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Abstract. Fast upscaling of hydraulic conductivity is a recurrent problem in modeling
flow through heterogeneous porous media. We propose a new renormalization technique.
It is based on the iterative application of the Cardwell and Parsons [1945] bounds on
elementary groups of cells. The combination of the bounds with a heuristic formula allows
anisotropy to be taken into account. The new technique is tested and compared with other
fast techniques. Among the tested techniques the two most reliable ones are the tensorial
renormalization and the new simplified renormalization. The numerical efficiency of the
simplified renormalization leads us to recommend it when a diagonal tensor of equivalent
conductivity is sufficient.

1. Introduction

Modeling groundwater flow and transport requires a realis-
tic description of the spatial distribution of hydraulic conduc-
tivity to capture flow paths and to make realistic forecasts of
groundwater behavior. As discussed by de Marsily et al. [1998]
and Koltermann and Gorelick [1996], statistical and genetic
tools can be used to describe the underground distribution of
hydraulic conductivity. Geological models generated by these
tools often produce a very high spatial resolution which cannot
be used directly in groundwater flow and transport models
given currently available computer resources. It is necessary to
adopt a much coarser description. This upscaling comprises
the calculation of spatial averages of the hydraulic conductivity
over blocks of the geological model that can be used directly in
the groundwater model. This problem is different from the
problem of finding a unique effective conductivity for the
whole aquifer. Renard and de Marsily [1997] and Wen and
Gómez-Hernández [1996] present extensive reviews of upscal-
ing theories, analytical results, and numerical techniques.

In this paper, we develop a fast real-space renormalization
algorithm to calculate block conductivities. The essence of
renormalization is to apply composition rules to groups of cells
at the local scale to produce “composite” cells and then to
successively reapply the same rules to the resulting composite
cells until the desired coarse-scale resolution is achieved. The
basic assumption is that the upscaling rules are scale invariant.
When the probability distribution of the local-scale conductiv-
ity is known, it is possible to follow the evolution of the prob-

ability distribution of hydraulic conductivity with scale. This
approach was initially developed in the field of physics [Wilson,
1971, 1975; Reynolds et al., 1977; Bernasconi, 1978; Shah and
Ottino, 1986]. Recently, real-space renormalization has been
applied to a broad range of problems related to the physics of
groundwater in porous and fractured media [King, 1989; Aha-
rony et al., 1991; Saucier, 1992; King et al., 1993; Hinrichsen et
al., 1993; Zimmerman and Bodvarsson, 1996; Gautier and
Nœtinger, 1997; Xu et al., 1997; Jaekel and Vereecken, 1997;
Hansen et al., 1997; Gavrilenko and Guéguen, 1998]. We do not
consider the probabilistic aspect of renormalization group the-
ories, but, instead, we focus our work on the spatial averaging
scheme. Previous schemes [King, 1989; Hinrichsen et al., 1993;
Gautier and Nœtinger, 1997] solve a flow problem on the ele-
mentary groups of cells at the local scale by fixing the boundary
conditions of the groups. Our approach is different and is
based on applying Cardwell and Parsons [1945] bounds itera-
tively. At the end of the iteration process we obtain two values
more closely spaced than the bounds that would be obtained by
direct calculation on the full mesh, and we average these with
a heuristic formula based on the analytical development of
Romeu [1994].

Renormalization algorithms are computationally efficient
but subject to approximation errors. The major aim of our
research is to investigate possible errors and to compare the
renormalization schemes with a set of other fast techniques.
The comparison is based on a very large number of numerical
experiments conducted on synthetic media at two different
scales. This approach was pioneered by Warren and Price
[1961] and followed by many researchers [Desbarats, 1987; Le
Loc’h, 1987; Deutsch, 1989; Ababou et al., 1989; Gómez-
Hernández, 1991; Lachassagne et al., 1990; Bachu and Cuthiell,
1990; Hinrichsen et al., 1993; Desbarats, 1992; Sànchez-Vila et
al., 1995; McCarthy, 1995]. The synthetic media were generated
by truncated Gaussian and Boolean methods with strong an-
isotropy in both cases. They represent a priori nontrivial situ-
ations for the upscaling problem.

For each medium a reference block conductivity is calcu-
lated by solving numerically the usual Laplace flow equation
using finite element or finite difference methods. This step
provides reference values to compare the upscaling techniques.
It is important to recall that Lachassagne et al. [1990] and later
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Romeu and Nœtinger [1995] have shown that such reference
values are in general significantly biased. Lachassagne et al.
[1990] showed that for a lognormal two-dimensional medium,
finite element techniques overestimate the conductivity, while
finite difference techniques give different biases that depend
on the intermesh averaging rule. With the usual harmonic
averaging rule, finite differences underestimate the equivalent
conductivity. In all cases, Lachassagne et al. [1990] showed that
the problem can be solved by overdiscretizing the mesh; each
cell of constant conductivity has to be discretized in subele-
ments. However, the level of required overdiscretization is
generally difficult to predict. It depends on the degree of het-
erogeneity, the correlation structure of the heterogeneous me-
dia, and the numerical scheme. Historically, this has led to a
series of wrong conclusions when researchers have compared
numerical results with analytical formulae. The reader is re-
ferred to Romeu [1994] for a more detailed discussion. In this
work, the use of both finite element and finite difference tech-
niques, without solving this difficulty, allowed a check on
whether or not the comparison was dependent on the numer-
ical bias.

2. Fast Techniques
A fairly complete review of past research in the area of

upscaling has been conducted [Renard and de Marsily, 1997].
The following seven methods were selected and compared with
the proposed simplified renormalization.

2.1. Arithmetic ma and Harmonic mh Means

The arithmetic ma and harmonic mh means are the upper
and the lower bound for upscaled permeability, respectively
[Wiener, 1912; Cardwell and Parsons, 1945; Matheron, 1967; Le
Loc’h, 1987; Dagan, 1989]. They are the exact values in the case
of a stratified medium with flow respectively parallel or per-
pendicular to the strata.

2.2. Geometric Mean mg

The geometric mean mg is the exact upscaled value in an
infinite two-dimensional medium, if the normalized local per-
meabilities k/E(k) and their inverses k21/E(k21) have the
same probability density function (pdf), if this pdf is invariant
by rotation of 908 and if the flow is uniform [Matheron, 1967].
This is true in the cases of a chessboard and of a lognormal
isotropic medium. In practice, it can be considered as a good
effective value in two dimensions, even in radial flow condi-
tions [Meier et al., 1998].

2.3. Landau-Lifshitz-Matheron Conjecture m1/3

Landau and Lifshitz [1960] in the framework of electrody-
namics, and Matheron [1967] in the context of uniform flow
through porous media, made the conjecture that the first-order
approximation of the effective conductivity of a three-
dimensional isotropic heterogeneous medium would be

Kef 5 ma
2/3mh

1/3. (1)

An alternative equivalent expression for this conjecture is a
power average with an exponent of one third [Nœtinger, 1994]:

Kef 5 m1/3 5 S 1
V E

V

k~x!1/3 dxD 3

, (2)

where V is the averaging volume, k is the local-scale conduc-
tivity, and x is the spatial coordinate. This conjecture has been
the subject of intensive research [Gutjahr et al., 1978; Gelhar
and Axness, 1983; King, 1987; Dagan, 1993; Kozlov, 1993;
Nœtinger, 1994; Abramovich and Indelman, 1995; De Wit, 1995;
Teodorovich, 1997; Pozdniakov and Tsang, 1999]. Numerical
experiments have shown a good agreement with the conjecture
for lognormal media even for high variances [Dykaar and
Kitanidis, 1992; Desbarats, 1992; Neuman and Orr, 1993] even if
the latest analytical developments [Abramovich and Indelman,
1995; De Wit, 1995; Teodorovich, 1997] indicate that the con-
jecture is only an approximation.

2.4. Romeu’s Formula kr

Following the idea that the actual conductivity of a hetero-
geneous medium can be obtained by averaging theoretical
bounds with an adequate procedure, one possibility is to use
some bounds which are closer than the arithmetic mean and
the harmonic mean and then to average them. Whatever the
averaging procedure, the closer the bounds are, the smaller the
expected errors are.

Duquerroix et al. [1993] and Romeu [1994] proposed such a
technique using the Cardwell and Parsons [1945] bounds. Re-
call that Cardwell and Parsons [1945] and Le Loc’h [1987]
showed that the equivalent permeability for a uniform flow in
a given direction is bounded by (1) the harmonic mean of the
arithmetic means of the local permeabilities, calculated over
each slice of cells perpendicular to the given direction (upper
bound denoted K1),

K1 5 mh
x~ma

y~ma
z!! 5 mh

x~ma
z~ma

y!!

5
nx

nynz
F O

i51

nx S O
j51

ny O
k51

nz

ki, j,k
xx D 21G 21

, (3)

and (2) the arithmetic mean of the harmonic means of the local
permeabilities, calculated on each line of cells parallel to the
given direction (lower bound denoted K2),

K2 5 ma
y~ma

z~mh
x!! 5 ma

z~ma
y~mh

x!!

5
nx

nynz
O
j51

ny O
k51

nz F O
i51

nx

~ki, j,k
xx !21G 21

. (4)

Le Loc’h [1987] proposed to take the geometric average of
these bounds Kb 5 =K1K2. Lemouzy [1991] introduced, in
three dimensions, two intermediate values K3 and K4 into the
formula:

K3 5 ma
y~mh

x~ma
z!! , (5)

K4 5 ma
z~mh

x~ma
y!! , (6)

Kb 5 Î6 ~K1!
2~K2!

2K3K4. (7)

Finally, Romeu [1994] and Duquerroix et al. [1993] introduced
an exponent to account for anisotropy:

kr
xx 5 K1

~uy2uz31uz2uy3!K2
~12uy32uz3!K3

~12uz2!uy3K4
~12uy2!uz3. (8)

The exponents are derived from a small perturbation calcula-
tion of the equivalent permeability in the case of an anisotropy
due to flat cells and/or to a constant anisotropy of directional
permeability in the domain [Romeu, 1994]:
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u y2 5
arctan Îay

p/ 2 , (9)

u z2 5
arctan Îaz

p/ 2 , (10)

u y3 5
u y2~1 2 u z2!

1 2 u y2u z2
, (11)

u z3 5
u z2~1 2 u y2!

1 2 u y2u z2
; (12)

ay and az are the anisotropy factors defined by

ay 5 ~kyy/kxx!~dx/dy!
2 (13)

az 5 ~kzz/kxx!~dx/dz!
2, (14)

where dx, dy, and dz represent the size of the cells and the
local conductivity anisotropy ratios kyy/kxx and kzz/kxx which
are assumed to be constant over the whole mesh. An alterna-
tive empirical technique to average the Cardwell and Parsons
[1945] bounds has been proposed by Li et al. [1999] but has not
been studied here.

2.5. Standard Renormalization rs

We call the algorithm proposed by King [1989] standard
renormalization. The upscaled permeability is calculated by a
series of successive aggregations on elementary groups of four

(in two dimensions) or eight (in three dimensions) cells fol-
lowing an electrical analogy. This electrical analogy is equiva-
lent to a finite difference calculation with intermesh transmis-
sivities calculated with a harmonic mean and with prescribed
boundary conditions of constant head on two opposite faces
and no flow on the other faces.

2.6. Tensorial Renormalization rt

The tensorial renormalization was developed for the fast
detection of preferential flow paths in heterogeneous media
[Gautier and Nœtinger, 1997]. The differences from the stan-
dard algorithm are the use of a “direct” finite element scheme
avoiding the calculation of intermesh transmissivities and the
use of periodic boundary conditions that allow the calculation
of a complete conductivity tensor. We extended the equations
of Gautier and Nœtinger [1997] in three dimensions.

3. Simplified Renormalization
The simplified renormalization algorithm allows the estima-

tion of a diagonal tensor of hydraulic conductivity. We describe
the algorithm for the estimation of kxx. The procedure is the
same for the other directions.

In the first step we group the cells alternatively in parallel
and in series with respect to the direction of calculation. If the
two cells are in series, they are replaced by a unique cell whose
conductivity is the harmonic mean mh 5 2k1k2/(k1 1 k2) of
the conductivity of the cells (Figure 1). If the two cells are in
parallel, we use the arithmetic mean ma 5 (k1 1 k2)/ 2
(Figure 1). This basic procedure is systematically repeated
until we get a unique value. The order of grouping influences
the final result. In two dimensions (Figure 2) we can start with
a grouping in series along the x direction, then we group the
new pairs in parallel along the y direction, then we repeat this
basic algorithm until we get a value that we denote cmin

xx ,
represented by

cmin
xx 5 ma

y~ . . . ma
y~mh

x! . . . ! . (15)

Alternatively, we can start with a grouping in parallel along the
y direction, then we group the new pairs in series along the x
direction, then we repeat the algorithm to get a value denoted
cmax

xx :

cmax
xx 5 mh

x~ . . . mh
x~ma

y! . . . ! . (16)

Figure 1. Local formula to calculate the upscaled permeabil-
ity for a group of two cells. It is the arithmetic mean ma when
they are in parallel and the harmonic mean mh when they are
in series.

Figure 2. Simplified renormalization procedure in two dimensions. The cells are grouped two by two
iteratively in order to finally obtain two values denoted cmin and cmax.
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In three dimensions, there are four possibilities:

cmin
xx 5 ma

y~ . . . ma
y~ma

z~mh
x!! . . . ! 5 ma

z~ . . . ma
z~ma

y~mh
x!! . . . ! ,

(17)

cmax
xx 5 mh

x~ . . . mh
x~ma

z~ma
y! . . . ! 5 mh

x~ . . . mh
x~ma

y~ma
z!! . . . ! ,

(18)

c3
xx 5 ma

y~ . . . ma
y~mh

x~ma
z!! . . . ! , (19)

c4
xx 5 ma

z~ . . . ma
z~mh

x~ma
y!! . . . ! . (20)

In general, cmin and cmax are different; cmin is always smaller
than or equal to cmax. This is not surprising because we calcu-
lated the Cardwell and Parsons [1945] bounds on each elemen-
tary group of cells. It is therefore expected that the true con-
ductivity of the medium is between cmax and cmin. Note that (1)
the difference between cmax and cmin is smaller than the dif-
ference between the Cardwell and Parsons bounds, and (2)
there is no theoretical proof that cmax and cmin are actual
bounds of the equivalent hydraulic conductivity. We have not
used the values c3 and c4.

In the case where the cells are not of the same size and their
conductivity is not isotropic, the equivalent conductivity of the
pair of cells can be calculated with the analytical formula
provided by Quintard and Whitaker [1987, equation 3.36]. We
have not applied this, but the final equivalent conductivity
would be a full tensor.

The anisotropy due to the spatial structure of the distribu-
tion of the hydraulic conductivity is taken into account by the
iterative procedure described above. Another kind of anisot-
ropy arises when the grid cells are not cubic but are flattened.
In this case we propose a formula to estimate Kb as a combi-
nation of cmin and cmax, taking into account the anisotropy due
to the flattening of the cells. We use the classical technique of
an exponent varying between 0 and 1:

Kb
ii < cii 5 ~cmax

ii !a~cmin
ii !12a a [ @0, 1# i [ $ x , y , z% .

(21)

The anisotropy ratio due to flat cells is defined as

aj
i 5 ~di/dj!

2 ~i , j! [ $ x , y , z%2, (22)

where di and dj represent the size of the cells in directions i
and j . The numerical experiments presented below (Plate 1)
suggest that Kb

xx tends toward cmin
xx when the cells are flattened

along the x direction (az
x and ay

x tending toward 0), while Kb
xx

tends toward cmax
xx when the cells are flattened in one of the

other directions. We propose therefore to modify (8) devel-
oped by R. K. Romeu by postulating that there are only two
asymptotic values (cmax

xx and cmin
xx ) for the conductivity instead

of three [Duquerroix et al., 1993, equations 25, 26, and 27]. The
composition formula is simplified according to this postulate,
and we get

cii 5 ~cmax
ii !a~cmin

ii !12a (23)

with a, expressed as a function of the anisotropy ratios aj
i and

ak
i :

a~aj
i, ak

i ! 5
u~aj

i! 1 u~ak
i ! 2 2u~aj

i!u~ak
i !

1 2 u~aj
i!u~ak

i !
, (24)

~i , j , k! [ $ x , y , z%3 i Þ j Þ k

Figure 3. The seven curves of proportion of lithofacies as a
function of depth used to generate the truncated Gaussian
media. Sets p1, p6, and p7 show constant proportions with
depth. The others show varying proportions with depth.

Table 1. Number of Small Blocks

Model
Number of

Small Blocks

Boolean ellipsoidal inclusion 18,432
Boolean sinusoidal inclusion 6,144
Truncated Gaussian short range 2,560
Truncated Gaussian long range 40,448
Total 67,584

Table 2. Sets of Ranges for the Covariance Models

Horizontal
Range,

cells

Vertical
Range,

cells

a1 8 5
a2 50 5
a3 50 15
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u~t! 5
arctan Ît

p/ 2 . (25)

4. Synthetic Conductivity Fields
and Reference Values

To test the fast upscaling rules, 1966 hydraulic conductivity
fields were generated on regular grids with 128 3 128 3 64 ('1
million) cells. The cells are flattened and have a size of 10 3
10 3 1 units. Thirty-two realizations were generated for each
parameter set. To investigate the effect of block size on the
upscaling techniques, we extracted 67,584 small blocks (16 3
16 3 8 5 2048 cells) from these large blocks (see Table 1). We
now describe the models and parameters used to generate
these media.

4.1. Truncated Gaussian Media

The truncated Gaussian media were generated with the
HERESIM software (Institut Français du Pétrole/Ecole des
Mines de Paris). The model operates by simulating a Gaussian
function and truncating it to obtain a discrete variable: the
lithofacies [Matheron et al., 1987]. The parameters are a co-
variance function and the proportions of the different lithofa-
cies. We used four facies, a factorized exponential model of
covariance with three different sets of ranges a1 to a3 (Table
2). For the proportions, seven sets p1 to p7 of parameters were
used (Figure 3). Sets p1, p6, and p7 have constant proportions
along the depth. For p1 the four facies are equally represented.
For p6 the proportion of facies 1, 2, 3, and 4 are 0.15, 0.15, 0.15,
and 0.55 respectively, while for the set p7 they are 0.55, 0.15,
0.15, and 0.15, respectively. For the sets p3 and p4 the propor-

tions vary linearly with depth. For the set p4 the global pro-
portions over the whole domain are 0.25 for all the facies. For
the sets p2 and p5 the proportions are defined in the order that
layers with predominating facies are generated. Thirteen com-
binations of covariance and proportions were used: a1p1, a1p2,
a1p3, a1p4, a1p5, a2p1, a2p2, a2p3, a2p4, a2p5, a3p1, a3p6,
and a3p7. In the last step a conductivity is assigned to each
facies: For lithofacies 1, 2, 3, and 4, conductivities k are 1000,
500, 10, and 0.1, respectively. Figure 4 shows one realization of
such media for each set of parameters.

4.2. Boolean Media

The Boolean model [Matheron, 1967; Haldorsen and Dams-
leth, 1990] generates points in three-dimensional space accord-
ing to a Poisson process and assigns to each point an inclusion
whose size, orientation, and shape follow predefined probabil-
ity functions. The parameters are the density of the Poisson
process, which is related to the total number of inclusions, the
shape of the inclusions, and the parameters of size and orien-
tation of the inclusions. We used five different densities named
b1 to b5, four different types of elliptical inclusions e1 to e4,
and two different types of sinusoidal inclusions s1 and s2.
Finally, we have eight sets of parameters b1e1, b2e2, b1e3,
b3e3, b4e4, b5e4, b1s1, and b2s2. Figure 5 shows one realiza-
tion for each set of parameters. To enlarge the domain of
investigation, for each realization, we used six different pairs of
conductivity values for the inclusion and the matrix (Table 3).

4.3. Reference Block Conductivity

The equivalent conductivity (or block conductivity) of any
heterogeneous block was calculated following the same ap-

Figure 4. One example of each kind of the truncated Gaussian media. Some are statistically homogeneous
(i.e., the type a1p1), but most of them are nonstationary due either to large correlation structures compared
to the size of the domain (i.e., a2p1) or to trends in the proportions of the facies with depth (i.e., a1p2), or
both (a2p2).
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proach as past workers such as Warren and Price [1961] and
others. We used the multigrid finite element code
TRIMULEC [Goblet, 1992] to solve the groundwater flow
equation in steady state with permeameter-type boundary con-
ditions (Figure 6). Three calculations, with a rotation of the
boundary conditions, were conducted to obtain the directional
conductivities.

The use of permeameter-type boundary conditions is justi-
fied since the principal axes of anisotropy are parallel to the
axes of the grid. This has been checked numerically by calcu-
lating the full tensor of equivalent conductivity on some rep-
resentative cases and comparing the results with the approach
described in the previous paragraph. The differences between
the diagonal components of the conductivity tensor were less
than 1% in all the tested cases, and the off-diagonal terms were
between 1 and 3 orders of magnitude lower than the diagonal
terms [Renard, 1997].

To investigate the effect of the numerical bias (on at least
one large block for each parameter set), we did the same

calculations with the finite difference code HIGHDEN devel-
oped at the University of Newcastle. HIGHDEN was not ap-
plied to the small blocks. The difference between the results
obtained with TRIMULEC and HIGHDEN is around 5% on
average but can reach 30% for the estimation of the vertical
conductivity. These differences indicate that we must compare
the fast techniques with both references.

5. Criteria of Classification of the Fast
Upscaling Techniques

For all the media we have at least one reference value and
one block conductivity for each fast upscaling technique. The
most general way to compare the results of a set of values with
reference values is to study the scatter diagrams of these pairs
of values. However, to rank the techniques we also need nu-
merical criteria. The first one is the relative bias: the ratio of
the mathematical expectation (experimentally, the average) of
the error and the expectation of the reference value,

e 5

U O
i

~Y ref
i 2 Yquick

i !U
O

i

Y ref
i , (26)

where i is an index over all the synthetic conductivity fields,
Yref

i 5 log10 Kref
i is the reference value for the ith synthetic

medium, and Yquick
i is the estimation of the upscaled conduc-

tivity with a given quick technique. The parameter e is calcu-
lated on the logarithm of the conductivity, because the order of
magnitude is more important than the value itself.

The bias itself is not sufficient because large positive and
negative errors can be averaged in such a way that the bias is
small although the estimation is inaccurate. To quantify the
dispersion, we need another criterion. We used the linear cor-
relation coefficient:

r 5

O
i

~Y ref
i 2 Y# ref!~Yquick

i 2 Y# quick!

ÎO
i

~Y ref
i 2 Y# ref!

2 ÎO
i

~Yquick
i 2 Y# quick!

2
, (27)

where Y# represents the mean over all the media, i.e., Y# 5 1/n
¥ i51

n Yi. A value of r around 1 indicates a small dispersion
around a linear relation between the two variables. Using such

Figure 5. One example of each type of the Boolean media.
The differences are due to the density, the size, and the shape
of the inclusions.

Figure 6. Schematic diagram of the permeameter-type
boundary conditions imposed on the block to calculate the
equivalent hydraulic conductivity.

Table 3. Conductivity Couples Used for the Boolean
Media

Name 1 2 3 4 5 6

k matrix 100 100 100 0.1 1 10
k inclusion 0.1 1 10 100 100 100
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a criterion does not allow detection of nonlinear relations
between the variables, but we are not interested in these kinds
of relations. We need to find the techniques that give directly
the best estimation of the reference value, and we do not want
to have to apply an additional empirical correction to the result
of the quick technique.

To visually summarize the classification using both the rel-
ative bias and the correlation coefficient, we represent the
results of the different upscaling techniques in a quality plot: A
point corresponds to a technique, and its coordinates are the
relative bias and the correlation coefficient. The closer the
point is to the upper left-hand corner (e 5 0, r 5 1), the
more accurate the technique is. For a technique to be reliable,
it must stay in this upper left-hand corner when the conditions
of the test are changed.

6. Results
6.1. Effect of the Reference Value

Table 4 shows that the classification of the upscaling tech-
niques remains identical even if the values for the bias and for
the correlation coefficient are different when we use a refer-
ence value calculated with TRIMULEC or HIGHDEN. In the
following we will discuss only the classification obtained by
using the reference values calculated with TRIMULEC for
which the largest number of simulations was done.

6.2. Scatter Diagrams

In each scatter diagram the conductivities calculated with
the fast technique are plotted along the abscissa, and the ref-
erence conductivities calculated with TRIMULEC are plotted
along the ordinate. The better the technique is, the closer are
all the points from the bisector y 5 x . Because of the impor-
tance of anisotropy and block size the results for Kxx and Kzz

and the results for the large blocks and for the small blocks are
plotted separately. We do not present the plots for Kyy because
they are almost identical to those of Kxx.

Plate 1 shows the scatter diagrams that allow the comparison
of the Cardwell and Parsons bounds with cmax and cmin for all
block sizes and flow directions. We observe that in accordance
with the theory, K1 and K2 always bound the reference value
whatever the size of the blocks and the flow direction. Values
cmax and cmin are closer to the bisector line than K1 and K2,
implying that they are closer to the reference values. However,

cmax and cmin do not bound the reference conductivities as the
cloud of points is not bounded by the bisector line. Further-
more, (as mentioned in section 3), the anisotropy causes cmax

to tend toward the reference values for flow in the x direction
for large and small blocks (Plates 1c and 1k), while cmin tends
toward the reference for flow in the z direction for large and
small blocks (Plates 1h and 1p).

Plate 2 shows the scatter diagrams that allow an analysis of
which fast upscaling techniques are the most accurate for large
blocks. Plate 3 shows the same diagrams for the small blocks.
A visual check of these scatter diagrams shows that no tech-
nique gives a good estimation of the conductivity in the z
direction for the large blocks (Plates 2i–2p). Better results are
obtained in the x direction for large blocks (Plates 2a–2h) and
in all directions for the small blocks (Plate 3). In Plates 2 and
3 the scatter diagrams corresponding to algebraic means (mh,
ma, mg, and m1/3) are always more scattered and more distant
from the bisector and therefore less accurate than those cor-
responding to the renormalization schemes (c , rs, and rt) or to
Romeu’s formula kr.

In Plates 2 and 3 the color of the dot corresponds to the type
of medium: red is truncated Gaussian with a long correlation
range; dark blue is truncated Gaussian with a small correlation
range; green is Boolean media with ellipsoidal inclusions; and
light blue is Boolean media with sinusoidal inclusions. This
color coding shows that some techniques can give good esti-
mations for a specific type of medium, while they are not
accurate for another type. For example, the geometric mean
gives an acceptable estimation of the vertical conductivity of
Boolean media, while it is not acceptable for truncated Gauss-
ian media (Plate 2k). The color coding also shows that for the
Boolean media some nonlinear relations exist between the
harmonic mean and the equivalent hydraulic conductivity
(Plate 2a). Note, however, that our goal is not to study this type
of relation.

6.3. Efficiency of the Techniques

Table 5 shows the mean CPU time for each upscaling tech-
nique and the time for full solution using the finite element
method. The standard renormalization is slower than the ten-
sorial renormalization technique because it has to solve a lin-
ear system 3 times, and the tensorial renormalization has to
solve only one linear system. The simplified renormalization
does not involve the solution of a linear system of equations

Table 4. Comparison of the Classification of the Upscaling Techniques When Finite Elements or Finite Differences Are
Used as the Reference Valuea

Rank

Kb
zz Kb

xx

Finite Elements Finite Differences Finite Elements Finite Differences

Method r e Method r e Method r e Method r e

1 rt 0.975 0.316 rt 0.945 0.340 rt 0.997 0.030 rt 0.999 0.014
2 rs 0.973 0.287 rs 0.941 0.314 c 0.997 0.019 c 0.998 0.002
3 c 0.968 0.330 c 0.934 0.357 kr 0.996 0.014 kr 0.995 0.003
4 kr 0.765 0.693 kr 0.802 0.687 rs 0.989 0.067 rs 0.995 0.051
5 mg 0.666 0.488 mg 0.710 0.518 ma 0.981 0.048 ma 0.978 0.066
6 mh 0.507 1.206 mh 0.530 1.21 m1/3 0.972 0.144 m1/3 0.975 0.130
7 m1/3 0.399 1.209 m1/3 0.438 1.25 mg 0.725 0.424 mg 0.736 0.414
8 ma 0.155 1.705 ma 0.188 1.76 mh 20.303 1.080 mh 20.283 1.081

aThe classification is based on the comparison of Kb of the 612 large blocks for which we computed the reference value both with TRIMULEC
and HIGHDEN. Abbreviations are as follows: rt, tensorial renormalization; rs, standard renormalization; c, simplified renormalization; kr,
Romeu’s formula; mg, geometric mean; mh, harmonic mean; m1/3, Landau-Lifshitz-Matheron conjecture; and ma, arithmetic mean.

3573RENARD ET AL.: ESTIMATION OF EQUIVALENT HYDRAULIC CONDUCTIVITY



Plate 1. Scatter diagrams showing the reference equivalent conductivity (ordinate) calculated with finite
elements as a function of the Cardwell and Parsons [1945] upper bound K1 and lower bound K2 or as a
function of the values cmax and cmin (abscissa). The different diagrams correspond to different flow directions
and different block sizes. The points are closer to the bisector for cmax and cmin than for K1 and K2. This
indicates that the values cmax and cmin are closer to the reference values than K1 and K2.



Plate 2. Large blocks. Scatter diagrams of the reference equivalent conductivity (ordinate) as a function of
the different fast upscaling techniques (abscissa). Definitions are as follows: mh, harmonic mean; ma, arith-
metic mean; mg, geometric mean; m1/3, Landau-Lifshitz-Matheron conjecture; kr, Romeu’s formula; c ,
simplified renormalization; rs, standard renormalization; and rt, tensorial renormalization.
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Plate 3. Small blocks. Scatter diagrams of the reference equivalent conductivity (ordinate) as a function of
the different fast upscaling techniques (abscissa). Definitions are as follows: mh, harmonic mean; ma, arith-
metic mean; mg, geometric mean; m1/3, Landau-Lifshitz-Matheron conjecture; kr, Romeu’s formula; c ,
simplified renormalization; rs, standard renormalization; and rt, tensorial renormalization.
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and is therefore faster. Obviously, the algebraic means are the
fastest. The comparison of the execution times for the quick
techniques and for the finite elements shows a gain of a factor
of between 20 and several hundred.

7. Discussion
7.1. Quality Plots

We observe (Figure 7) a group of techniques corresponding
to the renormalization algorithms (rs, rt, and c) that have very
good linear correlation coefficients and small bias (mostly
lower than 10%) and a second group corresponding to the
algebraic means (ma, mg, mh, and m1/3) with smaller linear
correlation coefficients. Romeu’s formula falls in between.
Sometimes it belongs to the first group (for the small blocks
experiments); sometimes it belongs to the second (for Kz for
the full domains). The algebraic techniques can, in some cases,
present a small bias (e.g., mg for Kz, see Figures 7b and 7d);
however, in general, they present a large dispersion of the
estimated conductivity. Among the algebraic techniques the
harmonic and the arithmetic means are the least reliable. They
can have very strong bias (over 110%) and poor linear corre-
lation coefficients (Figure 7).

7.2. Effect of Block Size and Anisotropy

The differences between Figures 7a–7d show the effects of
anisotropy and block size. Concerning the size of the blocks,
the accuracy is, in general, better for a small block than for a
large one. A rather surprising countercase is the increase in
accuracy of the arithmetic mean for Kb

xx (compare Figures 7a
and 7c). Furthermore, the effect of block size is more impor-
tant for Kb

zz than for Kb
xx. Concerning the anisotropy, the

accuracy is clearly better for the estimation of the horizontal
conductivity than for the vertical one. The worst situation is the
estimation of the vertical conductivity of the large blocks. In
this case the accuracy of all the techniques is drastically re-
duced. The relative bias goes from values of less than 5% to
values larger than 29% for the best techniques. This effect is
more pronounced for kr (the bias goes from 0.2% for Kb

xx in
the small blocks to 69.3% for Kb

zz in the large blocks). In all
cases the techniques that remain closest to the ideal point
(upper left-hand corner) are rs, rt, and c .

To study the effect of horizontal anisotropy on the tech-
niques, we also compared the classification in the case of Bool-
ean media with ellipsoidal or sinusoidal inclusions (Figures 7e
and 7f). With ellipsoidal inclusions the three renormalization
techniques and kr perform well. With sinusoidal inclusions the
accuracy of all the techniques deteriorates. The effect is great-
est for rs.

7.3. Limitations of the Renormalization Schemes

In its present formulation the simplified renormalization can
handle only regular rectangular grids with a power of 2 number
of cells in each direction. The extension to irregular grids
requires weighting the local averages by the size of the cells [Li
et al., 1999]. The extension to grids that contain a number of
cells that are not a power of 2 can follow the procedure pro-
posed by Hardy and Beier [1994, p. 210–211] for extending the
standard renormalization to these situations.

Again, in its present formulation the simplified renormaliza-
tion requires the local conductivities to be diagonal. This draw-
back can be overcome easily by using the exact analytical for-
mulae of Quintard and Whitaker [1987, equation 3.36] to
aggregate pairs of cells with a full tensor of hydraulic conduc-
tivity instead of using the arithmetic and harmonic means. The
result will be a full tensor of hydraulic conductivity.

A more important limitation is that the simplified renormal-
ization is not able to detect the principal directions of anisot-
ropy resulting from inclined layers of different conductivities.
The consequence is that if the local conductivities are scalar,
the upscaled conductivity will be diagonal even if we use the
Quintard and Whitaker formula. This results because we work
with elementary groups of only two cells. To create such an-
isotropy, it requires working on elementary groups of at least
four cells in two dimensions or eight cells in three dimensions.
This is exactly what the tensorial renormalization does, but the
cost is a slower algorithm.

Finally, the most important problem that we see is that the
simplified renormalization, as well as all the other tested tech-
niques, fails to accurately estimate the vertical conductivity of
the large blocks. This kind of inaccuracy was described by
Hardy and Beier [1994] and by Malick [1995] for the standard
renormalization. It was interpreted as the result of the accu-
mulation of successive errors in the renormalization procedure
due to the use of inadequate permeameter-type boundary con-
ditions on the elementary group of cells. This interpretation is
questionable since both the tensorial renormalization, which
uses the rather general periodic boundary conditions, and the
simplified renormalization, which does not solve a flow prob-
lem on the elementary group of cells, are equally inaccurate to
estimate the vertical conductivity of the large blocks.

8. Conclusion
A new renormalization technique was devised and inten-

sively tested on two types of heterogeneous synthetic media
(truncated Gaussian and Boolean) with high conductivity con-
trast and strong anisotropy. The numerical experiments
showed that among the tested techniques, the two most reli-
able ones are the tensorial and the new simplified renormal-
ization. Both proved to be more accurate and faster than the
original scheme proposed by King [1989]. The numerical effi-
ciency of the simplified renormalization (it is about 200 times
faster than the finite elements and 4 times faster than the
tensorial renormalization) leads us to recommend it when a
diagonal tensor of equivalent conductivity is sufficient (when
the principal axes of anisotropy are aligned with the axes of the
grid). If the nondiagonal terms are required (geological models
including cross stratifications, e.g.), we recommend the use of
the tensorial renormalization. These two techniques are the
best of the techniques we tested; however, they are not always
accurate. They give very good results for the horizontal con-
ductivity of the large blocks and for the horizontal and vertical

Table 5. Mean CPU Time in Seconds on a Sparc 10
Workstationa

Method
Small Blocksb

(2,048 cells)
Large Blocksc

(1,048,576 cells)

Algebraic means 0.04 27
Romeu formula 0.04 42
Simplified renormalization 0.07 49
Tensorial renormalization 0.36 215
Standard renormalization 1.04 445

aInput and output are taken into account.
bThere are 461 finite elements in small blocks.
cThere are 10,286 finite elements in large blocks.
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Figure 7. Quality plots for the different flow directions and block sizes. The closer the point is to the upper
left corner, the better the technique is. Note that the scales and ranges are not identical in all the plots.
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conductivity of the small blocks, but they give inaccurate esti-
mations of the vertical conductivity of the large blocks. Addi-
tional research is required to develop fast spatial averaging
techniques capable of handling such situations.

An important additional result is the demonstration that
even if the algebraic techniques (geometric mean, arithmetic
mean, etc.) can be almost unbiased for certain types of media,
they always show a large dispersion of the estimated values
around the reference values. This is due to the fact that they do
not take into account the spatial arrangement of the local
conductivities. A justification for using them would be to cal-
culate block conductivity when the spatial distribution is com-
pletely unknown. The computed results are available to the
scientific community on request to allow further research and
other comparisons with new upscaling procedures.
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Gómez-Hernández, J. J., A stochastic approach to the simulation of
block conductivity fields conditioned upon data measured at a
smaller scale, Ph.D. dissertation, Stanford Univ., Stanford, Calif.,
1991.

Gutjahr, A. L., L. W. Gelhar, A. A. Bakr, and J. R. McMillan, Sto-
chastic analysis of spatial variability in subsurface flows, 2, Evalua-
tion and application, Water Resour. Res., 14(5), 953–959, 1978.

Haldorsen, H. H., and E. Damsleth, Stochastic modeling, JPT J. Pet.
Technol., 42, 404–412, 1990.

Hansen, A., S. Roux, A. Aharony, J. Feder, T. Jossang, and H. H.
Hardy, Real space renormalization estimates for two-phase flow in
porous media, Transp. Porous Media, 29, 247–279, 1997.

Hardy, H. H., and R. A. Beier, Fractals in Reservoir Engineering, 359
pp., World Sci., River Edge, N. J., 1994.

Hinrichsen, E. L., A. Aharony, J. Feder, A. Hansen, T. Jøssang, and
H. H. Hardy, A fast algorithm for estimating large-scale permeabili-
ties of correlated anisotropic media, Transp. Porous Media, 12, 55–
72, 1993.

Jaekel, U., and H. Vereecken, Renormalization group analysis of ma-
crodispersion in a directed random flow, Water Resour. Res., 33(10),
2287–2299, 1997.

King, P. R., The use of field theoretic methods for the study of flow in
heterogeneous porous medium, J. Phys. A Math. Gen., 20, 3935–
3947, 1987.

King, P. R., The use of renormalization for calculating effective per-
meability, Transp. Porous Media, 4, 37–58, 1989.

King, P., A. Muggeridge, and W. Price, Renormalization calculations
of immiscible flow, Transp. Porous Media, 12, 237–260, 1993.

Koltermann, C. E., and S. M. Gorelick, Heterogeneity in sedimentary
deposits: A review of structure-imitating, process-imitating, and de-
scriptive approaches, Water Resour. Res., 32(9), 2617–2658, 1996.

Kozlov, S. M., Central limit theorem for multiscaled permeability, in
Proceedings of Oberwolfach Porous Media Meeting, Birkhäuser Bos-
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