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A pseudo genetic model of coarse braided-river deposits

Guillaume Pirot1, Julien Straubhaar?, and Philippe Renard’

'Centre for Hydrogeology and Geothermics (CHYN), University of Neuchatel, Neuchatel, Switzerland

Abstract A new method is proposed to produce three-dimensional facies models of braided-river aqui-
fers based on analog data. The algorithm consists of two steps. The first step involves building the main
geological units. The production of the principal inner structures of the aquifer is achieved by stacking
Multiple-Point-Statistics simulations of successive topographies, thus mimicking the major successive flood-
ing events responsible for the erosion and deposition of sediments. The second step of the algorithm con-
sists of generating fine scale heterogeneity within the main geological units. These smaller-scale structures
are generated by mimicking the trough-filling process occurring in braided rivers; the imitation of the physi-
cal processes relies on the local topography and on a local approximation of the flow. This produces realistic
cross-stratified sediments, comparable to what can be observed in outcrops. The three main input parame-
ters of the algorithm offer control over the proportions, the continuity and the dimensions of the deposits.
Calibration of these parameters does not require invasive field measurements and can rely partly on analog
data.

1. Introduction

In alpine regions such as Switzerland, water for drinking, irrigation or industrial purposes is frequently
tapped from gravel braided-river aquifers [FOEN, 2009]. To understand, manage and protect groundwater
resources in this type of system, and/or to better model aquifer-river interactions at multiple scales, models
of internal geological heterogeneity are required. These models can be used, for example, to assess the
uncertainty of contaminant migration within such aquifers. In a previous paper [Pirot et al., 2014], we pro-
posed to model the evolution of braided-river topographies using LIDAR data from analog sites and
multiple-point statistics. In this paper, we build on this idea and consider the internal geological architecture
of braided systems.

To constrain our model, we rely on a vast literature that describes the geology of braided systems. Braided
rivers are composed of multiple channels that intersect successively, producing braid patterns [Leopold
et al, 1957; Howard et al., 1970]. The sediments transported and deposited by these active systems are
mainly sand and gravel [Williams and Rust, 1969; Miall, 1977; Siegenthaler and Huggenberger, 1993; Huggen-
berger and Regli, 2006]. Some finer grain size sediments such as silt or clay may be observed at the surface
of an active system after flow recession or vegetation retention, but are generally not as well preserved in
the recorded deposits [Huber and Huggenberger, 2015a] due to the high energy of such systems [van der
Nat et al., 2002]. The classification of braided-river components [Allen, 1983; Miall, 1985; Labourdette and
Jones, 2007] provided an essential nomenclature (channel, gravel bars, bedforms) for the description and
analysis of such systems. Length-scale characterization studies [Sapozhnikov and Foufoula-Georgiou, 1996;
Foufoula-Georgiou and Sapozhnikov, 2001; Hundey and Ashmore, 2009] have revealed self-affinity and scale
invariance in the geomorphology of braided rivers. Detailed outcrop analyses [Klingbeil et al., 1999; Labour-
dette and Jones, 2007; Bayer et al., 2011] and ground-penetrating radar measurements and interpretations
[Huggenberger, 1993; Bridge et al., 1995; Lunt and Bridge, 2004; Huber and Huggenberger, 2015b] have rein-
forced the knowledge of sedimentary structures and heterogeneity in braided-river aquifers. According to
Huber and Huggenberger [2015b], essential features of braided-river aquifers may be attributed to a layering
of successive gravel sheets eroded by scours and then filled with cross-stratified deposits.

General understanding of the dynamic processes occurring in braided rivers has been improved through
on-site process description [Rust, 1972; Ashworth et al., 1992; Jones and Schumm, 2009], planform and mor-
phological evolution analyses [Ashworth, 1996; Lane et al., 2003; Brasington et al., 2012], granulometry and
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bed-load transport studies [Ashmore, 1988; Dawson, 1988; Surian, 2002] and a wide variety of flume experi-
ments [Ashmore, 1982; Kleinhans and Brinke, 2001; Van De Lageweg et al., 2013]. Derived from physical laws,
flow and sediment-transport models have been developed [Fredsee, 1978; Ashworth et al., 1994; De Serres
et al., 1999; Dargahi, 2004; Millar, 2005; Davy and Lague, 2009]. These physically based models, along with
cellular automata models [Murray and Paola, 1994; Coulthard et al., 2002; Thomas and Nicholas, 2002], take
into account the transport of sediments on the surface topography and sometimes other processes such as
avulsion [Jerolmack and Paola, 2007] or the interaction with vegetation [Edwards et al.,, 1999; Murray and
Paola, 2003; Thomas et al., 2007]. They allow us to analyze the evolution of the surface morphology of
braided rivers but they do not provide the resulting internal structure and heterogeneity of the subsurface.

All of the above conceptual and process-based knowledge has allowed researchers to build various kinds of
structure-imitating models of the internal heterogeneity of braided-river aquifers, with the aim of better
understanding the control of heterogeneity on solute or contaminant transport [Boggs et al., 1993; Rodgers
et al., 2004]. The simplest models are based on traditional multi-Gaussian geostatistics [Felletti et al., 2006;
Salamon et al., 2007; Glenz, 2013] or indicator simulation [Klise et al., 2009]. More realistic three-dimensional
models of geological heterogeneity can be generated by pseudo-genetic, object-based and multiple-point
geostatistical methods. Webb [1994] was one of the first to propose a process-imitating method to produce
models of geological heterogeneity for braided-river aquifers. This approach is based on the vertical stack-
ing of successive topographies of the braided river simulated by random walks [Webb, 1995]. One limitation
of this method is that, aside from channel width and depth, all surfaces between channels are considered
as flat. The method has been used by Anderson et al. [1999] to model hydrogeological properties of a
braided-stream deposit and has been tested on a groundwater flow and transport problem. Teles et al.
[2001] proposed an agent-based model allowing the description of a fluvial system at a rather large scale.
The processes of erosion and deposition were simulated using a set of simple rules and a multiagent sys-
tem. Using this framework, and providing paleo information about the flow and sediment load in the fluvial
plain over time scales of some thousands of years, the model allowed for the reconstruction of heterogene-
ity structures in 3-D. Recently, stochastic object-based models have been developed for braided rivers [Ram-
anathan et al,, 2010; Huber, 2015]. These algorithms are computationally efficient when no conditioning to
field data is required. Comunian et al. [2011] proposed an innovative way, based on multiple-point statistics
[Straubhaar et al., 2011], to model a 3-D braided-river deposit from sedimentological observations on a
series of seven cross sections collected at the Herten site in Germany by Bayer et al. [2011]. This method
proved the ability of MPS to reproduce complex fine-scale geological structures, but the available data in
this case only allowed modeling of a rather small area (16 mX10 mX7 m).

In this paper, a new pseudo-genetic algorithm is proposed. The method revisits the principles established
by Webb [1994]. It is based on the stacking of successive topographic simulations to create geological units,
within which geological facies or geophysical properties can be assigned. The proposed-algorithm is hier-
archical and involves two levels of simulation as well. At the first level, the main geological units of the
braided-river aquifer are simulated as successive deposits, as a result of successive major flood events that
are able to mobilize gravel sheets and form scours. At the second level, i.e., within each geological unit,
scours are filled by cross-bed deposits caused by local flow conditions and sediment sorting. Novelties of
this work involved the way in which the successive topographic simulations are produced as well as the
way in which the geological facies are assigned. The topographies are simulated with the method devel-
oped by Pirot et al. [2014], which is based on the Direct Sampling Multiple-Point Statistics (MPS) algorithm
[Mariethoz et al., 2010]. This provides not only a realistic topography of the channels, but also of the bars
and islands. Furthermore, the temporal evolution of the topography is also modeled using multivariate
MPS. Then the assignment of the geological facies is not based on an estimation of the Froude number as
done by Webb [1994], but on a deformation process that mimics a repeated facies sequence, producing
cross-bedded deposits. The approach is illustrated with a training data set composed of successive DEMs of
the Waimakariri River, New Zealand [Lane et al., 2003] acquired with LIDAR at four time steps.

The paper is organized into two main parts. The first part (section 2) presents the methodology used to
build heterogeneity models of braided-river aquifers. Section 2.1 gives an overview of the pseudo-genetic
algorithm and its global parameters. The method to produce successive MPS simulations of topographies
conditional to the previous topographic surface and the way of stacking these topographies to build a geo-
logical layer are detailed in section 2.2. Then, the generation of facies heterogeneity within the geological
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layers is presented in section 2.3. In the second part of the paper (section 3), the resulting models are pre-
sented (section 3.1). These are compared to field outcrops (section 3.2). A sensitivity analysis of the algo-
rithm to its main input parameters is presented in section 3.3. Recommendations to determine the
parameters are suggested in section 3.4.

2, Methodology

2.1. Algorithm and Main Parameters

The general outline of the proposed algorithm is presented in Algorithm 1 and its principles are described
thereafter. The initialization consists in producing an initial topography that will constitute the bottom of
the aquifer, using the Direct Sampling MPS algorithm [Mariethoz et al., 2010]. Then successive iterations fol-
low until the aquifer model reaches the desired thickness. Knowing the previous topography, the next one
is simulated using MPS conditionally to the previous one, as described in detail in Pirot et al. [2014]. The
next topography is then stacked over the previous one with an aggradation rate fixed for all iterations
(Table 1). The new topography partly erodes the underlying layers and deposits sediments that constitute a
new geological layer. If the resulting aquifer model does not reach the desired thickness, the algorithm’s
loop continues, else it stops. Facies heterogeneity is generated within the geological layers by simulating in
a simplified manner the formation of cross-beds within the troughs.

The algorithm uses parameters at two levels (see Table 1). The first level parameters describe the dimen-
sions of the model and are required to build the main structures—the geological layers——of the model. The
second level ones are used to generate heterogeneity within the geological layers. Three main parameters
offer a control on the geometry and the dimensions of the geological structures generated by the algo-
rithm: the aggradation rate o, the flow power f, and the number of intra-layer iterations n. Then scaling fac-
tors allow the user to stretch or shrink the model in order to fit characteristic length scales. The aggradation
rate o represents the thickness of the deposited geological layers. The flow power f, is linked to the energy
of the system and to the thickness of the cross-stratified deposits in the scours while the number of intra-
layer iterations n is related to the number of cross-stratified deposits in the scours.

This approach assumes that aggradation takes place during large flood events that remodel the topography
of the river. Indeed aggradation requires an input of sediments greater than the sediment discharge

Algorithm 1: pseudo genetic algorithm for three-dimensional facies heterogeneity models of braided-
river aquifers

1: procedure brahms (parameter file)
simulate initial (bottom) topography
initialize current model thickness < 0
while current model thickness < desired thickness do

simulate next topography conditionally to the previous topography

2
3
4
5
6: stack the next topography over the previous topography to build a geological layer
7 subtract the induced erosion to the underlying layers

8 generate geological heterogeneity within the new geological layer

9 compute the current model thickness

10 set the previous topography < next topography

11:  end while

12:  return 3D heterogeneous facies model

13: end procedure
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Table 1. Main Parameters

Main Parameters Name Value

Large-Scale Structural Parameters

zone of interest aquifer model parameters length (flow direction) 200 m
width (orthogonal to the flow direction) 100 m
minimum thickness - depth 12m
cell length 2m
cell width 2m
cell height 0.1Tm

braided-river topography dimensions length 11,600 m
width 1,200 m
cell length 20 m
cell width 20m

interpolation parameters margin length 5m
margin width 5m
margin depth om

scaling factor along length axis
scaling factor along width axis
scaling factor along depth axis

N = = = =

facies parameters coarse grain size sediment facies value
medium grain size sediment facies value
fine grain size sediment facies value 3
aggradation rate o default value 0.3 m/geological layer
Small-Scale Parameters
iterative deformation parameters number of iterations n — default value 6
facies sequence - default sequence B; 1;3; 15 3; 15 2]
flow power f,, — default value 5
smoothing radius r 3

[Germanoski and Schumm, 1993] and it generally occurs during large flood events [Google-Images, 2015]. At
a field site, it is very difficult to know precisely what part of the sediments has been mobilized and trans-
ported or remodeled during a flood. So at a specific location, an observed aggradation after a large flood
event does not mean that no erosion occurred below the surface that constituted the topography before
the flood. To produce the main geological structures, the method assumes that the structures of the succes-
sive deposits are largely influenced by the evolution of the surface topography of braided-rivers. In other
words, the erosion surfaces that define unit interfaces in the recorded geology are supposed to be similar
to visible topographies.

Field observations of actual active braided-river systems often do not show significant aggradations. Some
detailed studies [Lane et al, 2003] show only some cyclic evolution of braided-river geomorphology.
Though gauging stations provide information about flood frequency and magnitude, they do not allow to
link these clearly with the aggradation rate [Sambrook Smith et al., 2010]. In addition, braided-river system
outcrops do not show significant changes or trends in the dimensional characteristics of the deposits at
one location. This medium to large scale stationarity of the deposit dimensions can be compared to the
braided-river self-affinity described by Sapozhnikov and Foufoula-Georgiou [1996]. Therefore in absence of
more specific information, it has been decided to keep the aggradation rate fixed in the algorithm for the
moment. Note, however, that a more sophisticated distribution of the aggradation quantities over time can
easily be handled by the proposed modeling framework.

The parameters have to be adjusted and inferred from field observations. Outcrop analysis, ground pene-
trating radar (GPR) section interpretations, borehole data or analog sites shall provide information about
the thickness of the main geological layers and therefore about the aggradation rate, as well as characteris-
tic dimensions of the deposit structures and facies proportions and properties.

2.2. Building the Main Depositional Structures

The main depositional structures or geological layers are obtained sequentially by stacking together succes-
sive simulations of digital elevation models (DEMs). In order to produce successive topographies that are
coherent with the successive river topographic patterns, DEMs are generated at a scale at least as large as
the river width [Pirot et al., 2014], which might be larger than the zone of interest. This is why there are two
kinds of simulation grid as described in Table 1. A three-dimensional simulation grid is defined for the zone
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of interest and a two-dimensional simulation grid is defined for the DEMs simulations. The length and width
of this latter shall be greater or equal to the length and width of the zone of interest. As the resolution of
these two grids might differ, interpolation parameters (see Table 1) allow rescaling of the extracted zone of
the simulated topographies to the zone of interest. It might also be used to update the analog length scale
characteristics if necessary.

2.2.1. Simulation of Successive Topographies

The first step consists in producing sequentially successive topographies of a braided-river according to the
method described in detail by Pirot et al. [2014]. The method uses a set of LIDAR images at different time
steps showing the evolution of the topography of the river bed such as the four successive images of the
Waimakariri river [Lane et al., 2004]. Other sources of successive DEMs such as LIDAR data taken at other loca-
tions or topographies computed with a physically based model of erosion and deposition could be used as
well as training set. From these data, the Direct Sampling algorithm simulates the new topography (time step
t) conditionally to the previous one (time step t - 1). The algorithm uses the statistical relations between the
topographic patterns in the two successive topographies measured in the field and reproduces them in the
simulation. This ensures, for example, that a given channel may migrate at a reasonable distance or vanish
between two successive simulations following what has been observed in the analog data set.

Here the method is applied on a grid of size 11,600 m X 1,200 m, as indicated in the braided-river topogra-
phy dimension parameters of Table 1. The parameters to run the Direct Sampling algorithm in order to pro-
duce the topography time series are described in detail in Pirot et al. [2014]. The result of four successive
topography simulations are displayed in Figure 1a).

Then, in absence of specific information about the location of the zone of interest, this latter is randomly
retrieved so that all pixels within it are in the domain of the large scale topography simulation grid. The loca-
tion of the zone of interest is the same for all the successive topographies. This extraction step takes into
account the different scaling factors (see Table 1) that allow stretching or shrinking the topographies along
the model axis to adapt the characteristic length scale (channel width, bar dimensions. . .) of the analog to
the characteristic length scale of the site to model. Due to the possible different grid resolutions of the
braided-river topography simulations (coarser scale) and the aquifer geological model (finer scale), margin
parameters are used to extend the zone of interest, which allow for a better interpolation of the topography
at the aquifer model scale. The extracted topography is interpolated linearly on the aquifer model grid.
Though more advanced interpolation techniques like splines could have been considered, the use of a linear
interpolation was deemed sufficient since the resulting surfaces were reasonably smooth (see Figure 3).
2.2.2. Stacking Topographies to Create Erosion and Deposit Volumes

Now that a series of successive topographies is available, it is possible to stack them with a vertical incre-
ment, i.e., the aggradation rate o that is constant throughout the algorithm. As illustrated on a two-
dimensional fictive section in Figure 1b), this process produces some erosion volumes and some deposition
volumes. A positive aggradation rate allows building a succession of geological layers that reach a minimum
given thickness for the simulated aquifer.

More precisely, let us denote by t each time step iteration and (E;),.y the ensemble of successive DEMs
simulated by MPS. The ensemble of centered elevations (C;),.,, are then defined as C;=E;—u(E;),Vt € N,
where p(E,) is the mean of E;. Let us denote (Z;),. the elevation of the surfaces delimiting the geological
layers. The ™ geological layer G, is delimited at the bottom by Z,_ ; and a the top by Z.. The bottom of the
aquifer model Z, is initialized with C,. Then, sequentially, for each time step iteration t, the elevation of the
top of the next main layer is computed as a function of the previous mean elevation and the aggradation
rate: Zy=p(Zi—1)+o+C. Additionally, the resulting erosions may impact all the previous elevations that
need to be updated: Z,=min(Z,,Z;), 0 < p < t—1. The resulting elevations (Z;),., are stored as a pillar
grid. Once the main geological layers are defined, it is possible to define heterogeneous physical properties
or facies within each layer.

2.3. Generate Geological Heterogeneity Within the Layers

The method presented hereafter to generate heterogeneous facies within the main geological layers is
inspired by field observations of outcrops, processes, and studies linking surface topography with ground
penetrating radar (GPR) measurements [Huber, 2015]. During a flood event and looking at the intra-layer
scale, sandy gravel sheets are moving forward, filling progressively the scours formed by erosion at channel
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a) Realizations of four successive topographies

extracted surface time step 1

extracted surface time step !

elevation in meters

extracted surface time step 3
extracted surface time step 4

b) Stacking two successive topographies

elevation at t elevation at t+1

aggradation
factor

= erosion + deposit average elevation at t

Figure 1. (a) Four successive topography realizations, followed by extraction and interpolation; (b) pseudo processes of erosion and deposit.

confluences [Rust, 1972]. When a gravel sheet collapses while moving forward over a scour, a granulometric
sorting occurs. By gravity, coarse grain size materials are deposited first, followed by finer grain size sedi-
ments. With the combined action of the flow, this process produces cross-stratified deposits that can be
observed in gravel-pits [Heinz et al., 2003].

To mimic this process and obtain stratified deposits, the bottom topography of a given layer is iteratively
shifted and deformed locally, in accordance with local flow and topography constraints. Each iteration i
defines a deposition volume for a distinct facies. The sequence of the facies is defined in Table 1. Within the
framework of a sand and gravel braided river, it is assumed that three main facies types are sufficient to
reproduce the main heterogeneity patterns. The three facies are differentiated according to their granulom-
etry and sorting: facies 1 represents well sorted fine grain sediments, facies 2 represents unsorted mixed
size sediments and facies 3 represents well sorted coarse sediments. Facies 2 can be interpreted as a low
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permeability medium, representing heterogeneity within gravel sheets. Facies 1 and 3 represent the sorted
sediments whose iterative successions form cross stratifications.

To shift and deform the topography, we first evaluate the direction in which the sediments should move.
This is given by a rough approximation of the possible river flow direction that is described in section 2.3.1.
Then, we also consider the orientation of the local slope since scour filling is oriented along the local flow
direction and occurs at the edges of gravel sheets, where they can collapse. The same local flow conditions
are used for all iterations within a geological layer. However, the downward slope is updated at each itera-
tion. The deformation process is detailed in section 2.3.2.

In what follows, the processes to generate fine scale heterogeneities within the geological layers are
explained for the ¢ geological layer G; which is delimited at the bottom and at the top by the Z,_; and Z,
surfaces respectively, V't € N*. Note that, within each geological layer G;,Vt € N, we assume that the gen-
erated geological heterogeneities are intrinsic to the layer: no erosion below the bottom of the layer or
deposit over the top of the layer is created by this process.

2.3.1. Surface Flow Approximation

For each layer G, the flow approximation is computed from surface Z,_, delimiting the bottom of the layer
on a wider area than the zone of interest to avoid boundary effects and to take into account the global flow
scale, which ensures a continuity at the local scale. So the flow is approximated on a grid of the same
dimensions (11,600 m X 1,200 m) as the one used to generate the successive topographies.

First, an against-current fast-marching method [Cao and Greenhalgh, 1994; Sethian, 1996, 1999] is applied
on a velocity field v,_; derived from the topographic surface Z,_; to compute the travel time tt,_, from any
point on the river topography to the downstream outlet of the river, using a Matlab implementation devel-
oped by Peyré and Cohen [2006]. The downstream outlet is composed of all points of the topographic line
corresponding to the right edge on Figure 2a). To compute this travel time, the topography Z,_; is inter-
preted as a velocity field, with small velocity values at high elevations and greater velocity values at lower
elevations. The velocity field used to compute this approximate travel time is defined as v;—1=—Z;_;+1.1X
max(Z;—1) to ensure strictly positive values.

Then the approximated flow field F7 within the ¢ geological layer is computed as the opposite of the gra-
dient of the travel time tt,_; divided by its squared norm (see equation (1)).
= grad (tt;—q)

FIZ_TZ (1)
llgrad(tte— )|

This method produces a flow map following the channel orientations and whose norm is slightly bigger in
the channels, as displayed in Figure 2a).

It is important to note that this flow map does not pretend to be accurate. It is used only to get a rough
approximation of the flow directions that can be computed very rapidly. More sophisticated calculations
could be used as well but this was deemed not necessary at this point of the research.

2.3.2. Iterative Deformation Scheme

The number of iterations n within a geological layer as well as the facies sequence are defined in Table 1.

Within the " geological layer, all iterations use the same flow map ﬁ:(vx,vy)r. It is assumed constant
within the layer so that the deformations are progressive and smooth to produce cross-stratifications. The
intensity of the flow might be adjusted with the flow parameter f,. At each iteration j, 1 </ < n, the gradi-

ent grad(T;)=(—u’, —)" of the current topography T; is computed. To = Z._; denotes the bottom and

1 1
T,+1 = Z, the roof of the " geological layer. The deformation and shifting d,j} is computed as a vector of
scalar products (see equation (2)) constrained by co-directionality: opposite flow and downward slope direc-
tion cannot generate a sorted deposit and therefore cannot shift the topography.

—_ <—min(u,x,0) - min(vy,0) + max(u¥,0) - max(vx,0)>
=

dit1= : ) 2)
—min(¢!,0) - min(vy,0) + max(u/,0) - max(vy,0)

The deformation m is applied to the coordinates (X;, Y,-)T of the current topography T.. The new coordi-
—_—
nates (X,-H,)/,»JH)T:(X;7 Y,«)T+d,»+1 are used to compute the next smoothed and shifted topography ST;.4

PIROT ET AL.

MODELING OF BRAIDED-RIVER DEPOSITS 7



@AGU Water Resources Research 10.1002/2015WR017078

a) Approximation of the global flow over the topography at the river scale

7o T e TN e e R T
ff/.aQ)/_?’f.// /////1.///"//,/// e
T T s - L " LAy

b 2 Ba N P e /| S Az Sl

Vil - TR

N A A A A v o |

o i
f

elevation in meters
-1.5m

b) Iterative topography deformations at the zone of interest dimensions
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c) Geological layer intrisic interative deformations and facies assignation

VLN

- -, »

= » flow direction

- -
LR "llr-

facies sequence

= = = « top of the geological layer
——— bottom of the geological layer

\\ \'\ iterative deformed surfaces T;
CZ; iterative deformations

Figure 2. Flow approximation, iterative deformations and facies assignation.

(within the current layer) through a nearest neighbor interpolation followed by a moving average whose
parameters are defined in Table 1: ST;; =smooothlinterpolation(Xi+1, Yi+1, T;). The topography T is con-
strained to be below the top topography T, ; of the current layer, and as no erosion is desired, it is also lim-
ited by the value of the previous topography T Tiy1=min(T,+1, max(T;, STi+1)). Figure 2b) provides an
illustration of one iteration of these successive deformations, starting from an initial topography and a flow
map. The facies assigned to the volume comprised between T,_; and T; is the ih facies of the sequence. The
remaining volume in the geological layer after n iterations, located between T, and T,.; — denoting the
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a) aggradation = 0.05m; deformation intensity = 5; nb iterations = 6

b) aggradation = 0.3m; deformation intensity = 5; nb iterations = 6

facies 3 facies 3
facies 2 facies 2
facies 1 facies 1
) aggradation = 0.9m; deformation intensity = 5; nb iterations = 6 d) aggradation = 0.3m; deformation intensity = 5; nb iterations = 10

facies 3
facies 2
facies 1

facies 3
facies 2
facies 1

Figure 3. 3-D heterogenous facies model (a) for an aggradation « = 0.05 m, n = 6 inner-layer iterative deformations and a deformation intensity corresponding to a flow power f, = 5;
(b) for an aggradation « = 0.3 m, n = 6 inner-layer iterative deformations and a deformation intensity corresponding to a flow power f, = 5; (c) for an aggradation o= 0.9 m, n = 6 inner-
layer iterative deformations and a deformation intensity corresponding to a flow power f, = 5; (d) for an aggradation o = 0.3 m, n = 10 inner-layer iterative deformations and a deforma-

tion intensity corresponding to a flow power f, = 5.

roof of the geological layer, is assigned the (n + 1) facies of the sequence. According to the facies sequence
defined in Table 1, facies 3 and 1 are alternatively assigned to the volumes delimited by the successive inter-
mediate surfaces T;, i € {0,---,n} and facies 2 is assigned in the remaining volume of the geological layer.

3. Results

3.1. Resulting Heterogeneity

As all topographies within each geological layer are generated over a regular grid, the resulting 3-D model
can be stored as a regular pillar grid. Each layer of the model provides thickness and facies information at

all locations of the regular horizontal grid.

Three examples of the resulting models using different aggradation rate o, flow power f, and number of
iterations n are presented in Figure 3. For further applications requiring a regular grid, the 3-D model is also
discretized onto a 3-D regular grid whose cell dimensions are define in Table 1. An arithmetic mean is used
for properties such as porosity or horizontal conductivity and harmonic mean for the vertical conductivity

for instance [Renard and De Marsily, 1997].

As one can see, cross-stratifications are present in the 3-D model. The facies 2, which fills the remaining vol-
ume in the geological layers after the iterations composing facies 1 and 3 stratified deposits, represents the
geological matrix. By modifying the input parameters one can update the geometry of the sedimentary
structures (dimensions, degree of continuity, etc...) as well as some global properties such as the propor-

tions of the different facies or their connectivity.

3.2. Comparison to Outcrops

To assess qualitatively the models generated by the proposed algorithm and in absence of an exhaustive
large scale full 3-D image of the sedimentary heterogeneity within a braided system, we compare sections
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a) Marthalen transversal section 20m*4.5m North main flow @direction South
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c) Herten transversal section 16m*7m d) Herten transversal section 16m*7m e) Herten transversal section 16m*7m

e
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Figure 4. Comparison of model sections to field outcrops—(a and b) Photographs of braided river deposits in the Marthalen quarry (from
Huber [2015]); (c-e) mapped structures in the Herten quarry, the colors represent the lithologies (from Bayer et al. [2011]); (f-i) simulated
structures (the color legend is identical to the one of Figure 3.

of the generated models to field outcrops. Figures 4a and 4b, provided by Huber [2015], show sections of
the Martahlen quarry in Switzerland, respectively transversal (orthogonal) and longitudinal (parallel) to the
main flow direction oriented from East to West. The exposure is characterized by the superposition of sev-
eral trough fills identified by clear-cut erosional lower-bounding surfaces and tangential cross-beds. The
erosional lower-bounding surfaces indicate the erosional capacity of scouring. Figures 4c—4e are facies
mapped along a series of outcrops at the Herten site in Southwestern Germany [Bayer et al., 2011; Comunian
et al, 2011]. Though at a smaller scale, these profiles show successive cross-stratified deposits over erosional
surfaces of thicker layers.

Figures 4f-4i present transversal and longitudinal sections of the models generated by the proposed algo-
rithm. The vertical scale is exaggerated by 5. Cross-stratified deposits are clearly visible within the matrix,
which is composed of successive thicker layers. This comparison between these different sections at
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Table 2. Parameters Used to Study the Influence of the Aggradation Rate

Sensitive Parameter Aggradation Rate o Flow Power f,, nb Iterations n
Range of Values [0.05; 0.9] [0.2;9] [3;11]

Curve Name f, Value n Value o Value n Value f, Value o Value
reference 5 6 0.3 6 5 0.3
low aggradation rate 0.05 6 5 0.05
high aggradation rate 0.9 6 5 0.9
low flow power 0.2 6 0.2 0.3
high flow power 9 6 9 03
few iterations 5 3 0.3 3

many iterations 5 1" 0.3 11

different scales show similar patterns and underline the necessity to gather some information about charac-
teristic length scale of the system to model, to calibrate the algorithm parameters.

3.3. Parameters and Sensitivity Analysis

The aim of this section is to provide some recommendations on how to calibrate the three main parameters
of the algorithm regarding the constraints of the user--the aggradation rate o is linked to the thickness of
geological units, the flow power f, is related to the thickness of cross-stratifications and the number of itera-
tions n is the number of cross stratifications in trough fills. To achieve this, a sensitivity analysis of these
parameters on the resulting facies proportions and facies geobody connectivities is conducted hereafter.
Proportions and connectivity are retained as they are important properties for underground flow and trans-
port modeling.

As connectivity indicator we propose using the gamma connectivity measure [Renard et al., 2013]. Given an
indicator variable /, its gamma-connectivity measure, I';, is defined as the probability that two points
belonging to the medium (/= 7) are connected. An indicator variable is computed for each facies. It is also
possible to consider specific directions as in directional variogram computing. In what follows, we are inter-
ested in the connectivity measure along the vertical direction and in the horizontal plane.

3.3.1. Influence of the Aggradation Rate

The sensitivity analysis is performed in five different configurations. The range of values used for the aggra-
dation parameter o as well as the values of the flow power f, and the number of iterations n for each config-
uration are detailed in Table 2. The results for the sensitivity to the aggradation parameter « are illustrated
in Figures 5a-5f. The black curve shows the evolution of the indicators as a function of the aggradation
parameter o, for fixed reference values of the flow power f, and of the number of iterations n. The dark gray
curves show the joint effect of f,, with o. The light gray curves illustrate the joint effect of n with «.

The proportions of facies 1 and 3 decrease to the benefit of facies 2 proportion when the aggradation rate
increases. This makes sense as an increase of aggradation creates thicker geological layers and there is
therefore more volume for the matrix facies after the iterative deformations of the bottom layer. Low values
for the flow power and number of iterations reinforce this phenomenon. The increase of facies 2 proportion
implies an increase of the connectivity indicator (Figure 5e), which reaches a value almost equal to 1 (all pix-
els are connected) when the aggradation parameter is greater than 0.2. On the contrary, the connectivity of
facies 1 and 3 are decreasing functions of «. Again, low values for the flow power and the number of itera-
tions parameters reinforce this behavior.

Note that as facies 2 is a low permeability medium here, increasing facies 2 proportion may lead to an
increase of the connectivity indicator for this facies while at the same time decreasing the aquifer global
connectivity.

3.3.2. Influence of the Flow Power

In this section, the influence of the flow parameter f, is analyzed. The range of parameter values are given
in Table 2. The results are illustrated in Figures 5g-5I. Again, the black curve shows the variations of the indi-
cators for fixed reference values of the aggradation parameter o and the number of iterations n. The dark
gray curves show the joint effect of o with f,.. The light gray curves illustrate the joint effect of n with f,.

The proportions of facies 1 and 3 increase quite rapidly at the expense of facies 2 when the flow power
parameter f, increases. This is logical since the amplitude of the iterative deformations is proportional to f,.

PIROT ET AL.
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Figure 5. Sensitivity of the three main parameters on facies proportions and connectivity.
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More deformation implies more cross-beds and more facies 1 and 3. Furthermore, we observe that the pro-
portions reach a sill. This makes sense as once scours or pools are filled in the layer, the remaining volume
is controlled by the aggradation rate. For facies 1 and 3, the sill of the proportion curves is lower and
reached for higher f, values with high aggradation rate value or few iterations. It is the opposite for facies 2.
The connectivity of facies 1 and 3 increases with f,. Full connectivity for facies 2 is almost constant; it
decreases slightly with increasing f, only for a low aggradation rate. The sill and range of the connectivity
curves follow the same pattern as the proportion curves for high or low values of the aggradation or num-
ber of iterations parameters.

3.3.3. Influence of the Number of Iterations

The impact of the number of iterations n parameter is also assessed for different combinations of the other
parameters. The range of values used are specified in Table 2. The results are illustrated in Figures 5m-5r.

Once more, the black curve shows the evolution of the indicators as a function of the number of iterations
n, for fixed reference values of the flow power f, and of the aggradation rate «. The dark gray curves show
the combined effect of f, with n. The light gray curves illustrate the joint effect of o with n.

The proportions of facies 1 and 3 increase slowly to the detriment of facies 2 when the number of shifting
iterations n increases. This is not surprising as by construction, the proportions of alternative facies 1 and 3
shall increase as a function of their occurrence in the facies sequence. For facies 1 and 3, the proportion
curves are lower with high aggradation rates o or with low flow power f, values. It is the opposite for facies
2. One could expect similar sills as observed in the indicator plotted as a function of the flow power f,. How-
ever, these sills are not reached with the range of values, because the shifting and the deformation of the
topography gets smaller and smaller at each iteration. Indeed, even though the local flow is the same, the
absolute value of topography gradient decreases at each iteration. The connectivity of facies 1 and 3
increases slowly with n. Full connectivity for facies 2 is almost constant; it decreases slightly with increasing
n only for low aggradation rates. The connectivity curves follow the same pattern as the proportion curves
regarding high or low values of the aggradation rate o or flow power f, parameters.

3.4. Recommendations on Parameter Selection

To facilitate an intuitive understanding and selection of the parameters, it is recommended that they be
adjusted in two steps because the algorithm is hierarchical with two levels. First, the user should calibrate
the main structural parameters (Table 1), as they will influence the structural morphology of the deposit and
then calibrate the geological heterogeneity parameters (Table 1).

The structural parameters are used to build the main geological layers. The scaling factors and the aggrada-
tion rate parameters will strongly influence the dimensions of the layers and the scours. A simple way to
help calibrating these parameters is to use interpretations of ground penetrating radar (GPR) data to assess
the range of the layers thickness and infer the aggradation rate. If no GPR data are available, a possibility is
to rely on analog data such as outcrops. In addition, channel width, bar width and length from an active
part of the braided river can be used to infer the horizontal scaling factors so that the topological character-
istics of the training image match those of the braided river. This process is iterative and requires some trial
and errors.

The geological heterogeneity parameters such as the flow power f, or the number of shifting iterations n
might unfortunately be more difficult to calibrate. A suggestion is to use facies proportions, which could be
inferred from borehole sample, outcrop analysis, gravel pit analogs or sediment grain size distribution along
the river, or a combination of these field observations and analysis. Another possibility is to measure facies
thickness from boreholes or outcrop——possibly from analog sites——and compare them with boreholes or
sections in the simulated depositional model to adjust the parameters.

4, Discussion and Conclusion

The pseudo-genetic algorithm presented here allows the simulation of braided-river heterogeneous depos-
its. Three-dimensional representations (Figure 3) and two-dimensional sections (Figure 4) of some stochastic
realizations obtained with this model reveal realistic sedimentary structures such as cross-stratifications that
can be observed in gravel outcrops. The method consists of two main steps: (1) generating successive
DEMs using MPS with multivariate training images constituted of DEMs at different time steps of an analog
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a) training image b) 180° rotated training image

c) realization with n = 12 d) realization with n = 24

Figure 6. Examples of MPS simulations varying the number of neighbors n parameter. The scanning fraction of the training image has
been set to 0.35 and the acceptance threshold to 0.05.

site; and (2) stacking these topographies to create the main geological units in a 3-D volume, and filling
these units with fine-scale heterogeneity by mimicking the sediment depositional process based on an
approximate flow derived from the generated topographies. One main advantage of the method is the
small number (three) of influential parameters: an aggradation rate o which controls the thickness of the
main geological units (erosion and deposit zones); a flow power f, controlling the thickness of cross-
stratified deposits within the main layers and related to the energy of the system; and a number of intra-
layer iterations n giving the number of cross-stratified deposits.

The proposed method can be applied to generate 3-D heterogeneity by using analog data, in particular if
no DEM is available for the modeling site. An advantage of the approach is that it does not require exten-
sive field investigations as only characteristic length scales are necessary to calibrate the model, and these
can be obtained by noninvasive methods such as GPR measurements or accessible outcrops. Finally, it is
clearly possible to control the connectivity of the different facies by adjusting the input parameters.

However, a difficulty is that the relation between the three main parameters and the characteristic length
scales at a given modeling site are not straightforward and therefore require some trial and error calibra-
tion. Furthermore, even if the resulting models seem satisfactory compared to outcrop or field observations,
further work should be conducted in order to compare with other modeling approaches the ability of the
resulting depositional models to predict solute and contaminant migration [Pirot et al., 2015].
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Even if the method developed here does not account directly for borehole data conditioning, a simple way
to accomplish this is to use the model described in this paper to construct 3-D training images. Then these
images can be used in a standard multiple-point statistics (MPS) framework to model the 3-D distribution of
the facies as illustrated in Figure 6. The simulations shown in this figure have been generated with the
Direct Sampling algorithm [Mariethoz et al., 2010] and can be directly conditioned to borehole data as it is
an inherent ability of MPS implementations [Strebelle, 2002; Mariethoz et al., 2010; Straubhaar et al., 2013;
Straubhaar and Malinverni, 2014].

Another aspect of hard conditioning to field data is to account for large geological structures inferred from
GPR section interpretation for example. This means simultaneously constraining the MPS topographic simula-
tions with the aggradation rate and there may be a high degree of uncertainty related to the interpretations.
Another possibility to achieve such surfaces conditioning could be to deform the simulated geological units
to fit the field data while minimizing a built-on-purpose deformation cost function. More generally, the pro-
posed model could be used to generate prior models in an inverse framework. GPR soft conditioning could
for instance be envisioned in an inversion framework based on summary statistics [Lochbuhler et al., 2015].
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