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Abstract The increasing use of wireless sensor networks and remote sensing permits real‐time access to
environmental observations. Data assimilation frameworks tap into such data streams to autonomously
update and gradually improve numerical models. In hydrogeology, such methods are relevant in areas of
long‐term interest in water quality and quantity, for example, in drinking water production. Unfortunately,
accurate hydrogeological predictions often demand a degree of geological realism, which is difficult to
reconcile with the operational limitations of many data assimilation frameworks. Alluvial aquifers, for
example, are sometimes characterized by paleo‐channels of unknown extent and properties, which may act
as preferential flow paths. Gradually optimizing such fields in real‐time or quasi‐real‐time settings is a
formidable task. Besides subsurface properties, ill‐specified model forcings are a further source of predictive
bias, which an optimizer could learn to compensate. In this study, we explore the use of a quasi‐online
optimizer based on the iterative batch importance sampling framework for a groundwater model of a field
site near Valdobbiadene, Italy. This site is characterized by the presence of paleo‐channels and heavily
exploited for drinking water production and irrigation. We use Markov chain Monte Carlo steps to explore
new parameterizations while maintaining consistency between states and parameters as well as
conformance to a multipoint statistics training image. We also optimize a preprocessor designed to
compensate for potential bias in the model forcing. We achieve promising and geologically consistent
quasi‐real‐time optimization, albeit at the loss of parameter uncertainty.

1. Introduction

Groundwater is a critical resource for sustainable human and ecological development (Burri et al., 2019;
Schirmer et al., 2013), constituting the dominant source of drinking water and irrigation in many countries
across the globe (e.g., Gorelick & Zheng, 2015). As such, safeguarding this resource is a long‐term endeavor
across multiple time scales, ranging from months/years (e.g., dewatering of construction sites; Powers et al.,
2007) to decades (e.g., drinking water production and aquifer remediation; Kresic & Stevanovic, 2010;
UNICEF, 2016) or even centuries (e.g., prevention of saltwater intrusion; Oude Essink, 2001;
Werner et al., 2013).

Numerical modeling plays a crucial role in informing such hydrogeological practices (Reilly &
Harbaugh, 2004). The parameterization of groundwater models demands a full characterization of subsur-
face properties, information which can only partially be obtained from direct measurements.
Consequently, modelers often find themselves tasked with the synthesis of plausible parameter fields from
different sources of information (McLaughlin & Townley, 1996; Yeh, 1986) such as geological field charac-
terizations (e.g., Linde et al., 2015; Zovi et al., 2017), geophysical measurements (e.g., Zovi et al., 2017), or
parameter‐dependent state observations (e.g., Doherty et al., 2010; Sun, 1994).

As the most accessible data type in inverse modeling, state observations can provide a wealth of information.
Unfortunately, depending on climatic conditions, they might reveal only certain aspects of the subsurface at
any given time. As such, the process of assembling a sufficiently informative data set may be slow. This moti-
vates the use of online model optimization routines based on data assimilation (e.g., Hendricks Franssen &
Kinzelbach, 2008). While the adoption of these methods into practice is still in its infancy, such algorithms
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could connect to online sensor networks and assimilate data as it becomes available, sequentially optimizing
a model's state and parameter estimates. In hydrogeology, certainly the most popular among such techni-
ques is the ensemble Kalman filter (EnKF; Evensen, 1994, 2003). This method has seen a great rise in popu-
larity over the past decades (e.g., Aanonsen et al., 2009; Hendricks Franssen & Kinzelbach, 2008; Reichle
et al., 2002; Tang et al., 2015, 2017; Zhou et al., 2011) owed to its simplicity, relative ease of implementation,
great computational efficiency, and remarkable robustness to both small ensemble sizes and violations of its
implicit assumptions of linearity and Gaussianity.

However, the price for the EnKF's elegance is that it updates its variables as if its fundamental assumptions
were met (e.g., Katzfuss et al., 2016), which is rarely—if ever—the case in hydrogeology. Particularly com-
plex geological priors often deviate substantially from Gaussianity (Aanonsen et al., 2009; Sun et al., 2009).
As such, the common practice of optimizing log‐conductivity fields sampled from such priors with the EnKF
(e.g., Jafarpour & McLaughlin, 2009; Tang et al., 2015, 2017; Zhou et al., 2011; Zovi et al., 2017) risks leaving
the support of the prior. This, in turn, means that the EnKF eventually erases geological features present in
the initial ensemble (Ramgraber et al., 2019; Zovi et al., 2017) and yields posterior samples incompatible with
the prior. Attempts to enforce conformance by construction (e.g., Hu et al., 2013) circumvent this issue, but
instead often suffer from a weakened linear relation between parameter changes and state response,
exploited by the EnKF's parameter update (e.g., Crestani et al., 2013).

In order to achieve a good fit to hydraulic heads, practitioners often neglect geological realism or structural
uncertainty in favor of simpler formulations such as a priori zonation with homogeneous properties or inter-
polation from a set of pilot points (Cirpka & Valocchi, 2016). While this may prove adequate for the predic-
tion of flow only, using a model for transport‐related quantities (e.g., flow paths, travel times, and reactive
transport) demands a more faithful representation of the geology (Alcolea & Renard, 2010; Cirpka &
Valocchi, 2016; Fogg & Zhang, 2016; Sanchez‐Vila & Fernàndez‐Garcia, 2016).

To reconcile the challenges of geological realism with the operational limitations of sequential optimiza-
tion frameworks, it seems auspicious to return to more general sequential Monte Carlo (SMC) techniques
like particle filters (e.g., Doucet & Johansen, 2009; Doucet & Tadić, 2003; Peter Jan van Leeuwen, 2009;
van Leeuwen et al., 2019). These methods promise greater freedom in exploring complex probability dis-
tributions with nonlinear relations between parameters and states. The price for this flexibility is often
drastically lower efficiency: classic particle filters demand an ensemble size exponential with regard to
the dimensionality of the system (e.g., Snyder et al., 2015), a restriction known as the curse of dimension-
ality. Failing to provide a sufficiently large ensemble—a virtual inevitability given the high dimensionality
and computational cost of most subsurface models—results in sample degeneracy (e.g., Doucet &
Johansen, 2009; Li et al., 2015) and eventually the collapse of the particle approximation. While this
degeneration of the particle approximation often cannot be avoided in practice, it can still provide a
powerful basis for model optimization.

In this study, we construct a quasi‐online optimizer based on iterated batch importance sampling (IBIS;
Chopin, 2002; Chopin et al., 2013), a particle filter that uses Markov chain Monte Carlo (MCMC) steps
to counteract sample degeneracy (rejuvenation) and optimizes the ensemble in the process. While
MCMC steps are a common rejuvenation mechanism in hydrological particle filters (e.g., Moradkhani
et al., 2012; Noh et al., 2011; Vrugt et al., 2013), many methods simplify the point‐wise evaluations of
the posterior probability density it requires by using intermediate density estimates from the particle
approximation. In the IBIS algorithm—similar to the Restart EnKF (Gu & Oliver, 2007)—the full obser-
vation history is resimulated instead and the posterior density is computed directly. This guarantees that
states and parameters are always internally physically consistent and renders the fidelity of the rejuvena-
tion mechanism largely independent of the (possibly degenerate) particle approximation, at the cost of
steadily increasing computational demand. In our study, we compensate this effect by dynamically adjust-
ing the ensemble size and use the flexibility of the MCMC framework to sequentially optimize a model
under a complex geological prior, maintaining conformance by construction through a combination of
hyperparameterization and multipoint statistics (MPS; Caers et al., 2003; Journel & Zhang, 2006). The
optimizer is tested at a field site in northern Italy characterized by paleo‐channels, the object of a previous
study employing the EnKF (Zovi et al., 2017). We implement the algorithm in three different scenarios
and compare the results obtained to the previous study.
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2. Theory
2.1. Nomenclature

In probabilistic systems model variables are separated into two classes. The parameters θ are usually static
model variables, such as hydraulic conductivities or specific yield, and generally independent from other
variables. States, denoted by x, are typically time‐varying quantities, which depend on parameters or model
forcing. Hydraulic heads, temperatures, or concentrations all are common examples. The observations y—
generally measurements of states—are treated as a third, separate variable type.

All system variables of the same type are combined into a vector and interpreted as coordinates of a point in
high‐dimensional variable space (parameter space, state space, and observation space, respectively). Particles
occupy one such point and thus represent a full set of the respective variable type required by the model. We
assign a superscript index in brackets to individual particles and their associated variables, for example, x-
(index). Time‐dependent variables are designated by subscripts xtime for specific time points, and time spans
between a start and end point are represented by xstart : end. A “~” should be read as “sampled from,” and a
semicolon “;” denotes “parameterized by.” Figures and tables numbered with a leading “S” refer to material
in the supporting information. A list of all variables is provided in Table S1 in the supporting information.

2.2. Sequential Bayesian Inference

At the heart of Bayesian parameter estimation lies the inference of the posterior probability density function
(pdf) p(θ| y1 : t), which can be determined to proportionality through the prior p(θ) and the likelihood of the
observation time series conditional on the parameters p(y1 : t| θ ):

p θjy1:tð Þ ∝ p θð Þp y1:tjθð Þ (1)

Sequential data assimilation frameworks incorporate data in increments. Assuming time‐independent like-
lihoods, we can reformulate equation 1 to obtain

p θjy1:tð Þ ∝ p θð Þ∏
t

s¼1
p ysjθð Þ (2)

While p(θ) is generally user‐prescribed, the likelihood p(ys| θ ) is not always straightforward to obtain. Most
EnKF variations and particle filters based on state‐vector augmentation (e.g., Moradkhani et al., 2005)
instead use the observational likelihood p(ys| xs), then extend the Bayesian update to the parameters via
the parameter‐dependent states. Nested particle filters (e.g., SMC2; Chopin et al., 2013) also use the observa-
tional likelihood, but then integrate over the state space to obtain p(ys| θ).

An alternative approach is to omit the model states entirely from the probabilistic part of the inference pro-
cess. Since most numerical groundwater models M(x0, u1 : t, θ) are deterministic to begin with, one may
interpret the model states x1 : t as the output of a deterministic mapping from parameter space, the initial
states x0, and the model forcing u1 : t. If we further assume that x0 and u1 : t depend only on θ and constants,
this dependency effectively reduces to θ, and we can consider x0 and u1 : t intermediate results of the deter-
ministic map from θ to x1 : t. The states x1 : t, in turn, map deterministically to observation space, providing us
with a deterministic map of parameters to observations by “bridging across” state space. This process is often
called a forward operator (also forward solver and forward map; Linde et al., 2015; McLaughlin
& Townley, 1996):

θ →
det:

x1:t→
det:

ysim1:t (3)

The map from state space to observation space (x1:t→
det:

ysim1:t ) can be a nonlinear function (e.g., Peter Jan van
Leeuwen, 2015), but in hydrogeology—where the observed quantities are generally simulated directly—it
can often be simplified to a dot product with a matrixH extracting the relevant entries from the state vector:

ysims ¼ Hxs (4)

where H is a matrix of zeros and ones. Combining equations 3 and 4 yields
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θ →
det:

x1:t ¼ M x0; u1:t; θð Þ→det:ysim1:t ¼
ysim0
⋮

ysimt

264
375 ¼

Hx0

⋮
Hxt

264
375 (5)

Given this deterministic projection into observation space, we require an error model to permit a probabil-
istic analysis of the observed data. One possible way to do so is through the addition of a lumped, additive,

multivariate Gaussian error centered around the forward operator's output ysim1:t with a specified covariance
matrix Σ. Since we assume spatially and temporally uncorrelated errors in our study (equation 2), the error
model could theoretically be broken down into a product of univariate Gaussians. To better reflect the incre-
mental structure in which new observations become available, we instead define it as a multivariate
Gaussian over all observation points available at a given time step s centered on the predicted observations

ysims with a diagonal covariance matrix Σ:

p ysjθð Þ ¼ N ys; μ ¼ ysims ;Σ
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð ÞNobs
s detΣ

q exp −
1
2

ys−y
sim
s

� �
Σ−1 ys − ysims
� �� �

(6)

whereNobs
s denotes the number of elements in the observation vector ys. With the likelihood p(ys| θ ) defined,

we can proceed to the specific algorithm used in this study.

2.3. Iterated Batch Importance Sampling (IBIS)

The IBIS algorithm was introduced by Chopin (2002) for the sequential filtering of static parameters, pro-
vided that the likelihood p(ys| θ ) can be evaluated. Since Bayes theorem (equation 1) is all but impossible
to solve analytically in the general case, it often becomes necessary to resort to Monte Carlo approximations.
These methods assume that a set of Monte Carlo samples (an ensemble of particles) may act as a surrogate for
the distribution fromwhich they were drawn. SMCmethods, then, try to retain this surrogate property along
otherwise intractable Bayesian update operations through gradual updates to the particle ensemble.

The IBIS algorithm is closely related to the particle filter. It is initialized by drawing an ensemble of N inde-
pendent, identically distributed (i.i.d.) parameter particles θ(n), n = 1,…,N from the prior p(θ):

θ nð Þ~p θð Þ∀n ∈ 1;…;Nf g (7)

which yields a particle approximation of the prior

bp θð Þ ¼ ∑
N

n¼1
w nð Þ
0 δ θ − θ nð Þ
� �

→
N→∞

p θð Þ (8)

where δ is the Dirac delta function centered on θ(n),w nð Þ
0 is the particle's individual retrieval weight (initially a

uniform 1
N starting from i.i.d. samples), and bp θð Þ denotes the particle approximation of p(θ), converging

toward the true prior in the limit of an infinite number of particles. Particle filters implement the

Bayesian update in two steps: first, by adjusting the previous weightsw nð Þ
t−1 according to the likelihood incre-

ments l nð Þ
t :

l nð Þ
t ¼ p ytjθ nð Þ

� �
∀n ∈ 1;…;Nf g (9)

w nð Þ
t ¼ w nð Þ

t−1l
nð Þ
t ∀n ∈ 1;…;Nf g: (10)

In preparation for a later step, we also carry along an estimate of the total likelihood accumulated so far

(initially L nð Þ
0 ¼ 1):

L nð Þ
t ¼ L nð Þ

t−1l
nð Þ
t ¼ p y1:tjθ nð Þ

� �
∀n ∈ 1;…;Nf g (11)

Second, since the updated weights of equation 10 no longer sum to unity, they must be renormalized (equa-
tion 12) to obtain the updated particle approximation of the posterior (equation 13):
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W nð Þ
t ¼ w nð Þ

t

∑
N

m¼1
w mð Þ
t

∀n ∈ 1;…;Nf g (12)

bp θjy1:tð Þ ¼ ∑
N

n¼1
W nð Þ

t δ θ − θ nð Þ
� �

→
N→∞

p θjy1:tð Þ (13)

Theoretically, the steps outlined in equations 9 to 13 may be repeated indefinitely. Eventually, however,
sample degeneracy will cause only one single particle to retain any significant weight. This issue is generally
addressed through a resampling step, making use of the surrogate property in equation 13 to randomly draw
a set of new, equally weighted particles. From a practical perspective, resampling duplicates well‐performing
particles while discarding poorly performing ones.

The original IBIS algorithm only resamples once a certain degeneracy criterion is fulfilled. With a
quasi‐online implementation in mind, however, we want to control the computation time and trigger a
resampling and rejuvenation step after every assimilation. Resampling can be implemented in several ways,
each with their own advantages and drawbacks (Li et al., 2015). In this study we employ stochastic universal
resampling (SUR; Baker, 1987; Townsend, 2003), a method resilient to random loss of diversity during
resampling (Figure 1). Its output is a set of indices (a(1),…, a(N)) defining which particle values each particle
slots (1,…,N) inherits (equation 1):

a 1ð Þ; …; a Nð Þ ¼ SUR W 1ð Þ
t ;…;W Nð Þ

t

� �
∈ 1;…;Nf g (14)

Mind that the number of resampled particles does not necessarily have to be equal to the previous ensemble
size. In fact, we will make use of this property later to stifle growing computational demand by dynamically
reducing the ensemble size. Meanwhile, however, the ancestral indices allow us to obtain a new, equally
weighted ensemble of parameter particles and their associated variables:

θ nð Þ←θ a nð Þð Þ; L nð Þ
t ←L

a nð Þð Þ
t ; w nð Þ

t ←1 ∀n ∈ 1;…;Nf g (15)

The process of resampling replaces low‐weighted, unique samples with copies of high‐weighted particles,
reducing weight degeneracy at the cost of diversity (sample impoverishment; e.g., Doucet &
Johansen, 2009; Li et al., 2015). While this process does not in itself solve the fundamental issue—replacing
weight‐based degeneracy with position‐based degeneracy—it forms a more efficient basis for rejuvenation,

Figure 1. Schematic illustration of stochastic universal resampling forN= 5. Starting with an ensemble of nonuniformly
weighted particles (left), we construct a cumulative probability function (dashed gray line, center). After drawing a
random offset φ from a uniform distribution U min¼0;max¼1=Nð Þ, we obtain resampled particle indices by sampling
this function in additive increments of 1/N. Finally, each particle slot inherits the variables of its respective resampled
particle index (1 → 1,2 → 2,3 → 2,4 → 3,5 → 5) and the weights are reset (right, equation 15).
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the reintroduction of diversity. Ideally, this rejuvenation mechanism should be invariant with respect to the
underlying probability distribution or we risk compromising the ensemble's surrogate property. The IBIS
algorithm achieves this through a Metropolis‐Hastings Markov Chain Monte Carlo (MH‐MCMC) jump for

each particle θ(n), employing a proposal density p *θ jθ nð Þ
� �

:

*θ nð Þ ~p *θ jθ nð Þ
� �

∀n ∈ 1;…;Nf g (16)

where the asterisk denotes the proposal, so *θ nð Þ is the proposal for an original particle θ(n). MH‐MCMC
jumps are randomly accepted with a probability defined by the ratio between the transition densities

p θ nð Þ*θ nð Þ
� �

and p *θ nð Þ jθ nð Þ
� �� �

, the prior densities p θ nð Þ
� �

and p *θ nð Þ
� �� �

, and the total likelihoods

L nð Þ
t and *L nð Þ

t

� �
, capped at one:

p nð Þ
accept ¼ min 1;

p *θ nð Þ
� �

*L nð Þ
t p θ nð Þ*θ nð Þ

� �
p θ nð Þ
� �

L nð Þ
t p *θ nð Þ jθ nð Þ
� �

0@ 1A∀n ∈ 1;…;Nf g (17)

If the proposal is accepted (v nð Þ~U 0; 1ð Þ < p nð Þ
accept), the new particle (*θ nð Þ ) and its associated variables (*L nð Þ

t

; *w nð Þ
t ) replace the original:

if v nð Þ~U 0; 1ð Þ < paccept : θ nð Þ←*θ nð Þ ; L nð Þ
t ←*L nð Þ

t ; x nð Þ
t ←*x nð Þ

t ∀n ∈ 1;…;Nf g (18)

If the proposal is rejected, the algorithm continues to the next time step using the original particle and its

associated variables. The evaluation of p nð Þ
accept is also why we carried along the total likelihood L nð Þ

t (equa-

tions 11 and 15). The most computationally expensive term in equation 17 to evaluate is *L nð Þ
t , which

requires resimulating the entire observation history up to time step t. The cost of this evaluation increases
as the assimilated time series grows, thus precluding a true online implementation. Moradkhani et al. (2012)

propose a workaround by evaluating only the latest likelihood increment *l nð Þ
t and estimatingp *θ nð Þ jy1:t−1

� �
by evaluating a Gaussian distribution fitted to the original particles. This approach has the advantage of
keeping the computational demand constant but becomes problematic if the ensemble collapses.

In this study, we instead opt to resimulate the full observation history to obtain *L nð Þ
t and compensate for the

growing computational demand by resampling a reduced number of particles if the simulation time exceeds
a user‐specified threshold. Since this trick will not work indefinitely—only until the resimulation takes
longer than the time between assimilation intervals—our IBIS‐based optimizer is only quasi‐online. If the
proposal is accepted, we replace the particle and its associated variables with its proposal's equivalents simi-
larly to resampling (equation 15):

where v(n) is a random value drawn from the uniform distributionU min ¼ 0;max ¼ 1ð Þ. After rejuvenation,
the algorithm resumes from equation 9. With the theoretical foundations laid out, we can proceed to the
algorithm's implementation.

3. Data and Implementation
3.1. Study Area

Figure 2 illustrates various features of Settolo, the studied field site. The site is located on the eastern bank of
the river Piave, near the city of Valdobbiadene in the province of Treviso, Northern Italy. Its unconfined
aquifer is recharged by the nearby river and exploited for drinking water production (Zovi, 2014; Zovi
et al., 2017). The surface elevation of the model domain slopes from 165 m above sea level in the
north‐west with an aquifer depth of about 30m to about 155m above sea level with an aquifer depth of about
50 m in the south‐east. Assimilated water table measurements are available from 18 observation wells and
two production wells from 1 December 2010 to 31 January 2012. The main assimilation period is from 1
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February 2011 to 31 January 2012; the remaining data are used for validation. Of these 18 observation wells,
four (Piave Up, Piave Down, p07, and pSUD) serve to inform five time‐variable head boundaries (Figure 2b).
Boundaries AB and BC are linearly interpolated from Piave Up and Piave Down, and Piave Down and pSUD,
respectively, whereas A, C, and D are uniformly assigned the heads of their neighboring wells. All other
boundaries are assumed to be no‐flow. An irrigation water pipeline crosses the Piave riverbed between
Piave Down and pSUD, acting as a physical obstacle which may cause a river level discontinuity between
0.5 and 1 m, depending on discharge. This obstacle was not represented explicitly in the model and
partially motivates the forcing model introduced in the next section. Figure 2f illustrates the raw forcing
data over the assimilation period. Raw recharge estimates were obtained by taking the difference between
precipitation and evapotranspiration estimates after the Penman‐Monteith equation using meteorological
data from a nearby station in Valdobbiadene.

Figure 2. Overview of the field site in Settolo, Italy: (a) schematic render of the geological concept (not to scale);
(b) grid‐based map with geophysical constraints (orange and blue hexagons), observation (crimson hexagons), and
pumping (yellow hexagons) wells; the gray circles mark the positions of the observation wells informing the boundaries;
(c) model domain overlay on a satellite image; (d) site‐based training image for multipoint statistics simulations;
(e) training image based on Skeidararsandur river, Iceland, for multipoint statistics simulations; (f) P‐ET and hydraulic
head in the four boundary wells over the data assimilation period.
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The (hydro)geological characterization of the site assumes the presence of highly conductive paleo‐channels
of the nearby river and is supported by electric resistivity tomography (ERT) measurements along a number
of transects (Figure 2b, see also Zovi et al., 2017). To maintain consistency with this nontrivial geological
prior as defined by a training image (Figure 2d), we use a MPS framework (DeeSse; Mariethoz
et al., 2010, 2015) and constrain its realizations with the ERT transects. These constraints force the MPS fra-
mework to reproduce the prescribed facies characterization (Figure 2b). The training image (Figure 2d) was
derived from satellite imagery based on the current river morphology. We note that the process of deriving a
training image in such a manner can be contentious, as there is no guarantee that contemporary hydraulics
are representative of the geomorphology at the time of deposition of the paleo‐channels (Zovi et al., 2017). To
gauge the impact of the training image, we also test an alternative image based on an unrelated fluvial sys-
tem in Iceland (Figure 2e). Further details and information on the field site are available in Zovi et al. (2017),
Zovi (2014), and at http://settolo.dicea.unipd.it/index.php.

3.2. Assembling the Forward Operator

In the following, we outline the components of the forward operator introduced in section 2.2. This operator
is composed of several auxiliary, deterministic modules applied in sequence. For the moment, we restrict
ourselves to the overall structure and reserve greater detail for the following sections.

The first module is the field generator G(Θ). When pursuing conformance with a complex geological prior, it
is rarely helpful to optimize the grid parameters θ directly. Instead, we optimize a set of hyperparameters Θ,
which broadly serve as the forward operator's input and thus also parameterize the field generator. This
module then creates parameter fields consistent with the geological prior, thereby ensuring conformance
by construction:

G Θð Þ→θ (19)

The second, perhaps more unconventional module is the forcing model F(Θ,U0 : t). Groundwater dynamics
are usually controlled by external driving forces such as recharge or time‐variable flow across boundaries. In
general, however, we cannot observe these forcings directly and must instead approximate them from
related quantities. This approximation demands assumptions (e.g., instantaneous recharge, well in contact
to aquifer, and extrapolated head boundaries), which risk introducing systematic bias. To permit compensa-
tion for such effects, we propose a hyperparameterized preprocessor that transforms the raw forcing data
U0 : t into an updated form u0 : t:

F Θ;U0:tð Þ→u0; …; ut (20)

The third module is an interpolation and extrapolation of the initial states x0 through inverse distance
weighting (IDW; Shepard, 1968) based on variable‐head boundaries included in u0 (which depend on Θ;
see equation 20) as well as an initial set of head observations y0:

IDW u0; y0ð Þ→x0 (21)

The fourth deterministic module is the numerical model, which requires the previously generated grid para-
meters θ, the model forcing u1 : t, and initial conditions x0 to predict the states x1 : t:

M x0;u1:t; θð Þ→x1; …; xt (22)

Finally, the fifth module simply extracts the predicted observations ysim1:t from the simulated state trajectory
x1 : t:

Hx1:t→ysim1:t (23)

With the introduction of hyperparameters Θ as the variables of interest, we note that the theory outlined in
section 2 should be read in terms of the hyperparameters Θ, not the grid parameters θ. These variables com-
pletely define the error model, by parameterizing both its deterministic (the forward operator) and
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probabilistic (the additive Gaussian error) part. The algorithm's procedure during an assimilation increment
is schematically illustrated in Figure 3. In the following, we will explore the modules in greater detail.
3.2.1. Field Generator G(Θ)
The field generator is built around a facies distribution map, the output of the MPS framework DeeSse
(Mariethoz et al., 2010, 2015; Straubhaar, 2019). This facies distribution map is a set of hyperparameters,
which defines whether a cell belongs to the paleo‐channel or background sediment, then assigns grid para-
meters accordingly. Additional hyperparameters define the hydraulic properties of each facies: the mean
hydraulic conductivity K, an internal conductivity heterogeneity map with range K, and a specific yield Sy,
which was assumed to be homogeneous, following Zovi et al. (2017). Figure 4 illustrates how we assemble
the conductivity maps and create the full grid parameters θ from the two complementary parts. The hetero-
geneity map was generated through convolution of a white noise field with an isotropic Gaussian filter, then
normalized and centered around zero, and finally scaled by K.
3.2.2. Forcing Model F(Θ,U0 : t)
The forcing considered in this study are time‐variable prescribed head boundaries (Figure 2b) and transient,
uniform recharge (Figure 2f). The pumping rates in the production wells were considered sufficiently well
quantified to warrant exclusion from the forcing model.

The forcing model is a relatively simple preprocessor illustrated in Figure 5. The raw forcing data U0 : t

(hydraulic heads or recharge flux) are first normalized, then transformed according to the spline defined
by three hyperparameters—the spline control points—then reverted into their canonical range
(Figure 5a). These control points are defined independently for each boundary well and recharge.

For recharge, this process is further extended by distributing the transformed recharge eUs at each time s
among the next λ time steps according to an exponential distribution, where λ is an additional hyperpara-
meter to be optimized (Figure 5b). Finally, the full recharge time series is assembled by summarizing the
resulting recharge components for each time step (Figure 5c). The transformed hydraulic heads and the
transformed and redistributed recharge constitute u0 : t.

The motivation for a spline transformation are (i) possible nonlinearities during rainfall or high‐flow events,
which might cause the forcing to fit better during some meteorological regimes than during others, and (ii)

Figure 3. (a) Schema for the evaluation of the full likelihood Lt, (b) the likelihood increment lt, and (c) the algorithm at time t > 0. For Lt (a), we generate the
model input files x0, u1 : t, and θ from the hyperparameters Θ and the raw forcing data U0 : t. After obtaining x1 : t, we use the assimilated data y1 : t and
the error covariance matrix Σ = Iσ2 to evaluate Lt. For lt (b), xt − 1, θ, and Σ are already available from the previous time step after initialization. We must only
calculate ut and can directly obtain xt by deterministic simulation. Afterward, we can evaluate lt and pass xt along as initial condition for the next time step. The
implementation of the algorithm (c) uses both a and b.
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the possibility of bias from the interpolation and extrapolation of the hydraulic heads along their respective
boundaries. The transformation and redistribution of recharge is justified by large uncertainties in P and ET
estimates, omission of overland flow, and vadose zone dynamics.

We note that for a real application, the full time series is not available from the start. As such,Umin andUmax

used during normalization could change as new extrema are recorded. This affects the transformation
between canonical and normalized space and as such the value ranges affected by the spline control points,
which are defined in normalized space. In real data assimilation scenarios, we thus recommend specifying a
sufficiently broad Umin and Umax a‐priori.
3.2.3. Inverse Distance Weighting IDW(u0, y0)
The initial states are generated with IDW according to Shepard (1968). This approach extrapolates from a
collection of Nv known points v0 = {y0 ∪ u0} to any of the Ncell grid points based on spatial distance d(i,j)
between cells i and known points j as well as a power factor p (in our case p = 3).

Figure 4. Schematic render of the field generator. We generate facies conductivity fields for the background sediment
and paleo‐channels by offsetting a uniform, average conductivity field with internal variability. The facies distribution
map then extracts grid parameter values from each map according to the facies assignment and assembles the parameter
field θ. Assignment of specific yield proceeds equivalently, barring the addition of internal heterogeneity.
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3.2.4. Numerical Model M(x0,u1 : t, θ)
The field site is simulated as a two‐dimensional, unconfined, transient groundwater model using
MODFLOW‐USG (Panday et al., 2013) with the Python interface FloPy (Bakker et al., 2016). Its full govern-
ing equation describes water balance conservation on an infinitesimally small control volume:

∂
∂x

Kx
∂h
∂x

� �
þ ∂
∂y

Ky
∂h
∂y

� �
þ ∂
∂z

Kz
∂h
∂z

� �
¼ Ss

∂h
∂t

þ Qs (24)

whereKx/y/z are the (possibly heterogeneous and anisotropic) hydraulic conductivities in each spatial dimen-
sion, Qs is a source‐sink term, and Ss is the specific storage of the porous medium. MODFLOW solves these
equations through a finite volume approach (Langevin et al., 2017). The model domain is discretized with
uniform, hexagonal cells. Since DeeSse demands a regular grid, we further define a regular but anisotropic
support grid, which contains the hexagonal cell centers for the MPS simulation. Cells with extraction wells
are further subdivided to increase grid resolution around the cones of depression (Figure S1 in the support-
ing information). The subdivided cells are not resolved for the purpose of optimization and inherit their host
cell's parameterization. The cell count without the subdivision is 12,856.

3.3. Probabilistic Setup
3.3.1. Hyperparameter Priors
Since we seek to optimize the hyperparameters Θ, we also define the model prior in terms of these variables.
Summing over section 3.2, we have a total of 3Ncells+23 hyperparameters—three hyperparameter fields (the
facies distribution and two independent internal variability maps) and 23 scalar hyperparameters. The
hyperparameter limits and priors are listed in Table 1.

3.3.2. Rejuvenation Mechanism
As described in section 2.3, we rejuvenate the ensemble with MH‐MCMC jumps. This procedure requires a

proposal distribution p *Θ jΘ nð Þ� �
to suggest new values *Θ for an original particle Θ(n). While we could

update all hyperparameters at once, doing so is not always useful—to achieve a good acceptance rate, it is

important to keep the magnitude of the mutation sufficiently low. We achieve this by defining p *Θ jΘ nð Þ� �
as a mixture distribution of random multivariate normal mutations, which only update a subset of

Figure 5. Schematic mechanism of the forcing model, with water column heights representing recharge or hydraulic
head at the boundaries. The first step (a) applies to both the variable‐head boundaries and the recharge: The raw
quantity Ut (volume for recharge and head for boundaries) is normalized, then transformed according to a function
defined by three spline control points, then reverted back to obtain the transformed forcing eUt, which may lie outside the

interval of Umin and Umax. For groundwater recharge, eU t is then distributed between the next λ time steps according

to an exponential distribution (b). Finally, the composite recharge for a certain time step ut is assembled out of the
recharge components of earlier time steps (c).
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hyperparameters at a time. Independently, for each parti-
cle, we either update the hydraulic hyperparameters (K,
K,Sy: 65%), the spline control points for recharge
(SCPrech: 7.5%) or one of the boundary wells (SCPwell:
3.75 % * 4 = 15%), the recharge delay λ (7.5%), or the error
standard deviation σ (5%). The proposal standard devia-
tions and correlation structures between hyperparameters
are listed in Table 1.

Furthermore, we must account for possible asymmetries in

the proposal i:e:; p *Θ nð Þ jΘ nð Þ� �
≠ p Θ nð Þ*Θ nð Þ� �� �

, which

arise for example in the presence of hyperparameter limits.
Quantifying these asymmetries would require evaluating
truncated, correlated, multivariate Gaussians pdfs, which
is not a trivial task. Instead, we simplify this issue by inter-
preting hyperparameter limits as reflective boundaries,
then summing the probability densities of all different
jumps, which would result in equivalent proposals (see
Figure S2). Since this would require evaluating probability
densities of an infinite series of mirrored positions along
dimensions with both a lower and an upper limit, we
restrict our evaluation only to the probability densities of
the first reflection across each parameter limit. For practi-
cal application, we reflect any potential proposal falling
outside the hyperparameter limits across its closest limit
until it falls within the hyperparameter constraints.

The hyperparameter maps (facies distribution and internal
variability) are updated together with the hydraulic hyper-
parameters. The facies distribution is updated with a
blocking‐moving window procedure similar to Alcolea
and Renard (2010): first, we select a random cell, then
remove all entries in a random radius between 75 and
500 m around this cell. After this, the facies distribution
within the masked circle is regenerated with MPS, with
the remaining facies assignments outside acting as con-
straints to ensure continuity of the features. The internal
variability maps are updated through small, gradual
changes: first, each map is normalized and recentered
around zero. Then a new variability map is generated (see
section 3.2.1), scaled by 0.25, and added to the previous
map. The result is then renormalized, recentered, and
scaled with its respective (updated) K.

3.4. Scenarios and Computational Setup

In this study we consider three different scenarios:
Scenario 1 uses the training image based on the local field
site (Figure 2d) and the forcing model. Scenario 2 is the
same as Scenario 1 but replaces the field‐based training
image with the alternative training image (Figure 2e).
Scenario 3 differs from Scenario 1 only in omission of the
forcing model. We initialized each scenario with 350 parti-
cles, then allowed the algorithm to dynamically adjust the
ensemble size to meet the prescribed computational limits.
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The optimization algorithm is implemented in Python 3.3.2 in a parallelized framework with eight workers
on three workstations. Simulations for each scenario are repeated in triplicate with different random seeds to
test reproducibility: the scenarios with suffix “a” were simulated on a Lenovo ThinkPad X1 Carbon with an
Intel® Core™ i7‐6600 CPUwith two cores (four logical processors) at 2.60 GHz and 16 GB of RAM, the simu-
lations with suffix “b” on a workstation with an Intel® Core™ i7‐3770 CPUwith four cores (eight logical pro-
cessors) and 8 GB of RAM, and the simulations with suffix “c” on a workstation with an Intel® Core™
i7‐2600 CPU with four cores (eight logical processors) at 3.40 GHz and 8 GB of RAM.

The MPS framework we used was DeeSse (Mariethoz et al., 2010, 2015; Straubhaar, 2019), a commercial
direct sampling MPS software freely available for scientific use. The communication between DeeSse and
our optimizer was established with a self‐designed Python interface. Data were assimilated every 3 hr, with
resampling and rejuvenation steps being triggered every 24 hr of data. The allocated simulation time for
24 hr worth of data was bounded between 600 and 900 s—considering 365 days of data, on average a little
over 3 days—well below the time available in a real application. Before proceeding to the presentation of
the results, we will introduce the performance metrics used.

3.5. Performance Metrics

The root‐mean‐square error (RMSE) is calculated for each observation well o = 1,…,Nobs according to

RMSEo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
1
t
∑
N

n¼1
∑
t

s¼1
ysim;o; nð Þ
s −yos

� �2s
(25)

and subsequently averaged across all observation wells

RMSE ¼ 1
Nobs

∑
Nobs

o¼1
RMSEo (26)

while the bias is calculated according to

bias ¼ 1
N

1
Nobs

1
t
∑
N

n¼1
∑
Nobs

o¼1
∑
t

s¼1
ysim;o; nð Þ
s − yos

� �
(27)

The percentage bias and the Kling‐Gupta efficiency (Gupta et al., 2009) are two performance metrics popular
in surface hydrology. Both metrics require a reference level, which is not clearly defined for groundwater
tables. In this study, we use the aquifer bottom at each observation well zo as the reference level:

pbias ¼ 1
N

1
Nobs

1
t
∑
N

n¼1
∑
Nobs

o¼1
∑
t

s¼1

ysim;o; nð Þ
s − yos
yos − zo

 !
*100 (28)

KttGE ¼ 1
No

∑
No

o¼1
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro−1ð Þ2 − αo−1ð Þ2 − βo−1ð Þ2

q� �
(29)

where ro is the Pearson correlation coefficient, αo the ratio of standard deviations, and βo the ratio of means
(against the reference level) between the simulated and observed time series at observation well o. The mean
Spearman correlation coefficient (Spearman, 1987) was averaged across all observation wells:

rsp ¼ 1
No

∑
No

o¼1
rosp (30)

where rosp was obtained with the python library scipy.stats.

4. Results

The simulation results are evaluated at the end of the data assimilation period (day 365) using the final
hyperparameter ensemble and the performance metrics described in section 3.5. We report these metrics
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over the 365‐day assimilation period (from 1 February 2011 to 31 January
2012) and the 90‐day validation period (from 1 December 2010 to 28
February 2011) used in Zovi et al. (2017). Since this validation period over-
laps for the last month with the assimilation period—a decision made
since the validation set's observation time series otherwise would not
extend to all wells—we also evaluated a shortened, nonoverlapping vali-
dation period spanning only 60 days (from 1 December 2010 to 29
January 2011) for reference. The resulting metrics for all three scenarios
and evaluation periods are depicted in Figure 6 and listed in Table S2.

4.1. Performance Metrics

In general, most scenarios display relatively similar performance metrics
(Figure 6 and Table S2). The overall model fit is very satisfying across all
scenarios (Figure 7, Figures S3 to S11). On average, Scenario 1 yields the

bestRMSE over the assimilation (0.131 m), validation (0.136 m), and shor-
tened validation (0.138 m) periods, closely followed by Scenario 2 (0.134,
0.151, and 0.139 m). Scenario 3 performs slightly worse (0.140, 0.158,

and 0.164 m) than the other two scenarios. The absolute values of bias

and pbias are very low across the assimilation period in all scenarios.
Over the validation periods, biases are slightly larger, likely owed to the
increased prominence of the rain event and its subsequent recession

(Figure S3). Mean KGEs over the assimilation period are also favorable,
ranging from 0.864 (Scenario 3) to 0.916 (Scenario 1), but are somewhat
lower over the validation (0.767 in Scenario 3 to 0.845 in Scenario 1)
and shortened validation (0.781 in Scenario 3 and 0.877 in Scenario 1) per-

iods. We note thatKGEsare lower in Scenario 3, owed primarily to a lower
α value in this scenario (Tables S2 to S4). The mean Spearman correlation
coefficients rsp are generally very high (>0.90), indicating strong control
by the boundaries, and, curiously, are somewhat higher in the validation
periods than in the assimilation period.

Analyzing the well‐specific RMSEos over the assimilation period reveals a
significant error in the second pumping well (pP2; Figure 6f, northern
pumping well). A look at Figure 7b reveals that the hydraulic head in this
well is systematically overpredicted and indicates that this error is exacer-
bated during periods of intense pumping. This could suggest that in this
well, the connection of the water table to the surrounding aquifer is wea-
kened, possibly due to a local region of low conductivity, a clogged well

screen, or skin effects during pumping (e.g., Barrash et al., 2006). It is furthermore possible that the vicinity
of the geophysical constraints (see Figure 2b) might not have left the MPS algorithm sufficient flexibility to
possibly generate a more promising facies constellation.

Finally, we observe that the error residuals seem to be significantly autocorrelated across time and space
(Figure 7b), with a pronounced trough—indicating underprediction—from roughly April to November, or
(conversely) an overprediction from November to April. Similar start and end points over the assimilation
period suggest that this could be due to seasonal phenomena not accounted for.

4.2. Scalar Hyperparameters

Figure 8 illustrates the hyperparameters (and their uncertainty, when applicable) for all scenarios along the
optimization process. The first and third subplots (Figures 8a and 8c) visualize the ensemble size adjust-
ments to maintain a bounded computational effort. The effective ensemble size in terms of unique i.i.d. sam-
ples (Figure 8b, semitransparent) is generally about an order of magnitude lower than the raw ensemble size
(Figure 8b, full). The second subplot (Figure 8b) illustrates the time‐averaged acceptance chance for rejuve-
nation proposals, which is markedly lower for Scenario 3—the scenario without access to the forcing model.
The error standard deviation (Figure 8d) reveals a similar trend across all scenarios and random seeds,

Figure 6. Performance metrics for the posterior ensemble of
hyperparameters at the end of the 1‐year assimilation period, evaluated
over the assimilation period, the 90‐day validation period, and the
shortened 60‐day validation period. Individual seeds, mean, and standard
deviation are plotted for (a) root‐mean‐square error, (b) bias, (c) relative
bias, (d) Kling‐Gupta efficiency, and (e) Spearman r. (f) The lowermost
subplot depicts average root‐mean‐square errors over the assimilation
period for all scenarios and observation (red) and pumping (orange) wells.
Further detail is provided in tabular form in Table S1.

10.1029/2019WR026777Water Resources Research

RAMGRABER ET AL. 14 of 21



matching the similar performance metrics obtained in Section 4.1, yielding final values between 0.13 and
0.15 m. The average hydraulic conductivity of the paleo‐channel facies (Figure 8e) is strongly constrained
by its limits, but Scenarios 1 and 3 converge, on average, toward a slightly lower value than Scenario 2.
This might be rooted in the lower channel‐to‐background ratio of the alternative MPS training image in
Scenario 2. The average conductivity of the background (Figure 8f) is similar across all scenarios,

Figure 7. Evaluation of the model predictions of Scenario 1c over the assimilation period for all observation and pumping wells. (a) The observations (red line)
and simulated mean (dark gray line) with single (gray area) and double (light gray area) lumped error standard deviation. (b) The corresponding residual
errors, colored according to positive (blue) and negative (red) residual components. Equivalent figures for the other scenarios and periods, as well as videos
illustrating the evolution of the model prediction during assimilation, are available in Figure S3 to S11.
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converging against the upper bound. The internal variability ranges of the paleo‐channel (Figure 8g) and
background facies (Figure 8h) show no significant trend across the different scenarios. Specific yield
(Figure 8i) for both facies quickly converges toward the lower bound across all scenarios, likely to achieve
the simulated drawdown. The forcing‐related hyperparameters (Figure 8j to Figure 8o) are only used in
Scenarios 1 and 2. The parameter for recharge delay seems to be unnecessary, as it converges toward the
lower bound of 1 (i.e., no delay) for both scenarios. The recharge spline control points (Figure 8k)
seemingly feature a common optimum: the upper control point converges to values around 1.65 for both
scenarios, whereas the central control point drops to a value of 0.35. Physically interpreted, these values
increase the flashiness of the recharge. For the boundary wells, the spline control points display no clear,
significant optimum but seem to faintly increase the hydraulic head in the river‐based wells. Combining
this finding with the increased proposal acceptance rate in Scenarios 1 and 2 (Figure 8b) and the overall
greater degree of uncertainty of recharge‐related parameters (Figures 8j and 8k) suggests that updates to
the recharge control parameters have only moderate effect on the predictions. Updates to the hydraulic
parameters, the model error, or the boundary well control points seem to induce larger changes, resulting
in lower acceptance rates.

4.3. Hyperparameter Fields

Since conformance to a prescribed geology was a major objective of this study, investigating the hydraulic
conductivity and facies maps at the end of the assimilation period (Figure 9) can reveal interesting insights
into the optimization process.

First off, the different characteristics of the two training images become clear already when investigating the
prior conductivity maps (Figures 9a, 9d, and 9g): the smaller, local training image (Scenarios 1 and 3) gen-
erates fewer distinct variations of its patterns and thus displays clear preferences for prior channel place-
ment, whereas the larger, alternative training image (Scenario 2) contains a wider range of possible
channel constellations, resulting in much less preferential initial facies assignments.

Figure 8. Metaparameter and hyperparameter for all scenarios over time: (a) computation time per day, (b) time‐averaged proposal acceptance ratio, (c) raw and
effective particle count, (d) error standard deviation, (e) mean hydraulic conductivity for the paleo‐channels and (f) the background sediment, (g and h) their
respective internal variability ranges, (i) specific yield for both facies, (j) recharge delay, and (k) spline control points for recharge and the boundary wells (l) Piave
Up, (m) Piave Down, (n) pSUD, and (o) p07. Single and double standard deviations of hyperparameter uncertainty are plotted in lighter shades, where
applicable. Individual corresponding hyperparameter plots are available in the Figure S12 to S20. Subplots (a) through (c) are reproduced in greater detail in
Appendix S21.
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Investigating the expected conductivity fields at the end of the assimilation period (Figures 9b, 9e, and 9h)
reveals that the realizations retained connected features through the optimization process. We further note
differences in the mean hydraulic conductivities: as suspected in section 4.1, Scenario 2 indeed identifies
higher facies conductivities to compensate for its lower channel‐to‐background facies ratio.

The final column (Figures 9c, 9f, and 9i) serves to reveal any potential common facies assignments
across the different random seeds, scenarios, and training images. Evidently, it seems that there is no
clear preference aside from the prescribed ERT constraints. This can partially be explained in the rela-
tively low information content that water tables alone provide for the placement of preferential
flow paths.

However, we noted that changes to the facies distribution map have significant impact on the magnitude of
the likelihood ratios (Figures S22 to S24), suggesting that the facies distribution is far from insensitive.
Combining this observation with the lack of structural uncertainty in each individual scenario, and the dif-
ferent constellations identified across all scenarios, suggests the presence of multiple, isolated optima at least
in the facies distribution hyperparameter‐subspace.

5. Discussion

Summarizing the results, we found that in all scenarios considered, the proposed quasi‐online optimizer
proves capable of identifying promising hyperparameter sets, while honoring a complex geological prior
as prescribed by a training image. Simulations in triplicate suggest that the algorithm reliably identifies glo-
bal optima for most of the scalar hyperparameters, barring the tightly constrained internal variability ranges
Ks. The boundary spline control points deviate slightly but do not display a clear preference toward a global
optimum either. This might be owed to interactions with the facies distribution map, which seems charac-
terized by multiple, isolated optima.

Despite restricting the optimization to the support of the geological prior, we achieved results similar or even

favorable to Zovi et al. (2017). Over the validation period, they obtained RMSEs of 0.155 m without and

Figure 9. Representative ensemble mean parameter fields of (a–c) Scenarios 1, (d–f) 2, and (g–i) 3 at the start (a, d, and g)
and end (b, e, and h) of the data assimilation period, for the third random seed (suffix c) each. The right‐most column (c,
f, and i) depicts the mean conductivity field across all three random seeds for each scenario.
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0.302 m with normal‐score transform using the ensemble mean. However, their best‐performing scenario
could maintain only limited conformance to the geological structure, with no clear identification of the

paleo‐channels. Our most similar setup—Scenario 3, without the forcing model—yielded RMSEs between
0.153 and 0.165 m, with a plausible paleo‐channel pattern that honors the available geophysical data. We
found that further improvements could be made by introducing a (hyper)parameterized forcing model,

which reduced RMSEs down to values between 0.128 and 0.142 m (Scenario 1). Its introduction permitted
an increase of recharge intensity during precipitation events (Figure 8j), which brought simulated heads clo-
ser to the observations (Table S3). We note, however, that we could not use the exact same prior as Zovi
et al. (2017) and acknowledge that their EnKF implementation was more computationally efficient (requir-
ing only 30 wall‐clock hours on a four‐core machine) than our algorithm.

Combining the forcing model with a different training image (Scenario 2) slightly deteriorates the perfor-

mance metrics relative to Scenario 1, yielding RMSEs between 0.139 and 0.168 m. An analysis of the resi-
duals (Figures 7 and S3 to S11) suggests that a more flexible forcing model—capable of transforming not
only the raw input data but adding seasonal effects—might be necessary to attain further improvements.
A possible explanation for this apparent seasonality might be recharge from irrigation, a practice known
to be used in this region (D'Agata, 2019; Zovi, 2014) but for which no data are available. D'Agata (2019) men-
tions compacted sands with “low water reserves” as the cause for the need for irrigation, which might match
the low Sy identified across all scenarios. Further simulation inadequacies are the large RMSEos in pumping
well pP2, which might be addressed by permitting the model to consider well skin effects.

A limitation of this study is ensemble collapse. Across all scenarios, the effective ensemble size is about 1
order of magnitude smaller than the raw ensemble size (Figure 8c). This results in an underestimation of
parameter uncertainty, the potential loss of separate posterior modes, and exacerbates the risk of entrapment
in a local optimum. A quick back‐of‐the‐envelope calculation reveals that this is a consequence of highly
tapered posterior modes, in turn a result of our error model definition:

Assume two hyperparameter sets creating predictions of different fidelity: the first one's predictions are
always 0.01 m off the observations in each well and the other's always 0.02 m. Further assume that
σ = 0.15 m and that we assimilate data in 16 wells every 3 hr for a year (365 · 8 · 16 = 46720 observations).
The log‐likelihood difference between the two parameter sets would be −311.5. This effect becomes more
pronounced for greater deviations from the observations.

This means that even for small differences in performance, the rejuvenation mechanism accepts only strict
improvements. Combining this finding with the presence of isolated optima indicated by the results across
different random seeds suggests that the posterior might be both highly tapered and multimodal, which ren-
ders the identification of multiple modes at once with a particle filter highly challenging.

We argue that ensemble collapse—while clearly undesirable—has less irreversible repercussions for the
IBIS algorithm than for classic particle filters. Without relying on the fidelity of the ensemble approximation,
the rejuvenation mechanism samples the posterior directly. This critical property permits the algorithm to
recover samples from the true posterior even after ensemble collapse. As possible remedies, the steep diver-
gence of the likelihoods (see Footnote 1) could be slowed through adjustments to the error model, such as
the consideration of temporal and spatial correlations or the use of a likelihood function with heavier tails
(e.g., a Cauchy distribution: P. J. van Leeuwen, 2003). From an algorithmic perspective, adjustments to
the MH‐MCMC proposal—for example, the introduction of elements from evolutionary algorithms (e.g.,
Abbaszadeh et al., 2018; Zhu et al., 2018)—might permit the proposal to capitalize on information of other
ensemble members to better identify multiple optima. We could also adapt the proposal distribution dyna-
mically during assimilation in order to adjust acceptance rates. Such efforts, however, would be complicated
by the conflicting findings of sections 4.1 and 4.2: particularly for the hydraulic parameters, larger proposals
may be required to escape local minima, and smaller proposals may be required to increase the proposal
acceptance rate. This contradiction is a well‐known challenge in MCMC literature (e.g., Foreman‐Mackey
et al., 2013; Holmes et al., 2017; Tjelmeland & Hegstad, 2001).

Alternatively, ad‐hoc solutions based on artificial variance inflation (e.g., Moradkhani et al., 2005) remain
the most efficient remedy for the negative repercussions of ensemble collapse. Such methods might prevent
or even reverse the uncontrolled tapering of probability densities. Unfortunately, despite their pragmatic
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allure, such approaches invariably corrupt the posterior (e.g., Vrugt et al., 2013) and should thus be used
with caution.

However, it may be an interesting direction for future research to explore the interaction of variance infla-
tion through artificial random parameter dynamics (e.g., Moradkhani et al., 2005; Ramgraber et al., 2019)
with the rejuvenation mechanism used in this study. While the indiscriminate addition of random compo-
nents will corrupt the posterior, we expect that the inclusion of MCMC steps might limit posterior drift.

We believe that results of this study demonstrate the ability of the IBIS algorithm to optimize complex hydro-
geological models under field conditions, although the loss of parameter uncertainty remains a major con-
cern. The inclusion of a forcing model furthermore extended the potential for bias correction from the
grid parameters to boundary conditions. This improved results slightly and permitted a more detailed diag-
nosis of residual model inadequacies. Considering the prevailing uncertainties in meteorological and hydro-
logical forcing, we advocate the careful use of such preprocessors as a valuable extension to the conventional
scope of hydrogeological parameter inference, if designed with physical processes or error‐diagnostic cap-
abilities in mind.

6. Conclusions

Reconciling the challenges posed by complex geological priors with the operational limitations of online
optimization frameworks is not a trivial task, but a necessary endeavor if such methods should ever find
use outside of simple settings. In pursuit of such a framework, we presented a quasi‐online optimizer based
on the IBIS algorithm. Instead of optimizing grid parameters directly, we updated a set of hyperparameters,
which parameterized a number of preprocessors. We used a field generator built around MPS facies maps
and the flexibility of the MH‐MCMC rejuvenation mechanism to maintain conformance with a non‐trivial
geological prior by construction. We further introduced another preprocessor to reduce forcing‐related
biases and inadequacies. We demonstrated the performance of the algorithm with data from a field site in
northern Italy.

Optimization results were promising, identifying similar hyperparameter optima across all scenarios.
Despite remaining confined to the support of the geological prior, the performance metrics we obtained
revealed equivalent or even superior performance to a previous study using the EnKF (Zovi et al., 2017).
The use of a local training image as well as the forcing model both improved the predictions. Analysis of
the error residuals further suggests forcing‐related inadequacies, particularly omitted seasonal effects possi-
bly linked to irrigation, which our preprocessor was not equipped to compensate. Allowing the forcing
model to correct for unaccounted seasonality might be required to achieve further improvements.

To conclude, we believe that the ability to sequentially optimize parameter fields with nontrivial priors while
providing estimates of predictive uncertainty could prove a valuable asset to practitioners in the future.
Considering the larger time window available for an assimilation step in practice—24 hr as opposed to
15 min—we believe that there is sufficient computational space for larger ensembles or more complex mod-
els. A possible limitation of this study is the lack of structural uncertainty in theMPS facies distributionmap,
despite the identification of separate, functionally similar optima across different random seeds. This sug-
gests the presence of multiple, isolated, highly tapered optima in the posterior pdf, which prove a highly
challenging task for most Bayesian inference algorithms. We suggested adjustments to the error model,
the proposal function, or variance inflation as possible remedies. Continuing research could investigate
some of these avenues in order to provide better structural uncertainty estimates. Combining the forcing
model with information related to vegetation activity might furthermore permit estimates of irrigation activ-
ity, a factor which is otherwise difficult to quantify.
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