are not significantly different from
zero, which is expected. However, the eigenvalues are
not satisfactory (ky = 3.0 x 1072 m/s, ka = 2.1 x 1072,
m/s and k3 = 1.3 x 1072 m/s). The reference for the 1-
mm glass beads is (9.5+0.7) x 1072 m/s. The first two
components are too large and are not equal, as they
should be. The third component is smaller than the
first two but again is too large compared to the refer-
ence conductivity.

The results of the experiments conducted with the
isotropic and horizontally stratified media are presented
in Table 1. The off-diagonal values of the tensors ap-
proximate zero. The principal direction of anisotropy
are parallel to the coordinate axes and therefore are
correctly identified. However, the eigenvalues are not
correctly determined. There is a general tendency to
overestimate them.

7. Discussion

Both theoretical and numerical arguments show that
it is possible to determine the full permeability tensor of

Table 1. Comparison of Components of Hydraulic Conductivity Tensor Determined with Ten-

sorial Permeameter and Reference Values?®

KII Kyy KZZ KIy K’IZ Ky:
Isotropic 29 £ 5 12 £ 3 15 £3 -0.3 £0.5 0.3 +£0.5 0.2 £0.3
Reference 9.5 £ 0.7 9.5 £ 0.7 9.5 £ 0.7 0 0 0
Stratified 12 + 2 10 = 3 7.5 £ 1.3 0.1 £0.1 0.03 £ 0.1 -0.07 £ 0.09
Reference 5.8 £ 0.4 5.8 +0.4 3.1 £0.2 0 0 0

@In mm /s. Errors correspond to the 68% confidence limit interval.
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a sample with a series of at least three steady state flow
experiments. The methodology is simple. Compared to
existing technology, this approach presents several ad-
vantages: (1) it does not assume a priori any principal
direction of anisotropy; (2) it does not mix the effect of
anisotropy and heterogeneity since the tensor is mea-
sured directly for a given sample and not constructed
after measuring the conductivity of orthogonal samples;
(3) it does not require modification of the geometry of
the sample between different flow experiments as is re-
quired in the techniques proposed by Moore [1979] or
Rose [1982]; (4) it does not require the numerical so-
lution of a complete inverse problem as proposed by
Bernabé [1992] or Bieber et al. [1996]; (5) it does not
require a highly sophisticated apparatus such as that
used in the tracer injection method [Bieber al., 1996];
and (6) the theory is not limited to a particular sam-
ple shape or special boundary conditions, but is limited
by its ability to measure or to impose a distribution of
heads and fluxes along the boundary of the sample.

Despite these advantages and the excellent results
obtained with the numerical examples, the results of
the laboratory experiments are somewhat disappoint-
ing. The eigenvalues of the permeability tensor were
always estimated with a rather large error compared
to the expected results; that is, the references often do
not fall within the error bars of the measurements. We
also obtain significant anisotropy between K**, K¥Y,
and K?* when we do not expect it. We can ask: Are
the estimated uncertainties too small or the references
incorrect?

Let us discuss first the estimation of the uncertain-
ties. The uncertainties are much smaller for the average
specific discharge components (~2%) than for the head
gradients (~25%).

For the specific discharge the sources of uncertainty
are the techniques used to measure the time and the
mass of fluid flowing through the permeameter. For
the head gradients, there are several sources of uncer-
tainty: imprecise reading of piezometer heads (2 mm
uncertainty), errors of head measurements in the inlet
and outlet ports due to local effects, and errors when
linearly interpolating the heads from the 17 measure-
ments. The interpolation error is a function of the shape
of the head distribution at the face. It is estimated with
the numerical model to be ~10% to 20% for the head
gradient in the direction of flow and to be <2% for the
head gradient in the perpendicular direction. For the in-
let and outlet ports we observe that the heads measured
are strongly affected by unpredictable local phenomena.
Sixty percent of our experiments for the isotropic case
show an important asymmetry in the head drop at the
inlet and the outlet port. For example, we can generate
a head of 140 cm at the inlet, an average head of 60 cm
in the media, and a head of 40 cm at the outlet. This
asymmetry is not systematic and is not related to spe-
cific inlet or outlet ports. We interpret the asymmetry
as a result of localized effects around the ports creating
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an artificial conductance or resistance where the flow is
concentrated. We estimated this error by analyzing the
asymmetry of all experiments on isotropic media and
obtained 20 cm. Finally, the error on the head gradient
in the main flow direction is dominated by the inter-
polation error and by the local effects at the inlet and
outlet ports. We estimate the total uncertainty to be
around 25%. The errors on the head gradient in the
directions perpendicular to the flow are much smaller.
They are dominated by reading errors. We estimate the
absolute error in this case to be around 2 mm.

Could the reference be incorrect? Several phenomena
can affect the reference. First, we may have created an
artificial anisotropy by manually moving the sand rain-
ing device above the permeameter while filling it. Sec-
ond, the packing may be less dense in the tensorial per-
meameter than in the standard permeameter because
we had to move the sand raining device. We cannot
quantify the potential errors of these two phenomena,
but if they affect our experiments, they would likely pro-
duce higher conductivities in the tensorial permeameter
than in the standard one. Third, the plexiglass walls of
the tensorial permeameter may be deforming during the
flow experiment, creating additional void space and ar-
tificially increasing the apparent conductivity. We cal-
culated that the maximum deflection at the center of
the walls to be ~0.2 mm for the lateral walls and 0.04
mm for the top and bottom walls. To estimate the pos-
sible influence of this deformation on the apparent con-
ductivity of the medium, we assume the following: we
neglect the deformation of the top and bottom; we sum
up all the additional void space, and we calculate an
average aperture corresponding to a single plane frac-
ture representing the total void space; we then calculate
the flow through this fracture with Poiseuille’s law. In
doing so, we obtain a mean aperture of 0.53 mm and
an increase in the apparent conductivity of the medium
equal to 6.2 x 107* m/s. The apparent conductivity
could then increase from 9.5 x 1073 to 11 x 1073 m/s.
This still does not help explain the value of 29 x 1073
m/s that we obtained for K** for the isotropic case.
Furthermore, our estimation of the increase in conduc-
tivity is probably an overestimation since the packing
is compressed by the rubber membrane along the top
and because the total deformation is not concentrated
along a single plane.

Therefore, if we believe that the reference is accept-
able, then we must conclude that the errors are not
estimated properly. Then we can question the validity
of our experimental observations: Did we really observe
a significantly nonzero crossterm?

As a final remark, it is important to realize that the
uncertainty of the head gradient has a high impact on
the tensor of conductivity. We investigated this problem
numerically and in particular the problem of insufficient
data to calculate the average head on the faces of the
sample. For example, if we take the theoretical numeri-
cal example of section 5 for which we know the reference
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conductivity as well as the calculated head distribution
on the faces of the cube, if we sample the heads at the
position of the actual piezometers to estimate the mean
heads, and if we apply our technique to get the conduc-
tivity tensor, we then obtain the eigenvalues: ky = 25,
ks = 7.4, and k3 = 0.96 instead of 100, 10, and 1.

8. Conclusion

This paper presents an innovative and simple tech-
nique for determining the full hydraulic conductivity
tensor of a sample in the laboratory. The main motiva-
tion is not necessarily to obtain the tensor itself (which
may or may not be representative of a large domain)
but to avoid significant measurement errors that can
occur in a standard permeameter when the anisotropy
is not aligned with the axes of the sample.

The theory is general, and it does not require spe-
cial boundary conditions or a particular shape for the
sample. The numerical experiments show that the the-
ory gives excellent results. Unfortunately, our labora-
tory experiments are not conclusive. We may have been
able to detect a significant cross term of the conductiv-
ity tensor for an inclined anisotropy, but this may also
be due to measurement errors. It is therefore necessary
to pursue the experimental work to reduce the uncer-
tainty and to provide a clear answer to the question: Is
it possible to use this technique.in practice or is it just
a beautiful but useless theoretical idea?

Appendix A: The Least squares
Formulation

In the general case, the system of equations to de-
termine the conductivity tensor is a multiple regression
problem. The discharge is a function of three head gra-
dients. The general least squares system is available
from Renard [1998].

In the specific case of the prototype that we are dis-
cussing here, we can simplify considerably the least
squares problem because for each experiment there is
only one component of the discharge vector which is not
zero. We also know (see section 7) that the uncertainty
of head gradients is much larger than the uncertainty of
the discharge. Therefore we write the flow equations in
term of resistivity instead of conductivity, and we can
separate the least squares equations for every compo-
nent of the resistivity tensor:

Vh; = _Ruv-(iin (Al)
where 1 € 1,...,n is an index over the experiments
and u,v € {x,y,2}> are indices over the directions.
To respect the symmetry of the tensor, we impose
Ryv = Ryy. In the end, we have to solve six standard
linear least squares systems to get the six components of
the tensor and their respective uncertainties. The con-
ductivity tensor is obtained by inverting the resistivity
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tensor, and the uncertainties are obtained by propa-
gating analytically the uncertainty through the matrix
inversion.
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