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The purpose of this article is to review the various methods used to calculate the
equivalent permeability of a heterogeneous porous medium. It shows how
equivalence is defined by using a criterion of flow or of the energy dissipated by
viscous forces and explains the two different concepts of effective permeability
and block permeability. The intention of this review is to enable the reader to use
the various published techniques and to indicate in what circumstances they can
be most suitably applied. © 1997 Elsevier Science Ltd. All rights reserved
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NOMENCLATURE

k,f  lightface notations: scalar

x,K  boldface notations: tensors

v nabla operator (9/0x,0/8y,0/0z)

grad gradient operator: gradh = Vi = (8h/0x,0h/0y,
Oh/0z)

div divergence operator: diva =V -u =
Ou, /0x + Ou, /Oy + Ou. [0z

O averaging operator

E() mathematical expectation

C() covariance

o’ variance

D space dimension

kK  isotropic or anisotropic local permeability

h,H hydraulic head

K., equivalent permeability tensor

K.r effective permeability tensor

K, block permeability tensor

Ha arithmetic mean

L harmonic mean

Mg geometric mean

hp mean of order p

ot  variance of the logarithm of k

T transmissivity

u,U  Darcy filtration velocity
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1 INTRODUCTION

The use of numerical models for studying subsurface
flow has become common practice in hydrology and
petroleum engineering over the last 30 years. However,
one of the major questions that still pose a problem is:
what parameters to introduce into the models? Although
contemporary computers are growing ever more power-
ful and capable of describing the relevant flows with
increasing precision, it is impossible to measure all the
parameters at all points.

Flow models can be divided into two groups: those
for which the parameters are obtained by calibration on
an observed pressure record and those for which there
are no such records.?

The first type of model obviates the problem of scale
change. The parameters are obtained either by manual
fitting or inverse methods.>%

A prerequisite for the second type of flow model is a
geological model describing the subsurface medium.
Among others, Haldorsen,>® Matheron er al.,*? Terzlaf
and H.arbaugh,103 Haldorsen and Damsleth,5 ! Kolterman
and Gorelick,(’g’69 Fayers and Hewett,3 ® Journel and
Gomez-Hernandez,® Marsily” and Anderson® describe
methods for generating geological models.

When geostatistical techniques are used, the model
should rigorously, be built on the same scale as the
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supporting measurements. Since laboratory investiga-
tions of permeability are made on volumes on the order
of 20cm® and well log data on volumes of the order of
20000 cm’ (from Haldorsen,™) the resulting grid might
contain from 10" -10'® meshes depending on the size of
the reservoir.'® In reality, software for flow simulations
is, at present, limited to a few million meshes.! This
makes it necessary to shift to a larger scale. Goémez-
Hernandez and Journel*® suggest that the permeabilities
be generated geostatistically directly at the scale of the
flow model meshes after a phase where the geostatistical
parameters are fitted. However, even in this approach, a
change of scale is used in the learning phase.

A totally different scheme for building geological
models is to simulate the sedimentary processes that
created the reservoir rocks.®®! These techniques
produce grids with a very large number of meshes and
need a change of scale as well.

The change of scales poses the problem of how to
calculate the permeabilities at a larger scale on the basis of
the geological model. The matter is complicated by the
fact that the permeability is not an additive variable — it
is not possible to calculate an equivalent permeability by a
simple arithmetic mean. A great number of articles have
been published on this subject in the last 20 years (to our
knowledge, more than 200). In this review, we have
limited our discussion of the equivalent permeability to
steady-state, uniform and single-phase flow. Conse-
quently, several important cases such as radial, transient
and/or multi-phase flow have been omitted.

The objective of this article is twofold: (i) to describe
all the published techniques for calculating the equiva-
lent permeability while providing the reader with the
information on how to use them; (ii) to compare these
techniques through references to the literature and offer
advice on how to choose the most suitable one.

Before we start discussing the techniques, the various
equivalence criteria and the distinction between effective
and block permeability must be understood.

The two equations that describe flow in porous media
are: Darcy’s law and the mass balance equation.

u=—Kgrad(h) and div(e)=0 (1)

with K [m/s] the hydraulic conductivity tensor (later
called permeability tensor), u the filtration velocity and A
the hydraulic head. The mass balance equation is
written here for steady-state and incompressible flow.
In the following, we will always use the term perme-
ability, even 1if, in two dimensions, the relevant
magnitude may rather be the transmissivity.

Generally speaking, by equivalent permeability we
mean a constant permeability tensor taken to represent
a heterogeneous medium. A complete equivalence
between the real heterogeneous medium and the
fictitious homogeneous one is impossible. It is therefore
defined, in a limited sense, according to certain criteria
that must be equal for both media.

The first criterion ever used is the one of equality of
flow.'®'%® The flow at the boundaries of the domain
must be identical for the heterogeneous medium and the
equivalent homogeneous one, subjected to the same
head gradient.

The second criterion is the equality of energy
dissipated by the viscous forces in the heterogeneous
and the equivalent homogeneous medium.**”® This
dissipation energy is defined by:

e= —grad{h) - u (2)

It is important to note that although these two criteria
seem different, they are strictly equivalent in the case of
periodic boundary conditions.'

Effective permeability is a term used for a medium that
is statistically homogeneous on the large scale. In a
stochastic context, it is defined by the formula:”

E(u) = —K.cE[grad(h)] (3)

where FE(u) represents the mathematical expectation of
the flow rate in the domain and E[grad(/)] the head
gradient expectation. The effective permeability is an
intrinsic physical magnitude, independent of the macro-
scopic boundary conditions. It has been rigorously
studied by two different methods: the stochastic
approachlg’“'79 and the homogeneous-equation
approach.’*®®% In the first case, the permeability is
represented by a random function, usually stationary.
The heterogeneity is described by correlation lengths. In
the second case, the medium is assumed to be spatially
periodic. The geometry of the basic cell is assumed to be
known. In both cases, an effective permeability emerges,
provided that firstly, either the correlation length or the
size of the basic cell is much smaller than the whole
domain and secondly, that the flow is uniform.%%7994
The effective permeability tensor has the characteristic
of being a second-order, symmetric, positive-definite
tensor.

In most engineering situations (flow of water or
petroleum), the conditions for the appearance of an
effective permeability are not satisfied. Upscaled perme-
ability or block permeability is the equivalent perme-
ability of a finite-size block. The concept of statistical
homogeneity disappears because the observed block is
too small. Rubin and Gémez-Hernandez”® took the
average flow rate over the block as the criterion and
defined the effective permeability by the following
equation:

1 1
VJV u(x)dv = KbVJV grad(h)dv 4
Indelman and Dagan59 suggest that the equality of

dissipated energies be used as the criterion:

(i) Necessary condition: The global response must be
the same in the real and the numerical solution
over homogenized blocks.
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(ii) Sufficient condition: Let & = 1/w [, e(x)dx be the
dissipated energy in the macro-mesh w and
¢ = —gradH - KygradH the energy defined from
the macroscopic magnitudes; then, the conditions:

E@)=E(e), Cilr)=Celr) (5)
imply the necessary condition. C represents the
covariance.

Note that if the block over which the up-scaling is
done is large enough, the up-scaled permeability tends
toward the effective permeability if it exists.

blolcigooKb = Ker ()

It is most important to remember that the block
permeability is not unique. It depends on the boundary
conditions. For example, for the stratified medium in
Fig. 1, using the criterion of equal flux, two different
results are obtained if the calculation is made with
uniform boundary conditions (prescribed hydraulic
head varying linearly over all the sides of the block) or
with permeameter-type boundary conditions (two sides
with a prescribed head and two sides with no flow):

oo _ (2661 2388
" \2388 2661/

905 0
errmeameler —
b

0 905

Thus, block permeability is not an intrinsic character-
istic of the medium as opposed to effective permeability.
Moreover, subject to certain boundary conditions for
certain media, it has been shown that the block
permeability tensor is non-symmetric.“o’85 ATLILS

We have divided the methods for calculating the
effective or block permeability into three groups:
deterministic, stochastic and heuristic. The first ones

Fig. 1. Results of a simulation on a medium stratified at 45° in
relation to the x-axis with uniform boundary conditions (i.e.
prescribed heads varying linearly along the sides). The dark
bands have a permeability of 1mD and the light ones a
permeability of 100 mD. The lines represent the hydraulic head
contours and the arrows the filtration velocity.

assume that the geological model is perfectly known as
opposed to the stochastic techniques that only assume
an approximate knowledge of this model and take a
probabilistic view. The heuristic methods propose rules
for calculating plausible equivalent permeabilities.

For each group of methods, different calculation
techniques can be used: analytical or numerical, exact or
approximated. A final criterion of classification is that
which distinguishes between local and non-local methods.
In the non-local methods, the permeability of a block
depends both on the internal and the external perme-
ability values. In the local methods, it only depends on
the elementary permeability values inside the block. Most
of the methods presented here are local ones.

The article is laid out as follows: Section 2 is devoted
to the bounds of the equivalent permeability which are
then used in Section 3 in dealing with heuristic methods.
Sections 4 and 35 deal respectively with deterministic and
stochastic techniques. Section 6 compares the different
techniques and offers some recommendations.

2 INEQUALITIES FOR THE EQUIVALENT
PERMEABILITY

2.1 Wiener bounds

This inequality is also called the fundamental inequality
because it is always valid. It has been demonstrated by a
great number of authors, e.g. Wiener,!'? Cardwell and
Parsons,'® Matheron” and Dagan,w among others.

My S Kef S Ha (7)

with p;, = harmonic mean and p, = arithmetic mean.

2.2 Hashin and Shtrikman bounds

They are used for isotropic binary media:

2
o Sk k)

(D —foko +foki T

_ fifolki — ko) @®
(D = fi)ki + fiko

where f; and f, are the fractions of the permeability
phases k, and k. k; is higher than k; and
ta = foko + f1k1.

The demonstration of Hashin and Shtrikman® is
based on a model of the medium built of composite
spheres (see Fig. 3). Each composite sphere is defined by
an isotropic sphere with a constant permeability Kj, and
an isotropic concentric shell with a K, permeability.
By using the method of self-consistent media (see
Section 4.3) it is possible to calculate an approximate
value for the permeability of the medium. The maximum
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Fig. 2. Bounds for the equivalent permeability in a binary medium (kg = 1, k; = 1000). (a) The arithmetic, geometric and harmonic
means are plotted versus the proportion of phase zero in the medium, (b) the Hashin and Shtrikman bounds are plotted versus the
proportion of phase zero in the medium.

permeability is obtained by assuming that the spheres
are the low-permeability medium and the shells are the
high-permeability one (K;, = ky, K,y = k;). The mini-
mum permeability is obtained by inverting these
permeabilities: conductive spheres and resistant shells
(Kiy = ki, Koy = ko). A more rigorous demonstration,
based on a variational principle, gives the same result
which prompts the authors to conclude that these
bounds are the best possible in terms of volumetric
fractions.>

But, Fig. 2 shows that there is no large differences
between Wiener (Fig. 2a) and Hashin and Shtrikman
(Fig. 2b) bounds.

2.3 Cardwell and Parsons bounds

Cardwell and Parsons'® used an electric analogy and Le
Loc’h™ used a variational method to show that the
equivalent permeability in a given direction is bounded by
(Fig. 4):

— the arithmetic mean of the harmonic means of the
point permeabilities, calculated on each cell line
parallel to the given direction (lower bound);

— the harmonic mean of the arithmetic means of the
point permeabilities calculated over each slice of a
cell perpendicular to the given direction (upper
bound).

Fig. 3. Assemblage of composite spheres (from Hashin™).

Ky = wi (i (1)) < K < Ko = pa(pn(pn) 9)
2.4 Matheron bounds

In the case of an isotropic two-dimensional random

mosaic with two phases, Matheron obtains:*

ﬁ) >05= chz Kac
f() <05= Kef < Kac

ﬁ = 05 = Kef =\ kOkl (10)

with

Koo = 5 |Uh —Alky ko

U =10k = ko) + koky

Note that this relation remains valid if the mosaic is
invariant by a 90° rotation. Furthermore, Matheron®
demonstrates that:

fO 2 0-5= Kef S Km
f‘lkOkl +f01ua k0(2,u‘a - kO)
Sim* +for/ko(2p, — ko)
f(] S 0-5 = ch Z Km
k *—
— kok, 'foﬂa +.ﬁ \/* o(2m *ko) (11)
Jokoky + fimm*\/ko(2m* — k)

with

m" = fiko + fok)

(o = fiki + foko, 0" =fifo  (ky —ko)?).
Figure 5 illustrates that the difference between the

maximum and the minimum bounds of Matheron is

much smaller than the difference between Wiener or

Hashin and Shtrikman maximum and minimum.
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Fig. 4. Calculation of Cardwell and Parsons'® bounds for flow in the x-direction.

2.5 Ene bounds

Ene® uses the method of homogenization (see Section
4.7) and obtains bounds that generalize those of Rubin-
stein and Torquato® in the anisotropic case. These
bounds are written as a set of differential equations that
require a numerical solution for the general case.

3 HEURISTIC METHODS

3.1 Sampling

The first technique is simply not to change scales. A block
is given the permeability measured at its center. This very
basic technique is commonly used in the petroleum
industry and consists in passing from a measurement at
the 10 cm scale to a block on the meter scale.

3.2 Averaging means

The general idea is to take a value between two
theoretical bounds.

1 n 4 I . PR

0 0.1 0.2 03 0.4 0{05 0.6 0.7 0?8 0?9 ‘I

Fig. 5. Matheron bounds for the equivalent permeability in a

binary medium. (kg =1, k; = 1000) as a function of the

proportion of phase zero in the medium K, and K, are the
bounds defined in eqns (10) and (11).

3.2.1 Fundamental bounds
Matheron” suggests a formula where the effective
permeability is a weighted average of Wiener bounds.

Ko =gy with o €{0,1] (12)

If the medium is statistically homogeneous and iso-
tropic, the exponent « is given by the equation:

D—1
a="7= (13)

This formula is rigorously exact in the case of a
factorized permeability,*® i.e. of the form:

K(x) = k(x| )ka(x2) ... kp(xp)

In the case of an anisotropic but statistically homo-
geneous medium, Ababou' takes:

ef - (Ma )(/‘1 al)
—1/1;)/D (14)

where /; 1s the correlation length in the relevant direction
and /, is the harmonic mean of the correlation lengths in
the principal directions of anisotropy.

o, = (D

3.2.2 Cardwell and Parsons bounds

According to Kruel-Romeu,” Guérillot"’ proposes that
we take the geometric mean of the two Cardwell and
Parsons bounds, and Lemouzy’® generalizes this idea by
proposing, for three-dimensional media:

KBH = \6/ K12K22K3K4 (15)

with
Ky = i (pa(pa)) = 1 (Hala))
Ky = i (paen)) = pa(pe(en))
Ky = pio (1 (1a)
Ky = g (pir (1))
28,70

Kruel-Romeu introduces exponents that control the
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influence of anisotropy. In three dimensions, he writes:

K{)CX — Kl(a_)r2053+0:20_v3)K2(1_gyS_H:S)K:El"ayZ)OzJ Kil_ozz)oyfs (16)

with
0. — arctan , /a, __arctan /a;
) )
0}73 _ 9y2(1 - 0:2) 3= 922(1 - 0&)
1 - 9)’2022 1 - 9y2022

K7 (dx\? k= (dx\?
a,= —|— a,=—|—
Yok \dy Tk \dz
a, and a. represent the anisotropy factors that are due to
the flattening of the grid and to the anisotropy of the

local permeabilities (which is assumed constant over all
the meshes).

3.3 Power average

Journel er al.% propose that K be equal to a power
average (or average of order p) with an exponent p in the
interval between —1 and +1, depending on the spatial
distribution of the permeabilities.

o= )0 = (3| keepar) . (17

Note that p = —1 corresponds to the harmonic mean,
lim, 4 p, to the geometric mean and p=1 to the
arithmetic mean. For statistically homogeneous and
isotropic media, one obtains:®

2
—1-= 18
P D (18)

This value for the exponent p corresponds to Matheron’s
conjecture and is discussed in more details further (see
Section 5.2).

In the case of a log-normal medium, Ababou et al.?
observe that:

2
POk
Jip = I €XP (—2—>

For a binary medium, eqn (17) becomes:
Ko = [fok§ + /iK' (19)

Deutsch?’ recommends the use of this type of
empirical formula for block permeability; the exponent
p is obtained by fitting.

3.4 Flexible grid

One difficulty common to all methods involving block
permeability is that the more the permeability variability
increases in the volume used for the averaging, the
greater is the uncertainty on the up-scaled permeability.
One can minimize the error by automatically adjusting

the local size of the large-scale grid as a function of, for
example, the permeability variance on the small-scale
grid. This approach was first used by Garcia ez al.*!' and
seems very popular in, for example, the petroleum
industry. Recently, Durlofsky er al,' Tran and
Journel'® and Yamada''* have shown examples where
this technique was applied to multi-phase flow. There
are several types of flexible grids: grids where the
geometry depends only on the permeability field and
those that take into account the flow conditions. Some
are deformed regular grids, others are more like nested
meshes.’’

4 DETERMINISTIC METHOD

In the deterministic method, the permeability field
K(x,y,z) and the boundary conditions are assumed to
be known. For a sufficiently simple permeability field
(e.g. a stratified medium), exact analytical solutions can
be found. For more general cases, there are theories
(percolation, effective medium, streamline, renormaliza-
tion) that can be used to make approximated calculations
with varying precision. An approach which is, in
principle, more general consists in solving numerically
the diffusion equation. Finally, the homogenization
theory, the theory of averaging with closure and the
method of moments replace the direct solution by
equivalent problems that also require numerical solutions.
The last three theories are classified as homogeneous-
equation methods.

4.1 Analytical solution of the diffusion equation

The diffusion equation (div[Kgradh] = 0) can be solved
analytically for uniform flow in stratified media. Its two
best known results are that the equivalent permeability
for a flow parallel to the strata is the arithmetic mean of
the point permeabilities y, and, for flow perpendicular
to the strata, the harmonic mean ;. These results can
be used when the point permeabilities are scalar. When
the local permeabilities are tensorial, Quintard and
Whitaker® show that, for a stratified medium composed
of two phases with permeabilities K, and K;, the
effective permeability tensor is expressed by:

K. = /1Ko + /1K

ffilKo = K1)+ (g o) - (Ki - K)

(o) - ks +1iko - )

where f = V/V,, is the fraction of the medium with K,
permeability and f; = V,/V,, is the fraction of the
medium with K; permeability. This result is one example
of the use of the theory of large scale averaging. Note
that the same result was obtained by Kasap and Lake®

(20)

+
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Table 1. Percolation theory, value of the coefficients in eqn (21)

Type of medium A A I Reference
2D isotropic 05 11 102
2D Depends on medium Depends on medium 1-1 21
iD Depends on medium Depends on medium 16 21
3D Depends on medium Depends on medium 1-8 49

with a grouping of only two blocks with known
permeabilities. Kasap and Lake® suggest the use of
this result and of the rotation formulas (change of
reference axis) for analytical calculations of block
permeability in media with slanted stratifications.

4.2 Percolation theory

The percolation theory deals statistically with the
problem of communication across complex systems
constituted by objects that may or may not be
connected.

A classical example?' is that of a sea dotted with
islands. If the sea level recedes, the islands become larger
and gradually, some of them are strung together by
coastal barriers. If the sea continues to shrink, a
continent will emerge at a critical point in the sea
level. There is then a continuous pathway through the
network of coastal barriers by which all the islands are
linked. This transition is called percolation transition and
the critical point is called percolation threshold.

This type of transition appears in a great variety of
problems: viscosity of polymer materials, conduction in
heterogeneous media, diffusion of information or of
a virus in a population, etc. More specifically, Guyon
et al.*® and more recently, Berkowitz and Balberg,12
have studied the applications of this theory to the
physics of porous media.

In the field of equivalent permeability, the percolation
theory has been applied to materials with two phases,
one of which is nonpermeable. Let n be the proportion of
permeable medium. Close to the percolation threshold:

of =0
o = A x (n—n)" (21)

n<n,—

n>n, —

where p is taken to depend only on the space dimension
and 4 and », depend on the geometry of the network
(see Table 1).

4.3 Theory of effective media

Apart from effective medium theory (EMT), there are
other names for this theory: self-consistent approach,
used by Matheron, or embedded matrix method, used
by Dagan. The heterogeneous medium constituted by
homogeneous blocks placed side by side is replaced by a
single inclusion of K permeability embedded in a
homogeneous matrix with an unknown permeability
K° (Fig. 6). The boundary conditions are far enough
away from the inclusion for the assumption to be made
that the head gradient, and therefore the flow, is
constant around the embedded material. If the inclusion
has a simple form, there is an analytical solution for the
hydraulic head field inside and outside it. The hypotheses
are as follows: the perturbations of the head field due to
any inclusion do not interfere with the perturbations
caused by another inclusion and K’ = K.

Dagan'® made the calculations for spherical inclu-
sions and found the following expressions:

f(K)aK 1™

%], wo 2

where f(K) is the probability density function of the
permeability. D is the space dimension. Equation (22)
can be integrated numerically by incrementing K
until equality is obtained. King65 proposes a similar
formula. Dagan19 and Poley93 give a more complex
formula for ellipsoidal inclusions by which they obtain
an anisotropic effective permeability tensor.

$—-dx (ixl=®)

S

——— )y

(a)

(b) {c)

Fig. 6. Schematic representation of the self-consistent model from Dagan.w (a) Heterogeneous medium constitutedoby pi(?ces with
constant permeability put side by side, (b) inclusion embedded in a uniform matrix with constant permeability K*, (c) inclusion
represented by a spheroid embedded in an infinite medium.
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Ny

(b)

Fig. 7. Approximate method for calculating the length of
streamtube: (a) real streamline; (b) approximation by straight-
line segments (from Begg and King ).

In the case of binary media, eqn (22) becomes:

1 fo N /i .
D lko+ (D~ 1)Ky ki+ (D— 1)K

Kef

(23)

According to Desbarats,” this formula is satisfactory
for f, < 0-6 with phase 0 representing the lowest
permeability.

4.4 Streamline

The streamline method is used to calculate the vertical
permeability of a binary sand—clay system. The clay
formations are described by rectangles (in 2D) or flat
parallelepipeds (3D) with zero permeability. The sand is
assumed to have k;; and k,; anisotropic permeabilities.
The up-scaled permeability is obtained by calculating
the head losses along a tortuous tube circulating inside
the sand matrix (Fig. 7).°*” An improvement on this
method is obtained by incorporating statistical param-
eters on the size and number of clay inclusions and
generalizing is to stratified media.!”

The following formula is taken from the review by
Fayers and Hewett:*?

(1 _’Fs)Hz

24
% (24

K, =

N2 oSS,

where F; is the fraction of clay inclusions, N, the number
of selected streamlines, H the formation thickness, S; the

length of the ith streamline and S,; the length weighted
by the permeability:
N n; N (b 1
S; = Z (hj + Zdijk> Sei = Z (k—l + Z deijk>
J j k J

y

where 7; is the number of impervious inclusions found in
layer j. The horizontal lengths of the kth step in the ith
streamline of the jth layer is given by:

dijk = rlijklijk or rZiJ'kW[/k

N rlijklijk

d oWk
ek = Tp —

Xj k yi

where 7y and rp;; are uniform random numbers and /j;
and wy are the lengths and thicknesses of the inclusions.

4.5 Renormalization

Historically, renormalization has its origin in statistical
physics.ﬁz’113 Its application to the problem of calculat-
ing the equivalent permeability is generally associated
with King.®® However, a method of the same type was
proposed by Le Loc’h™ (pp. 107-110).

Renormalization is a recursive algorithm. The equiva-
lent permeability of a fine-mesh grid is determined by a
series of successive aggregations. For example, in a space
of dimension D, one proceeds from a grid of 2" meshes
to a less finely discretized one with 2("~12 meshes. This
procedure is then repeated until a grid of the desired size is
found, ultimately one single mesh (Fig. 8).

The basic operation is the equivalent permeability
calculation of a cell with 2D meshes. Since there is no
exact formula in two and three dimensions, the
calculation has to be approximate. King® used the
analogy of an electric network to represent a porous
medium. The permeability is obtained by successive
star—triangle transformations. This expression is equiva-
lent to a solution of the flow problem by a finite
difference method with a centered formulation.

Several variations have been proposed, as described
below. They usually concern the type of finite difference
formulation and the boundary conditions. For example,
a direct formulation seems more exact (Kruel-Romeu:70
the permeability is assigned to each /ink between two

-0 00 =i

2nD

meshes 2(n-1D

meshes

one single value

Fig. 8. General principle of renormalization.
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K3 K4

Centred analogue

SEN ISR NIR:

Direct analogue

Fig. 9. Electric analogues used to calculate the up-scaled permeability of an elementary cell in two dimensions.

nodes, and not to each block surrounding a node).
Gautier and Neetinger*? calculate a complete tensor by
using periodic boundary conditions. Furthermore, they
use this method to calculate the velocity field in the
medium. Finally, Le Loc’h’™ proposes an original
method where the meshes are only grouped two by two.

4.5.1 Directional permeability

In two dimensions, the calculation can be carried out
either by successive star—triangle transformations or
by writing a linear system of the finite difference type.
The two procedures are equivalent and produce the
formula:®

K — 4(ky + k3)(ky + kg)lkokg(ky + k3) + kiks (ko + k4)]
DT Thaka(ky + k3) + kiks(ky + Ka)]lky + ko + ks + Ky
+3(ky + ko) (ks + ka)(ky + k3) (g + Ky)

2%

In their article, Hinrichsen er al.>® give the Fortran

code for calculating this expression, in two and three
dimensions.

4.5.2 Tensor
Gautier and No:‘:tingelr42 propose a method for calculat-
ing the complete tensor. The boundary conditions are
periodic and the finite difference formulation direct.
Take a square network of four meshes. The meshes
are numbered from 1 to 4 (see Fig. 9). To simplify the
notation, one assumes that the size of the meshesis 1 x 1
and the exponent for the diagonal terms of the
permeability tensors (K™ = k™) is not repeated. The
balance is written at each of the four nodes. Then, the
coefficients on the heads are factorized. This results in a
system of four equations where the four unknowns are
the heads. Note that this system is linked and that it is
therefore possible to fix a head value (e.g. #; = 0) and
solve only a 3 x 3 system.

f k> K,
1 X X X
A-lp )= k) —ky — k3 LA
hs K K — kY — K

AH,
AH,

with
Kf+ kS + k4 20Y —(kT + kS +hT R (K kY A
A= —(kTKS + kY ) kK S+ 2K+ kS kY + kY
— (k] + &S + kY + k3 kY + kg KAk kY 2K+ K

Then, the global flow rates over the domain are
calculated by summing the elementary flow rates over
each mesh.

U, = —k3h) + (k3 + k3 )Yhy — kihy
+ (k5 + k3)AH, + k7 AH,
Uy = — Iy — Kyhy + (I + k3 = k) hs
+ kY AH, + (K] + k) AH,
Using these equations, U, and U, are expressed in a

complex manner as functions of AH, and AH,. The
equivalent tensor is obtained by:

K., K, AH\ (U (AH AH,
K ky AH,)  \U,(AH, AH,

and by taking the special solutions AH, =1, AH, =0
and AH, =0, AH, = 1, one finds:

U.(1,0) U,0,1)
Ky = <Ux<1,0> Ui<0,1)> 26)

4.5.3 Simplified renormalization
This method was proposed by Le Loc’h.”® The calcula-
tion of the basic cell is done by successive groupings of
two meshes. If the two meshes are in series relative to the
flow direction, the point permeabilities are averaged
with a harmonic mean. If they are in parallel, an
arithmetic mean is used. At each iteration, the direction
of the grouping is changed. In three dimensions, for
example, a grouping along x is alternated with one along
z and finally along y. This order is kept during the whole
process (Fig. 10). Depending on the choice of successive
directions, the values of the up-scaled permeability will
be different.

We shall only discuss the two extreme values that
correspond to the cases that start or end by a grouping
in series in relation to the flow direction, i.e. by an
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Fig. 10. Example in two dimensions of two possibilities for the successive grouping for calculating the permeability along x. The
symbol y; represents the harmonic mean of two meshes grouped in the x-direction. y, is the arithmetic mean in y.

harmonic mean. For example, for a flow in x, the
maximum and minimum values are:

Cmax = Mi (a(pa)) = wh(pa(py))  iteratively

Cmin = Ha(ta(1)) = papa(ph))
At the end of the run, we take the geometric mean of
these two values.

K = /i, (27)

4.6 Numerical solution of the diffusion equation

There are several techniques for solving partial differ-
ential equations numerically: finite differences, finite
elements, mixed finite elements, spectral elements, etc. In
the case of the diffusion equation, they make it possible
to calculate an approximate solution (#(x,y,z) and
u(x,y,z)) for any permeability field and any boundary
conditions.

4.6.1 Local methods

Direction permeability. A directional flow, such as in a
permeameter, is simulated numerically by prescribing, as
boundary conditions, a head gradient of AH /L between
two sides of the block and no flow on the perpendicular
sides. The numerical simulation gives the flow rate over
each mesh. The total flow rate Q crossing the medium is
obtained by adding together the elementary flow rates.
The block permeability is given by:

0 L
N (28)
where L is the distance between the two sides with a
prescribed head, AH is the head difference and S is the
cross-section traversed by the flow Q. By rotating the
boundary conditions and repeating the flow simulation,
one obtains the permeability in the three directions, x, y
and z. This type of calculation dates back to the very
beginning of the use of numerical methods.""’
Tensorial permeability. Durlofsky®® suggests the use of
periodic boundary conditions. With this method, it is

possible to calculate, for a gradient in a given direction,
the fluxes in all directions. The permeability tensor is
then given by:

oo O L

S AHY
where Q) is the flow rate in the u direction, resulting
from a head gradient in the v direction (AH"). When
periodic boundary conditions are used, one can obtain a
permeability tensor that is always symmetrical and that,
in addition to satisfying the equality of fluxes, also
satisfies the equality of dissipated energies.!

Along the same line of thought, uniform boundary
conditions (varying linearly over the side of the
block)*® or perturbed conditions®> have been used to
calculate the permeability tensor. Note that uniform
conditions do not produce a symmetric permeability as
opposed to periodic conditions.

(29)

4.6.2 Nonlocal methods

General tensor scaling. This technique was the first
nonlocal method to be proposed.!'’ It is described in
two dimensions but can easily be generalized to three
dimensions. With this technique one can calculate
transmissivity tensors for up-scaling.

When using it, one must simulate the flow over the
entire domain at the scale of the fine-mesh grid with
several sets of boundary conditions on the sides of the
domain. This may seem excessively computer-intensive
but for petroleum engineering where the permeability
grid, after upscaling, will be used to simulate multi-
phase flow, the cost of the single-phase simulation in
steady state is low compared to a multi-phase simulation
in transient state. In such a case, it becomes worthwhile
to use this technique.

With these simulations, it is possible to have the fields
of hydraulic head A(x,y,i) and velocity u(x,y,i) at a
small scale for the i=1,...,n different boundary
conditions. The large-scale heads H(x,y,i) are calcu-
lated by taking volumetric averages weighted by the
storage inside each block of the large-mesh grid and
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assigned to the center of the large meshes.
J h(x,y,0)S(x, y)dV
4

JV S{x,y)dVv

H(x,y,i) =

White and Horne''' use finite differences for such
calculations. The large-scale velocities are calculated by
taking the surface average of the velocities obtained on
the small scale over the interfaces separating the blocks.

1
U(xay7 l) = —J u(x,y, l)dA
A )4
Having thus obtained the large-scale velocities and
heads, one can write a large-scale tensorial Darcy
equation for each interface between two blocks.

T T
U(x,y, l) = Tbgrad[K(x7y7 l)]’ Tb = ( TXX Txy>
yx yy

The unknowns are then the components of tensor Ty,
Note that the tensor is not assumed to be, a priori,
symmetrical. This problem is over-constrained; it is
solved by least squares by minimizing the residuals on
the flows. The least squares criterion is written:

(= Xn:[U(z) — T (/) = minimum
i=1

where I is the head gradient between two neighbouring

blocks. For an interface between two blocks, White and
110

Horne ™ calculate the gradient as follows:
H(x+1,y,i)— H(x,y,i
L{x+1/2,y,i) = ( yA)x (*,3,1)

L(x+1/2,y,i)

C1[Hx+1Ly+1L,i)-H(x+1,y—1,i)
2 Ay

H(X,y+ 171) —H(X,y— 171):|
+
Ay

The minimization of { generates a linear system of
equations where the components of tensor T}, are the
unknowns. For example, 7, and 7, are solutions of:

(b a)(2)-G) o
with
a= S0P b=YLOLG  d
i= i=1
and |

Sy = i = ilx(i) Ux(i)
i=1 j

i=1

Il
.\ﬁ\i
—
=
N

8= S L) ULG)
i=1

A similar system makes it possible to determine 7, and
T,,. Ty, is replaced by 7, and T, by 7,,, and S; and S,

on the right-hand-side of eqn (30) are replaced by:
S1=) _LOUW  S$=) LU0
i=1 i=1

Use of the local neighbourhood. Goémez-Hernandez
and Journel*® propose that only a skin around the block
under consideration be used. The flow is simulated over
the block surrounded by its closest neighbours and with
uniform boundary conditions (i.e. the linearly varying
prescribed-head boundary conditions, as described
above). The size of the calculations is therefore reduced
compared to general tensor scaling, while keeping some
of the nonlocal effects and still requiring the calculation
of the permeability tensor by least squares. Holden and
Lia®" use the same technique. They note that the
calculation of the permeability tensor seems to converge
faster than the calculation of the hydraulic-head
solution. They therefore propose a change in the
iterative numerical solution of the diffusion equation
so that the convergence criterion is placed on the
equivalent permeability. According to these authors,
this would make the numerical method more powerful.

4.7 Homogeneous-equation methods

Wen and Gomez-Hernandez'” include three methods in
this group: the theory of homogenization,'! the method
of spatial averaging with closure!” and the method of
moments.®® These techniques are based on different
mathematical concepts but they have a number of points
in common, in particular: their objectives, their con-
stituent hypotheses and their results. Bourgeat et al'®
proposes a comparison of the methods of homogeniza-
tion and spatial averaging with closures.

These three methods pose the problem of scale change
in rigorous mathematical terms and determine the
equations on the higher scale from constituent equations
of a given scale. It is then possible to determine both the
parameters and the large-scale equations. In all three
cases the techniques are general and can be used to study
any physical phenomenon. For example, Ene’®
addressed heat transfer, others study the transfer from
the Navier-Stokes to Darcy equations,”®*'1% multi-
phase flow'® or contaminant tramsport.95

The first common hypotheses is that of spatial
periodicity in the medium. This allows the study of the
domain as a whole to be replaced by that of the basic cell
subjected to periodic boundary conditions (Fig. 11).
This topic has fuelled heated discussions. Why study
periodic media when we know full well that no natural
medium is periodic? First of all, because we have the
mathematical tools capable of proving the existence and
uniqueness of the solution. Furthermore, this hypothesis
allows us to obtain new results concerning the macro-
scopic equations. Finally, it is reasonable to believe that
periodic boundary conditions are no more arbitrary
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(b}

Fig. 11. (a) Periodic medium consisting of two phases; (b)
unitary cell of the periodic medium.

than those of a permeameter or uniform type. The latter
are part of other, equally constraining, assumptions on
the nature of the medium. For example, in the case
of conditions of the permeameter type, the no-flow
boundary corresponds to an axis of symmetry. Moreover,
if the calculation is done for a case where a large-scale
permeability emerges, the latter must be independent of
the boundary conditions and the wuse of periodic
conditions then does not change the results.

The second hypotheses is that the period is very small
compared to the size of the studied domain. This makes
it possible to make the necessary approximations and to
ensure that the large-scale equation emerges.

The effective permeability is calculated in two steps.
First, one solves the boundary problem regarding the
ancillary variables by, b,,...,bp. Kitanidis® writes:

V.- (Kgradb) =V K, i=1,...,D (31)

subject to periodic boundary conditions with K; as the
ith column of the K matrix. These differential equations
are generally solved numerically. For example, Dykaar
and Kitanidis**** use a spectral method and Njifenjou87
uses mixed hybrid finite elements. The terms of the
equivalent permeability tensor are then calculated with
the formula:

) 1 . .
i _ . K. NIV
& ZVJV(K’ grad? + K - gradb’)
1 ..
-I—?JVKUdV ij=1,...,D (32)

An analytical solution was calculated by Quintard and
Whitaker™ for a stratified binary medium (eqn (20)).

5 STOCHASTIC METHOD

In order to deal with the uncertainty arising from a
partial knowledge of the reservoir properties, the
stochastic method considers the studied variables as
random functions in space. The definition of the
effective permeability is then based on the notion of
mathematical expectation (eqn (3)).

The determination of the probability distribution

function of the equivalent permeability is expressed in
terms of a stochastic differential equation, i.e. as a
differential equation linking several random variables. A
complete solution would mean that the joint probability
distribution for each random function would be
determined at all points. This is generally impossible.
It is considered sufficient to calculate the first moments
(mean, variance, covariance, etc.) or, at least, their
approximate value. A great number of methods —
which cannot be addressed here without digressing from
the main focus of this article — have been used: spectral
method, perturbation method, field theory, Monte-
Carlo method, etc. We will restrict the discussion to
the main results. Major references in this area are
Matheron,” Dagan'® and Gelhar;* a critical review of
the different methods can be found in Kitanidis.”’

5.1 Rule of geometric averaging

One of the few exact results is the rule of geometric
averaging. It was demonstrated by Matheron.” This
very elegant demonstration is based on the fact that in a
two-dimensional space, a 90° rotation transforms a
gradient vector into a conservative vector and vice-
versa. Subject to the conditions that the permeability k&
and its inverse k' = 1/k are random functions admitting
the same probability distributions and that these
functions are invariant by a 90° rotation, the effective
permeability is expressed in the following form:

Ker = Hg = exp[E(log k)] (33)

The preceding hypotheses are satisfied in the special
case of an isotropic log-normal medium and a checker-
board binary design. However, this only holds for a
uniform (or parallel) flow field and is not satisfied for
example for a radial flow. Matheron” indicates that in
radial flow, the harmonic average (for large distances)
should hold.

5.2 Approximated analytical results and conjectures

5.2.1 Matheron’s conjecture

Landau and Lifshitz,”® for the electrodynamic equa-
tions, and Matheron,79 for uniform flow in isotropic and
stationary porous media, propose to extend the exact
result, in two dimensions, to D dimensional space with a
formula which is the first-order approximation of the
effective permeability:

Ko = P /P pll? (34)

In three dimensions and for the case of a log-normal
permeability distribution, this formula becomes:

1 1
K= He €XP [Ulznk(i_‘b')] (35)
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where oi,; represents the variance of the permeability
logarithm. A vast number of authors have examined the
validity of this formula. In particular, Gutjahr et al.,®
using the method of perturbations and assuming that
Ulzn(k) is small, found:

1 1\,
Kep = py [1 + (5 - 5) Uln(k)] (36)
Equation (36) provides first-order approximations of the
classical exact results in one and two dimensions

(harmonic mean and geometric mean, respectively).
Dagan® carries the calculations to the fourth-order and

obtains:
11\, 1/1 1\,
1+ (5—5)%@ +§(§'5) it
37)

Equations (36) and (37) can then be seen as, respectively,
the first- and second-order terms of Taylor’s series
expansion of the exponential in eqn (35). They have
therefore been used to justify conjecture (35). The
advantage of eqn (35) over eqns (36) and (37) is that it
is not limited to small variances. King® and later,
Noetinger,88 combined the field theory and Green’s
functions to expand these results. Noatinger88 shows that
a sub-series of the perturbation expansion can be
summed again at all orders. He demonstrates that eqgn
(35) holds for an uncorrelated isotropic log-normal
medium but that the formula remains an approxima-
tion. Furthermore, he suggests that eqn (35) can be
expressed in the following form:

Ko = <]€1*(2/D)>[1*(2/D)]7l (38)

However, the discussion of this topic is still continuing.

K= Hg

Abramovich and Indelman,® carrying the expansion to
the sixth-order and De Wit,®* using perturbation
expansions, show that for correlated isotropic media,
the coeflicient in alzn(k) depends on the form of the
correlation function. This is contrary to Matheron’s
conjecture.

It is still true, however, that formula (35) has been
successfully tested by many authors even for media with
correlation lengths greater than the size of the meshes
(the correlation length is defined as the distance at which
the covariance has been reduced by a factor e from its
value at lag zero). Desbarats,”® for example, studied the
power mean and found experimentally that in three
dimensions, the exponent is 1/3 for a log-normal-type
medium. This corresponds to the formula proposed by
Neetinger (eqn (38)). Dykaar and Kitanidis* found a
deviation of only 4% between calculations made with
the spectral numerical method and Matheron’s con-
jecture (see Fig. 12). These results are confirmed by
Newman and Orr®®> up to the values of alzn(k) =17.
Sanchez-Vila et al.'®! compare the results obtained with
three, a priori, different methods: a standard numerical
method (eqn (28)), the method of Rubin and Gomez-
Hernandez,”® eqn (4), and Matheron’s conjecture. They
show numerically that these three techniques produce
comparable results for a log-normal medium where
alzn(k) < 1. Finally, comparisons with permeability mea-
surements, made at several scales on samples of
sandstone and limestone, are also consistent with
Matheron’s conjecture.®’

5.2.2 Taking anisotropy into account

In the case of an anisotropic medium with an
exponential covariance, one can calculate the effective
permeabilities in the main directions of anisotropy with
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Fig. 12. Comparison between effective permeabilities obtained by the effective-medium theory (labeled self-consistent in the figure),

the perturbation method (labeled small perturbation), the moment method and Matheron’s conjecture for an isotropic, log-normal,

3D medium. Note the good agreement between the numerical resu}l}s (moments) and Matheron’s conjecture (from Dykaar and
Kitanidis™).
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the formula®* expanded in the first-order with regard

to Ulzn(k):
i 1
of = g [1 + Uf'n(k) (5 - gii)] (39)
with
B J+°° Kk I Llydk dkydks
8= | o 20+ Bi2 + BR2 + BB’

Z gi=1

i=1,2,3

where /; is the correlation length in the i direction and k;
is the local permeability in the / direction. This formula
is only valid for small a,zn(k). As before, if the preceding
equation is considered as a Taylor series expansion of
the exponential function truncated to the first order in
alzn(k), a plausible generalization of eqn (39) for high
values of Ulzn(k) is:

y 1
of = Hg €XP {0’1211(1() (5 - gii)jl = [q CXP (—giifflzn(k))
(40)

Along the same lines, Ababou' takes anisotropy into
account with a simplified formula:

1 1 l,,
ef—ﬂgexp Uln(k) 3 Dl

where /; is the correlation length in the considered
direction and [, the harmonic mean of the correlation
lengths in the principal directions of anisotropy.
Neuman® proposes the same type of formula:

1 g
Kes = pgexp (0 (k) [5 - 5] )

with 0 < 8 < D. More precisely, 3 =1 in the infinite
isotropic case, 0 < 8 < 1 in the finite isotropic case and
1 < B8 < D in the infinite anisotropic case. He does not,
however, explain how to calculate 3 a priori.

The development at order two of Ulzn(k)ss leads to a
formula with an order-two coefficient that depends on
the variance and on the space dimension but is also
dependent on the form of the covariance function
C(r) = alzn(k) p(r) and not only on the anisotropy ratios.
p(r) is the autocorrelation function.

) 1
of = Ng{l + (5 - ai) Ulzn(k)
1 2 4
<§ - ai) +7i Uln(k)} (41)

azjd” Koy i=1,..D
(2m)* k

v [t n o (50 B)

+

where p represents the Fourier transform of the
autocorrelation function: p = [drp(r)exp(iKr). Note
that g; = a; in the case where the covariance is
exponential. Thus, the conjecture of Gelhar and
Axness,* eqn (39), is not satisfied at order two.

5.2.3 Caution

The results given above may lead one to believe that there
are simple rules for calculating the effective permeability.
This is only true in an approximate sense. To illustrate
this, Matheron®® used Schwydler’s method — perme-
ability is written on the form k(x) = E{(k)[l + ~(x)] with
E(7), the mathematical expectation of ~, equal to zero —
to carry out calculations in the form of a development
truncated at order three for three models of different
media. The first one is a random cross-word puzzle. The
second is a medium divided into random convex
polygons by Poisson lines. The last one is a medium
with an infinitely divisible law. The results for the three
models are:

1) Kg=m|1— +0-279E(y)

E(Y)
2

2) Ky =m|1— E(;)+0307E( )

3) Keg = m|1 — + 0-250E(?)

E(v)
2

Note that in all three cases, the coeflicient of the third-
order term is different. This means that for Matheron
there is no simple, uniformly valid rule for averaging the
permeabilities, not even in the case of isotropic random
media. This follows the same line of reasoning as that of
Indelman and Abramovich® for anisotropic media,
described in the preceding section, and that of Abra-
movich and Indelman® and De Wit* for log-normal
isotropic media.

5.2 Block permeability

Rubin and Gomez-Hernandez”® were the first author to
study the problem of block permeability from a
stochastic standpoint. The main purpose of their work
was to formulate the expectation E(K},) and the
covariance of block permeability Cg, and the cross-
variance Cg, ;) between block permeability and
local permeability based on the distribution function
of the permeability. These expressions were obtained
analytically for block permeability in the case where
the local permeability is isotropic and its logarithm
has a multi-gaussian distribution.”® The hypotheses
are: infinite medium, uniform flow and small
variance of the logarithm of k. For the permeability,
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Gomez-Hernandez® writes:

2
Oln(k
E(Ky) = ug[l +—2

1 _
+t5 (Ulzn(k),.lx - Cln(k),Jx)]
a

CKb (i’) = uz’éln(k)(Vv V+r)
Cryointk) (V3 ¥) = p1gCingiey (V' 1) (42)

V' represents the size of the block, r is a translation
vector, J, is the modulus of the arithmetic mean of the
hydraulic gradient vector J, J, is the x component of J.
Ulzn(k), s, s the stationary cross-variance between the
permeability logarithm and the hydraulic gradient J,.
The mean covariances C are given by:

1

W JV JV C|n(k)“jx (x - x’)dx dx'
_ 1

Ciny(V, V) = WJV er Cingi (%, x')dx dx'

Cay s, =

Cln(k)(Va r) = —I_Vcln(k) (x', X+ r)dx dx'
The cross-variance between the permeability loga-
rithm and the hydraulic gradient Ci, ) s, can be found in
Dagan19 (sec. 3.7). These analytical results are con-
firmed by Monte-Carlo simulations.
Note that qualitatively, in two dimensions:

Il/linoE(Kb) = Hq
Jim E(Ky) = 1

The variance of Kj, decreases when ¥V increases but
it remains non-negligible for large volumes. The covar-
iance of K, is different from that of the local
permeabilities. The main attraction of this approach is
that it makes it possible to condition the block
permeabilities by local measurements of 4 and k.
Rubin and Goémez-Hernandez” observe that the effect
of the conditioning by % is weaker than that of
the conditioning by In(k). In both cases, the variance
of K, decreases but it decreases more strongly for a
conditioning by In(k).

More recently, Fenton and Griffiths® studied the
same problem in two dimensions using Monte-Carlo
simulations. They varied the mesh size which gave them
the opportunity to investigate the effect of anisotropy
on block permeability. They conclude that for blocks
that have not been flattened (i.e. where the size of the
mesh is identical in the horizontal and vertical
directions), the block permeabilities are probably log-
normally distributed. For such a case, they propose
expressions of the expectation and variance of block
permeability:

E[In(Ky)] = E[in(k)]

Oln(ky) = Oy VYR (43)

g = Y(R, R} is the variance function, R is the aniso-
tropy ratio of the meshes R = /dx/dy. The variance

function is defined by:'"’

4

YR, Ry) = ————
(Rla R2)2

Ry R,
x Jo Jo (Ry = r))(Ry — ra)p(ry, ry)dridr;

Fenton and Griffiths® also note that the flattening
factor has a maximum influence when the block size is
equal to the correlation length.

In the case of a medium where the permeability
is not log-normally distributed and may be aniso-
tropic, Gomez-Hernandez and Journel*® and Gémez-
Hernandez* suggest the use of a numerical method. The
objective is to make some fine-mesh simulations of the
permeability field. For all simulations, one calculates the
inter-block permeability tensor by solving the diffusion
equation numerically. The method is the one described
above in Section 4.6.2 use of the local neighbourhood.
These block-scale permeabilities are used to obtain the
expectation and the covariance of T}, and the cross-
covariance Cr, jnr)- It is then possible to simulate
directly the inter-block permeabilities. This method is
also used by Tran.!%

6 DISCUSSION
6.1 Effective or block permeability?

The first possible choice is to describe the heterogeneous
medium by a single value (the effective permeability) or
by a set of values (block permeability). Durlofsky*°
compares three two-dimensional methods for media
with correlated log-normal permeability distributions.
These methods are: (1) a technique known as global
where the heterogeneous medium is replaced by a uniform
effective permeability; (2) the technique of sampling; (3) a
local technique which consists in calculating the block
permeability by taking the geometric mean of the values
in the block.

The precision of all three techniques is measured by
comparing the solution, after the scale change, to the
solution before the change. Thus, Durlofsky calcu-
lates mean quadratic errors (L,) for the head and the
flow rate between the results of the numerical simula-
tions (finite differences) on the finely discretized
medium and after the change of scale. He then studies
the evolution of L, as a function of the type of
boundary conditions, the correlation length, the size of
the blocks and the variance of the permeability
logarithm. He observes that the quadratic error can
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Fig. 13. Evolution of the quadratic error (L,) with the size of

the blocks (d) for three up-scaling techniques. d, is the critical

value for the sampling technique. If d > d,, the global method
is more accurate than sampling (from Durlofsky™).

be approximated by L, = ad® where d is the size of the
blocks for techniques 2 and 3. In the case of the global
method, L, is independent of d. For each configura-
tion, he determines a critical value d,, beyond which
the technique of sampling or the local method become
less accurate than the global one (see Fig. 13). He
concludes:

— For flow resulting from permeameter-type bound-
ary conditions, the method of sampling is more
accurate than the global one when the size of the
blocks is smaller than the correlation length
(d, =~ ). This result is independent of the variance
of the permeability logarithm (alzn(k)).

For flow driven by a uniform source term, higher
resolution is necessary to make the sampling more
accurate than the global method. Moreover, d,
decreases with U]Zn(k).

In all cases, the method of local averaging is more
accurate than sampling and generally, more
precise than the global method.

Ph. Renard, G. de Marsily

In other words, if the block permeability is calculated
with a reasonably reliable method, it gives a higher
accuracy. However, with a much cruder method
(sampling), if the size of the blocks is larger than the
correlation length, it is better to use a uniform effective
permeability.

6.2 Numerical or analytical method?

By analytical method we mean simple algebraic averages
as opposed to numerical methods which require a
numerical solution of partial differential equations.

All the assumptions on the types of medium and flow
pertaining to the techniques described here are listed in
Table 2, which clearly shows that analytical techniques
have a much more limited range of application than
numerical methods. For example, they only give exact
results for stratified or isotropic media with log-normal
permeability distributions and uniform flow. In all other
cases, there is a risk involved in using them. Numerical
techniques, on the contrary, are more general: they can
be used on any permeability field. Their main drawback
is that they are expensive in terms of memory space and
computer time.

The choice between analytical and numerical is
therefore simple: if one has a case for which analytical
methods have been developed, one simply applies the
theoretical formula. Otherwise, one must resort to
numerical methods. It is, of course, possible that the
size of the problem makes it impossible to use numerical
techniques. One can then turn to heuristic or approxi-
mate methods. Among the latter, the most general one is
renormalization.

6.3 What about renormalization?

The results obtained by renormalization are similar to
those obtained by numerical techniques, such as finite-
differences, provided that the flow lines are not too
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Fig. 14. Deviation between the permeability obtained by solving the diffusion equation and using renormalization, for binary media,
versus the density of a low-permeability medium for three anisotropy ratios of the meshes (from Malick and Hewett”?).



269

Calculating equivalent permeability

‘WAg — Jporrdd J1poLIzd POYIOW JUSUIOJA]
WAS - Jiporad JpoLdd aInsopd Yim SuiSeIsAay
suorenba [enuaiayp rented jo
uonn[os [edLIdUINY 3Y) 21mbax spoylauwr saIy} 3say | ‘WAg — s1pousd Jpolrad uoneziuofowoy
poyow uonenba-snosusfowoy
SO URY} 2UIOSIIQUUND $SI]
Fuiaq a[Iym 193]J3 [BI0[-UOU 3Y) JUNOIIE OJUI SINB] ‘SN — uojIuN uoN spooyInoqusiau [edo] Jo s
sur1o) [euoSerp aAnegou o) Spea| saLUNIWOS
‘WNSAS SNOoUIZ0121aY d[OYM ) JUNOIIR OJUT SAYB L SN -—— UON SUON (SLDO) 3ufeds 10sUd) [BIDUIN)
SO — JuON SUON)IpUOd AIepuUnoq pagqinisd
‘SN - SUON SUONIPUOD AIRpPUNOq ULIOJIU(}
Pasn SUONIPUOD [BI AUB
10J 1snqo1 aa01d suonipuod Arepunoq srpourad oy ‘wAg — wiIojiun Jporrsd SUONIPUOd AIRPUNOQ JIPOLIdJ
Beiq - uLojiun SUON SUOT)IPUOD AIRPUNOq I3)3WRIULIDJ
SBIq [EOLIAWNU JO YSLI ‘POYIdW [BIAUIL) uonenba worsnyjIp oy3 Jo UOHNJOS [BOLIAUINN
pa1s3) Aptadoad 194 JoN WAS ++ UON SQUON] [eLIOSUa],
Yeom
st Adonjosiue ay §1 sa3uI9JJ1p 211Ul 0) 9[qeredwo)) Seiq ++ SUON ordoxjost Aj[eoo] plepuelg
pa1sal Aptedoad 124 JoN eig ++ ELING ordonjost A[eso| payidung
suonemd[ed 3aneIaN dewrxorddy UOTIBZITRULIOUdY
pany aq o) sixdwered 221y ON ++ wIojIu) ploysaly) uonrjodiad ay3 o) aso[) £103y) UONB[0d1ad
[Tews st uonoey snoiaradun ayy J1 £juo
Aeansoe Anpiqeautiad [BoN12A 34) Ajuo sNEMO[E)) oN ++ [BO11IOA aseyd snolazadun suo ‘Areutg aqmuIeang
BIPIW SNOAUITOIIAY A[YEIM 0] PADLISTY -3eiq ++ uLojuny 19R121UI JOU 0P sANBUZoIdle K103} WnIpaut 3ANYJq
S3dUBLIRA [[BUWIS 10] ATuO s1nsa1 arewnxolddy Beiq ++ wIoJuN duBLIRA [[BUIS uoneqinlg
saoUPLIBA 3UOIIS 10] UAAQ PI[BA }[nsal deunxoxddy ON ++ uLojiun sidoxjost [euriou-30] ‘(g €/1 1uouodxd ylm UBdW 13MOd
uoneIol
PIBOQ-1902Ud puE wnIipaw .06 £qQ JUBLIBAU] 218 pUE UOHNQLISIP
rewtou-3o] ordornost :osed [e19ads ‘ynsal 1oexyg OoN ++ uLIojiun SWIBS 31} SARY ISIAAUI S)I pue Y ‘AT UBSUL JLIJLUOID)
S)NSal [ROIA[RUR [RISUID) POYIoW dNSBYI0IS
RIPAW paynens -2°1 ‘suondwnsse a1} jo WAS ++ uojiun paynens Kieulg B[OUWIOY S IONRIIYM PUR pieiuind)
NIOMaWERL] MOLIBU AI3A 3Y) UIYIIM S1[NST 198X ON ++ ®ie1s 3Y) 0) re[norpuadiod payneng Ue3W dIUOWIeH
ON ++ BJRIS 2Y) O} [9f[eled paynens UBaW dRAWI LY
uorenba uoIsnyJIp 3yl JO UOKN[OS [BINA[RUY
sanjuIe1IoUN Jo a3url B SapIA0I] ‘e ++ wiIojiun QUON spunoq SuiSelaAay
1uouodxa 2y} Jo Sumil Yy saunbay Beiq ++ suoN uoN safeioar 1amod
poyiauwi parpnis
1SB3[ AY) PUR Pasn A[UOWITLOD ISOUW 3Y) JO U ON +++ SuoN AUON uidweg
POISW dNSLINSF
suonzenbs renuazayip jo
Wa1sAs ® JO UOHN[OS [BOLISWNT 313 salinbay WAS - aIpoLrad RIVIAER | spunoq auyg
ON ++ ulojiun g oidonost wopuel ‘dresojy punoq uoIY BN
ON ++ uojun Areurq o1donosy SpUnoq UrULIYS pueR uryseyy
Beiq ++ wiojufy uoN SpUNoq uosied pue [[ampie)
spunoq aug Ioj 1deoxa s)nsar [edNAJeUR 10BXT ON ++ uLIojIu Ny JuoN Spunoq ISUSIM
Kyiqeswad jusreambs ay) 1o sanijenbauy
syrewoy J0SUQ paadg MO WP POyl

suondumnssy

(*S$°N) anpuss-uou 1o ("wAS) gaunwAs ‘("Jei(q) reuodeIp si ) IYIIYM ‘0s JI pue 10SUI)
Lmqeawsad v Suremores jo sjqeded st anbruyda) ay; 10U 10 1IYIIYM SAEIIPUT JOSUI [ UWNJ0I Y], "PIsn 3q ued snbruyda) ap gorys @im Lpides oy saal8 paadg uwmjod ay ], ‘sonbruyda Suress-dn jo uosuredmo)) -7 Jiqe],



270 Ph. Renard, G. de Marsily

we | + YORTICAL LA
~ : BRGC AND JING {1086)

[T S TR T S~ I T R 1)

SHALE VOLUNE FRACTION Vah

(2)

w? * -

ws | -

Keofl/Kea

—— DutaN (1079}

1 L L
A1 TRE T W8 40 85 8s  aT s s

SHALE VOLUME FRACTHN Vah

(b)

Fig. 15. Binary media. Comparison between equivalent permeabilities obtained by numerical solution of the diffusion equation and

two approximate methods, versus the proportion of low-permeability medium (V). (a) Anisotropic medium, comparison for the

vertical permeability in the streamline method (solid line) and the numerical solution (+); (b) Isotropic medium, comparison
between numerical results ((J) and Dagan’s'® result with the effective-medium theory (solid line). From Desbarats.”

tortuous.® If this condition is not satisfied, the deviation
may be great. Malick and Hewett”’ demonstrate this
effect on binary and log-normal anisotropic media by
varying the flattening of the grid. They conclude that the
error is greater, the flatter the grid. For binary media,
the maximum error occurs for average densities around
50% of low-permeability media (see Fig. 14). In log-
normal media the error increases with the variance. This
appears to be due to boundary conditions of the
permeameter type used in the standard method.®> One
can then imagine that the method proposed by Gautier
and Neetinger*? might be less likely to suffer this
limitation as they use periodic boundary conditions
and a complete permeability tensor. However, at the
moment, no numerical test has been proposed to
confirm this assumption.

As to simplified renormalization, we know that it is a
non-biased estimator in two dimensions for log-normal
isotropic media’ (p. 197). However, standard renorma-
lization, as well as finite differences, has tendency to
under-estimate the permeability. For example, in two
dimensions for a log-normal isotropic medium and
uniform flow, we know that the equivalent permeability
is the geometric mean (u,). King’s results,® in Table 3,
show that for an isotropic 2D log-normal medium, finite
differences and renormalization give a lower equivalent
permeability than the exact theoretical result. For cases

Table 3. Example of King’s®® results

Ok 0-5 10
Reference: p, 20 2-0
Effective medium theory 2-0 20
Perturbation (first-order) 1-7 -33 x 10°
Finite diff. simulation 1-9 1-3

Renormalization 1-8 1-3

where there is no available theoretical value for the
equivalent permeability, we can assume that standard
renormalization and finite differences are still under-
estimating the permeability.

This fact is all the more important as some authors
use the method of renormalization to produce a
reference equivalent permeability. This value then
allows them to validate an algebraic composition
rule'® or to study the influence of the size of the
representative elementary volume on synthetic media.”
The use of renormalization as a reference introduces a
systematic bias in the results.

To conclude the discussions on renormalization, one
can say that this is a method which has been very
popular. However, in its standard form it has two
limitations: systematic bias (under-estimation) and
arbitrary boundary conditions. One would hope that

e
- N
- .."' o
‘J:..
"5? Ntew -

*

”

Fig. 16. Binary medium used by Bachu and Cuthiell’ and
Dykaar and Kitanidis® to compare up-scaling techniques.
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the modifications proposed by Gautier and Neetinger*
will lead to a considerable improvement.

6.4 When to use the approximation methods?

The approximation methods are: the streamline method,
the effective medium theory, the perturbation method
and the percolation theory. The latter only proposes a
formula close to the percolation threshold and its
usefulness is therefore limited.

The streamline method gives good results according
to Begg et al’ but Desbarats,” dealing with binary
media, only obtains results comparable to those
produced by the numerical solution of the complete
flow problem with the small mesh size for very small
proportions of impervious medium (Fig. 15a).
Desbarats® also demonstrates that the formula based
on the theory of effective media for binary media (eqn
(23)) gives results comparable to those obtained by
numerical methods for clay quantities of less than 60%
(Fig. 15b). For Dykaar and Kitanidis,*® the same
formula, applied to deterministic binary media (Fig.
16), is in good agreement with the numerical method of
moments. Note that the media in question always
contain less than 50% clay. Consequently, Dykaar and
Kitanidis’ experiments®* do not represent the worst
cases described by Desbarats.*

For media with a log-normal permeability distribu-
tion, the theory of effective media and the formulas
based on perturbation calculations produce satisfactory
results only if the perturbations are weak.** Figure 12
also shows that the results obtained with Dagan’s
formula (eqn (22)) are not as good as those of
perturbation calculations. It seems that in the case of a
log-normal distribution, the underlying assumption in this
formula of no interaction between the heterogeneous
inclusions is not valid.

Finally, it appears that the approximation techniques
are mainly valid (i) for small heterogeneities with a
low variance, in media with a log-normal distribution

(a) K, = l‘gﬂ}l;—a

of permeability, (i) when the proportion of low-
permeability media is less than 50%, in binary media.

6.5 Are heuristic methods useful?

The two main heuristic methods are: power average and
formulas for averaging means.

It must first be emphasized that the behaviours of
these averages are very different. For example, for a
binary medium with k; =1 and k; = 1000, one can
compare the model for averaging arithmetic and
harmonic means with the power average p. We have
plotted the resulting equivalent permeability as a
function of fy (fraction of medium 0) for these two
averages, for different values of a and p. Figure 17
clearly shows how the behaviours differ.

The numerical experiments carried out by Deutsch?’
on binary media demonstrate that when the proportion
of low-permeability medium represents less than 40%,
the power average expression can be correctly fitted on
the numerical results. This author also shows that the
percolation theory formula can be successfully fitted on
the experimental points but that three parameters have
to be fitted, whereas only one parameter, p, has to be
calculated for the power average. He ends by recom-
mending the use of power averages in most cases. This
method has one limitation: some numerical calculations
are required to fit the exponent p. Ababou' proposes the
use of exponents that depend on the correlation lengths
but it remains to be seen whether or not this can be
done.

In addition to giving the mean value, the methods of
averaging means have the advantage of providing a
confidence interval: the two theoretical bounds used in
the calculation of the average. The two most general
bounds, which also give the most precise interval, are
those of Cardwell and Parsons. These bounds are
therefore preferable to those of Wiener. Njifenjou®®
compares the method of homogenization to the compo-
sition of Cardwell and Parson bounds. He observes

(b) Keg =< kP S1/P

Fig. 17. Binary medium, with ko, = 1 and k; = 1000. Comparison of two heuristic means, as a function of the proportion of phase
zero in the medium. (a) Arithmetic and harmonic mean averages, for different values of the averaging parameter a, see eqn (12); (b)
power averages, for different values of p = 2o — 1.
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Fig. 18. Two-phase flow for a five-spot test on a periodic medium. (a) Permeability field; (b) permeability coding; (c) comparison of

three water cut curves in percent, versus injected water volume. The three curves are: reference solution obtained on a fine-mesh grid

(— — —) and curves obtained after up-scaling using the homogenization method (- - — - - — - ) and means averaging (— - — - — ) (after
Niifenjou).¥

considerable errors on the large-scale fluxes (50%),
whereas the maximum errors of the homogenization
techniques or the direct numerical methods are on the
order of 10% for random or deterministic media. Tests
on two-phase flow in periodic media also prove, as
expected, the superiority of the numerical method (see
Fig. 18). However, here again one would have liked to
see a comparison with approximation methods such as
the method of renormalization. Finally, the formula
proposed by Kruel-Romeu,” taking into account
anisotropy, seems particularly interesting: the tests®>
are positive but the formula deserves more work.

To conclude, it must be emphasized that the heuristic
methods are among the fastest and easiest to handle. As
opposed to the theoretical analytical results, their
fields of application are, a priori, wider. However,
additional experiments are needed to accurately define
their limits.

6.6 Which numerical method?

The first task is that of choosing between the numerical
methods that solve the diffusion equation directly and
those that solve equations on the ancillary variables
obtained with homogeneous-equation techniques. The
first ones assume that Darcy’s law exists at the large
scale; the second ones show that, under certain
conditions (periodicity, dimension of the module much
smaller than that of the domain), Darcy’s law emerges at
the large scale. The latter is a more rigorous approach
than the former, but are the results different in practice?

Using the binary medium studied by Bachu,’ shown
in Fig. 16, Dykaar and Kitanidis®>* obtained very
similar results with the direct numerical method used by
Bachu’ and the method of moments. Nijifenjou®
compares several methods of the homogeneous-equation
type with the direct numerical method used by Gallouét
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for calculating the head for each block of constant permeability (from Kruel-Romeu and Noetinger’").
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and Guérillot*® on random or deterministic media. He
observes that these techniques produce similar results for
the flux crossing the medium. The comparison is then
extended to periodic media where the homogeneous-
equation type technique proves superior to the direct
numerical one. It must be remembered, however, that
the tested numerical method used boundary conditions
of a uniform type which are by no means the most
suitable conditions for periodic media. What would the
results have been of a comparison with Durlofsky’s
method?*

Finally, the techniques of the homogeneous-equation
type are without doubt the most robust but to use them,
one has to develop a code for solving numerically the
boundary-value problem of the ancillary variables. The
direct numerical methods can, by contrast, be used with
already existing software for simulating single-phase flow.
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It seems, therefore, that direct numerical methods are
preferable except in the special case of periodic media.

The second task is that of choosing the boundary
conditions. Some authors work with conditions of
the permeameter type, others prefer uniform or
periodic conditions. It must be remembered that with
permeameter-type conditions it is impossible to calculate
a complete permeability tensor, that uniform conditions
produce a permeability tensor that may be non-
symmetric and that periodic conditions always give a
symmetric tensor. Pickup et al’' have published a
comparison of the different types of boundary conditions.
Figure 19 shows the technique used in the comparisons
and gives the results in two cases: permeameter-type and
periodic boundary conditions. The tests carried out by
Pickup e al’' demonstrate that the periodic conditions
are the more robust.
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Fig. 21. Comparison between general tensor scaling and a non-tensorial numerical method. (a) Binary medium, the solid lines define

the large-mesh grid, the fine-mesh grid is made of squares with the size of the smallest layers; the flow domain is a section of a five-

spot; (b) pressure field calculated on the fine-mesh grid; (c) pressure field calculated on the large-mesh grid with permeabilities given

by the general tensor scaling; (d) pressure field calculated on the large-mesh grid with permeabilities given by a numerical method
that does not take into account the complete tensor. From Fayers and Hewett.*
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The main drawback of numerical techniques is that
they can be biased.”""’**” We have already seen an
example of this in King’s results (Table 3). These biases
are usually weak and can be neglected in the case of
homogeneous media. However, they may become large
in heterogeneous media and they are difficult to
evaluate. Kruel-Romeu and Neetinger’' derive the bias
of the finite difference method by an analytical calcula-
tion, in the case of a log-normal and a checker-board
medium in two and three dimensions. The authors show
that the bias depends on the method used to calculate
the inter-block permeabilities and on the mesh size,
when the numerical solution is calculated with a finer
mesh than the one defining the permeability variations
(Fig. 20). They also show that the only method that
almost eliminates the bias is the direct formulation,
where the inter-block permeabilities are directly assigned
by the geologic model to the bonds between two nodes
and not calculated from the values assigned to each
node.

Finally, no discussion of numerical methods is
complete without mentioning non-local approaches.
The advantage of these techniques over the above-
mentioned ones is that they take into account the
neighbourhood of the block. The typical example is
general tensor scaling (GTS).!!" Fayers and Hewett®®
have presented a test that demonstrates the superiority
of GTS over a numerical method that neglects the non-
diagonal terms of the permeability tensor (see Fig. 21).
It would be also interesting to compare GTS to a direct
method with, e.g. periodic boundary conditions, in
order to evaluate the non-local effect only. Finally, note
that with GTS, negative terms may appear on the
diagonal of the permeability tensor.

7 CONCLUSION

The purpose of this review of the literature is to give an
account of the methods that are currently used to
calculate the equivalent permeability for uniform,
single-phase, steady-state flow. We have tried to present
as complete an inventory as possible of the different
techniques, divided into three main categories: determi-
nistic, stochastic and heuristic. These groups have
proved to be complementary rather than antagonistic.
It is clear that the stochastic methods are the only
ones capable of quantifying the uncertainty linked to a
partial knowledge of the exact distribution of the
permeability. However, the analytical developments
carried out in a stochastic context are based on very
restrictive assumptions such as stationarity or log-
normal distribution of the permeabilities. Apart from
these assumptions, the Monte-Carlo method stands out
as the most direct approach with which to evaluate the
uncertainty. It is here that the link is established with the
deterministic methods: the principle of the Monte-Carlo

method is to generate equally probable simulations of
the geological model and to use deterministic techniques
— upscaling and flow simulations — to evaluate the
effect on the flow of the differences in permeability
between the simulations of the medium. As to the
heuristic methods, they represent an alternative to the
deterministic methods. They have the quality of being
extremely simple, fast and not limited by the memory
space but they deserve to be tested further.

In the introduction, we distinguished between local
and non-local methods. In recent studies, the non-local
nature of block permeability has been made very clear,
whether in a deterministic>”!!'! or stochastic®®% context.
Thus, block permeability is not unique, it depends on
the boundary conditions and on the permeabilities
inside and outside the block. This leads to a paradoxical
situation where one has to know, a priori, the boundary
conditions in order to determine the block permeability,
consistent with the predicted flow conditions, while
the model is mostly used to simulate situations
where the boundary conditions change with time.
This non-local aspect appears as one of the most
interesting topics for future research. Another important
line of research would be to take into account
simultaneously measurements of permeabilities made
on different scales.

From a practical point of view, the numerical non-
local method called general tensor scaling''' has the
drawback of being very demanding in computer
resources and cannot, at the moment, be used on real-
size problems. The method that uses a local
neighbourhood46 is easier to handle.

Finally, when faced with a problem of upscaling, one
should choose a technique providing block permeabil-
ities rather than a uniform effective permeability. Except
in special cases (log-normal or stratified media), a
numerical method is preferable. If it is impossible to
use a numerical technique (too many meshes), one
should use renormalization while making sure that the
case in question is not one where the errors are great
(flattened meshes, strong heterogeneity). When choosing
a numerical method, one must be aware of possible
errors linked to the discretization and the numerical
formulation. Periodic boundary conditions are a good
choice as they seem to be the most robust.
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