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A new method is proposed to generate successive topographies in a braided river system. Indeed, braided river
morphologymodels are a key factor influencing river–aquifer interactions and have repercussions in ecosystems,
flood risk or water management. It is essentially based on multivariate multiple-point statistics simulations and
digital elevation models as training data sets. On the one hand, airborne photography and LIDAR acquired at
successive time steps have contributed to a better understanding of the geomorphological processes although
the available data are sparse over time and river scales. On the other hand, geostatistics provide simulation
tools for multiple and continuous variables, which allow the exploration of the uncertainty of many assumption
scenarios. Illustration of the approach demonstrates the ability of multiple-point statistics to produce realistic
topographies from the information provided by digital elevation models at two time steps.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Braided rivers constitute an important part of alluvial systems in
alpine regions such as Switzerland. Many of these rivers were channel-
ized in the past and are now targeted by restoration projects (Glenz,
2013) for flood prevention, water management purposes, biodiversity
preservation, and leisure activities (FOEN, 2009; Peter, 2009), particularly
in the context of climate change (Macklin and Rumsby, 2007). As a result
of the erosion and deposition processes, themorphology of braided rivers
is a signature of such active systems.Morphology is a key parameter, first
toward the understanding of dependent ecosystems (Amoros and
Bornette, 2002; Richards et al., 2002; Clarke et al., 2003; Van Der Nat
et al., 2003; Tockner et al., 2009), and also to better understand the
main geological structures of the resulting aquifers in order to
study groundwater flow and transport (Thomas and Nicholas,
2002; Käser et al., in press), or surface and subsurface relationships. In
a hydrogeological context, simulations of successive morphologies could
also be used to produce three-dimensional heterogeneous geological
models. These issues are not addressed in this paper but they justify the
need of topography models. The purpose of this work is to present a
new way of modeling braided river topography and its evolution.

Static models of braided river morphology can be achieved by LIDAR
data acquisition followed by image processing (Westaway et al., 2003)
and analyses can be derived from descriptive methods characterizing
the length scale and the main topographic structures (Rust, 1972;
Miall, 1977; Germanoski and Schumm, 1993; Goff and Ashmore,
1994; Warburton and Davies, 1994; Foufoula-Georgiou and
Sapozhnikov, 2001; Hundey and Ashmore, 2009; Lane, 2009). But
these approaches are often limited to a single time step (static aspect)
and restrained to the area of acquired data.

Simulations based on process imitating methods such as cellular
automata models (Murray and Paola, 1994; Nicholas et al., 2009) or
such as event-based models (Pyrcz et al., 2009), which can be validated
by comparisons to laboratory experiments (Ashmore, 1982), allow for
models of the system over successive time steps. Nevertheless, the
conditioning to field measurements such as borehole data is often
very difficult. To overcome this drawback, an alternative is the use of
MPS simulations. These techniques are nonparametric and allow for
the reproduction of complex spatial features from a conceptual model
called training image (TI), as well as to account for conditioning to
field data. To our knowledge, multiple-point statistics (MPS) has not
yet been used to simulate successive braided river morphologies. MPS
has been introduced by Guardiano and Srivastava (1993), and first
practical algorithms such as SNESIM (Strebelle, 2002) were designed
for the simulation of categorical variables. The algorithm proposed by
Mariethoz et al. (2010), the direct sampling (DS), is muchmore flexible
and can deal with joint simulations of multiple categorical and continu-
ous variables. Because the DS method can reproduce spatial structures
and complex correlations between several continuous variables
(Mariethoz et al., 2012), this algorithm allows for simulations of
successive digital elevation models (DEMs).
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Fig. 1.Workflow of DS.
Courtesy of Meerschman et al. (2013).
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Following those ideas, in this paper, the principle of a newmethod to
simulate braided river topographies at successive time steps is proposed.
It combines the advantages of the DS algorithm, with the large-scale data
available from LIDAR topography. The approach is illustrated with statis-
tical simulations of topography time series. The training datasets (TIs) are
based on successive DEMs of the Waimakariri River, New Zealand (Lane
et al., 2003) acquired with LIDAR at four time steps.

The paper is structured as follows. TheDS algorithm is briefly present-
ed in Section 2. The simulation of DEM time serieswithMPS algorithms is
not straightforward, mainly because of large scale heterogeneities and
trends in the TIs. Therefore Section 3 describes first a data analysis of
the available TIs. That leads us to propose a methodology making use of
auxiliary variables to enable realistic simulations of successive DEMs,
with respect to the observed nonstationarities present in sparse training
data sets. The method is detailed and demonstrated within Section 4.
The paper endswith a statistical validation of the simulations in Section 5.
Fig. 2. 2,900 m × 1,200 m (145 pixels × 60 pixels − x axis × y axis) DEMs of the Waimakarir
2. The direct sampling, an MPS algorithm

Multiple-point statistics (MPS) algorithms allow us to simulate a
random function Z on a domain called the simulation grid. The random
function spatial statistics are retrieved from a conceptual model known
as TI. In the TI, Z is known over its entire domain (Fig. 1).

Each pixel of the simulation grid is simulated sequentially, one after
another. A random path visiting every node in the simulation grid is
defined, and each location x in the path is successively simulated as
follows. The data event d(x) is the pattern constituted by the spatial
ensemble of known values Z(x+ hi) in the neighborhood of x (hi being
a lag vector), i.e., the conditioning data and the already simulated points.
Then, the value Z(x) to simulate at location x is drawn from the
cumulative distribution function F conditionally to the local data event
d(x): F(z, x, d(x)) = Prob{Z(x) ≤ z|d(x)}. F is derived from a similar
local data event present in the TI. F can be dealt with in two ways.
i River, New Zealand at four time steps. Red: highest elevations; blue: lowest elevations.

image of Fig.�2


Fig. 3. 11,600 m × 1,200 m (580 pixels × 60 pixels) simulations of DEMs with DS, using a monovariate TI. Red: highest elevations; blue: lowest elevations.
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The first efficient MPS approaches— implemented for instance by
Strebelle (2002) in SNESIM or by Straubhaar et al. (2011, 2013) in
IMPALA — rely on computing an histogram of the patterns present
in the TI and compatible with the local data event d. These ap-
proaches are limited to categorical variables and with fixed search
neighborhood templates. The use of successive multigrid simulation
allows us, in that case, to capture and reproduce the structures from
the TI at different scales while using small search templates, but may
create some artifacts.

In amore recent approach, the DS algorithm (Mariethoz et al., 2010)
skips the pattern histogram computation. Instead, for the simulation of
a value at location x in the simulation grid, the TI is randomly scanned
until a location y with a pattern d(y) compatible with the data event
d(x) is found. Then, the value Z(y) is simply pasted into the location x,
and the simulation continues with the next node x in the random
path. The data event retrieved from the simulation grid is made up, at
maximum, of the N closest informed nodes. Then, the scale covered by
the data event is large in the beginning of the simulation, and becomes
smaller at the end, allowing the capture of structures within the TI at
different scales. Specifying a normalized distanceD(d(x), d(y)) between
patterns, the compatibility of two patterns is defined as follows: d(x)
and d(y) are compatible if and only if D(d(x), d(y)) b t, where t is a
tolerance (or threshold) chosen by the user. Moreover, in order to
reduce the computational time for the simulation of one node x, a
maximal fraction f (chosen by the user) of the TI is scanned and, if a
compatible pattern is not found, the value Z(y) at the visited location
y corresponding to the best match between d(x) and d(y) is assigned
to x. For a categorical variable, the distance D(d(x), d(y)) is usually
defined as the proportion of the nodes in the patterns having a differ-
ent value. Normalized distances (of type L1 or L2 for instance) can be
used to deal with a continuous variable. The algorithm is straightfor-
wardly extended to the multivariate case: in a situation with m joint
variables, the simulation proceeds by comparing m pair of data
A

F

Fig. 4. Auxiliary variable workflow. (A) Initial DEM; (B) main channel; (C) velocity field; (D) m
distance to the edges.
events. Fig. 1 illustrates the basic principles of DS. Further details
about the DS algorithm can be found in Mariethoz et al. (2010)'s
publications and additional examples of DS simulations are
available in the papers of Mariethoz and Kelly (2011) and
Meerschman et al. (2013).

3. Topography data analysis and description with auxiliary variables

In this section, we focus on the LIDAR data analysis, showing why it
cannot be used directly as a TI, and how to overcome these issues.

3.1. DEM as training image

The DEM data used in this study were provided by Lane et al. (2003).
This data set from theWaimakariri River was acquired between February
1999 and May 2000 at four different time steps as shown in Fig. 2. Origi-
nally, the data had a resolutionof 1 m/pixel, and the elevationwas the ab-
solute elevation above sea level. In order to work with simulation grids
larger than the TI, and to give asmuch importance to the change of eleva-
tion in both transversal and longitudinal directions, themain trend of the
DEMs, i.e., their main slope, was removed. In other words, the average el-
evation computed over the longitudinal (x) axis is removed from the
DEM. It means that for each x-coordinate (one column here), the average
elevation is computed and subtracted to the measured elevation for all
points of this x-coordinate. To speed up the MPS simulations, the resolu-
tion is coarsened by a factor of 20 (ΔX=20 × dxinitial,ΔY=20 × dyinitial).
The upscaling is done by averaging the local altitudes. It induces a
smoothing of the data, but still respects the main topography structures
from the original data (Lane et al., 2003).

Some simulations of DEMs with the DS algorithm, using directly the
Waimakariri River DEMs (Fig. 2) as TI, are presented in Fig. 3.

We can observe that many structures of the topography present in
the TI can be reproduced in the simulations. But an important drawback
B C

E D

ain channel and its centerline; (E) normalized distance to the centerline; (F) normalized
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shows up: higher elevation parts in yellow or red and deeper channels
in dark blue seem to be randomly located in the simulation grid. How-
ever, the higher parts are expected to be located on the sides of the
domain. It is an observation that the human brain can deduce from
the TI, but that the algorithm cannot infer automatically. This is a well
known problem— the MPS algorithm assumes that the TI is stationary,
meaning that any pattern present in the TI has the same probability to
occur at any location. If this is not the case, special techniques must be
applied. Nonstationarity in the TI can be overcome by using probability
maps or auxiliary variables (Chugunova and Hu, 2008; Boucher, 2009;
de Vries et al., 2009) in classical MPS algorithms such as SNESIM
(Strebelle, 2002) or IMPALA (Straubhaar et al., 2011). With the DS
algorithm, auxiliary variables can be used as well to guide the spatial
positioning of the topography structures (Mariethoz et al., 2010).

3.2. Defining auxiliary variables

Looking at the DEM variable in Fig. 2, two main features can be dis-
tinguished: the less active part of the river is characterized by larger and
higher elevation zones on the sides of the river, and themost active part
of the river called themain channel, is characterized by deeper channels
and small to medium elevation zones.

Themain channel can be represented by its centerline. This allows us
to compute a distance between each location in the river and this cen-
terline. This first auxiliary variable — distance to the centerline — shall
prevent to generate large and high elevation zones within the main
channel. In addition, a distance can be computed between each location
in the river and the river edges. This secondauxiliary variable—distance
to the edges— shall ensure the absence of channels or pools cutting one
of the large and high elevation zones present on the edges. As illustrated
in Section 4.2, these two distances will prove to be sufficient to help the
algorithm localize the topography structures. Fig. 4 gives an overview of
the process to compute the centerline and the auxiliary variables.

More details are available in the following paragraphs. The process is
repeated for all available DEMs (Fig. 2).

3.2.1. Delineating a centerline in the main channel
The (x, y) coordinates system, used in what follows, refers to the x

(longitudinal) and y (transversal) axes introduced in Section 3.1.
First of all, themain channel is delineated by thresholding the eleva-

tion in the DEMs. In our example, a threshold of 0.3 m is used. Zones
above the threshold are post-processed to remove isolated groups or
zones that are not adjacent to the edges. The result is an indicator func-
tion Ic(x, y) locating the main channel when Ic(x, y) = 1, as shown in
blue in Fig. 4B.

Then the centerline is obtained, by using a Matlab implementation of
the fast-marching algorithm (Cao and Greenhalgh, 1994; Sethian, 1996;
Peyré and Cohen, 2003). It consists in finding a least effort path — i.e.
shortest distance path — in a velocity field between two points. The
velocity field V(x, y) (Fig. 4C) is obtained by averaging the main
channel indicator function Ic(x, y) with a 20 pixel radius moving
window, V x; yð Þ ¼ 1

S � ∫
S
Ic x; yð ÞdS. The starting point or inlet is defined

on the left edge as the point of coordinate Inletx = 0 and Inlety as the
average of y for which max{V(x, y), x = 0} is reached. The ending
point or outlet is chosen on the right edge as the point of coordinate
Outletx = 145 and Outlety as the average of y for which max{V(x, y),
x = 145} is reached. The resulting centerline is displayed in Fig. 4D.

Now that both the centerline and the edges of the river are known,
the auxiliary variables can be computed.
Fig. 5. Simulated edges and centerlines at four successi
3.2.2. Distance to the centerline
The distance to the centerline is defined for each point of the TI as

the minimum Euclidean distance between the considered point and
all the points describing the centerline. It is then normalized by the
maximum distance over the domain. The variable is displayed in Fig. 4E.

3.2.3. Distance to the edges
The distance to the edges is defined for each point of the TI as the

minimum Euclidean distance between the considered point and all
the points describing the edges. It is then normalized by the maximum
distance over the domain. The variable is displayed in Fig. 4F.

4. Simulation of successive topographies

We proceed in three main steps to simulate successive DEMs.
The first step (Section 4.1) consists in defining the initial setup. It

consists of:

• creating an initial centerline,
• simulating the river edges— these are then fixed across time and valid
for the whole time-series and they determine the lateral size of the
simulation domain for the topographies

• generating a successive centerline time-series,
• computing the associated auxiliary variables.

The second step (Section 4.2) is to simulate an initial topography.
The third step (Section 4.3) is aMarkov chain transition kernel that con-
sists of simulating the topography at time step n+1,with respect to the
previously simulated topography at time step n. All simulations are ob-
tained with the DS algorithm.

4.1. Test case setup

For this example, 100 time steps are considered for a two-
dimensional topography simulation grid of 580 pixels × 84 pixels that
corresponds to 11,600 m × 1680 m.

Edges and centerlines are two-dimensional features that can be de-
scribed as one-dimensional variables as shown by Mariethoz et al. (in
press). In our case, the centerline or the edges are described not as a suc-
cession of angles but as a succession of derivatives dy/dx for simplicity.
This allows us to work on a fixed length of 580 pixels along the x-axis
(longitudinal). The edge and centerline derivatives TI used for the fol-
lowing simulations are extracted from the four successive DEMs of the
Waimakariri River (Fig. 2).

4.1.1. Creating an initial centerline and river edges
The first centerline is obtained byMPS simulation of its lateral deriv-

ative along the longitudinal axis. The cumulative sum of the derivatives
gives the lateral coordinate for each point on the longitudinal axis of the
grid.

The edges are similarly simulated with MPS but constrained loosely
to some conditioning points. For the upper or the lower edges, we com-
pute a straight line parallel to the linear approximation of the centerline
but ensuring aminimumdistance of 10 pixels with the centerline. Then
for each edge, the conditioning points are the starting point, ending
point, and 15 points uniformly drawn from the corresponding straight
line. Once the edges are simulated, we consider them fixed and valid
for all time steps. The width (y-axis) o f the simulation domain is then
fixed to 84 pixels in our example.
t1
t2
t3
t4

ve time steps for 580 pixel × 84 pixel simulations.
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Fig. 6. Auxiliary variables (A, B) and variable of interest (C) for the TI; (A) distance to centerline, (B) distance to edges, (C) topography.
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The conditioning of edge simulations to sampled points is obtained by
using an iterative accept–reject algorithm. The sampled points are or-
dered as (Pi). Let us denote Si the ith segment (i.e., part of a river edge) be-
tween Pi and Pi + 1. The segments are successively simulated. To generate
a segment Si, successive derivatives are simulated and cumulatively
added to obtain a line starting from Pi; then if the distance di + 1 between
its endingpoint is too far from Pi+1, for instancedi+1≥2 pixels, the sim-
ulation of Si derivatives is rejected, and another one is launched, until it is
accepted. When a segment Si is accepted, the simulation continues with
the simulation of the next segment, Si + 1, starting from the ending
point of Si. A resampling (of points Pi) is done if too many simulation
attempts are rejected.
4.1.2. Generating a time-series of successive centerlines
Knowing the nth centerline, the lateral coordinates of both starting

point and ending point are locally perturbed. Additional points are
retained between the starting point and the ending point with a longi-
tudinal interdistance uniformly drawn between 40 pixels and
100 pixels. Both lateral and longitudinal coordinates of these points
are locally perturbed. The lateral perturbations are uniformly drawn in
[−3 pixels, 3 pixels]. The longitudinal perturbations are uniformly
drawn in [−5 pixels, 5 pixels]. All the perturbed points are used as con-
ditioning data. Only centerlines that exist between the edges andwith a
minimumdistance of 10 pixels to the edges are kept. If the simulation of
the n + 1th centerline is rejected, the nth centerline is sampled again
and the n + 1th centerline is resimulated. Fig. 5 illustrates the first
four centerlines.
Fig. 7. Conditioning data: (A) distance to the centerline, (B) distance to the edg
4.1.3. Computing auxiliary variables
Once edges and centerlines are defined, the fully informed auxiliary

variables may be computed, as explained in Section 3.2.
4.2. Initial topography

To generate an initial DEM, a slope-free topography is simulated with
the DS algorithm. The distance to the centerline and the distance to the
edge variables are used as auxiliary variables. They are always exhaus-
tively informed and guide the DS algorithm to localize the different
kinds of structures of the variable of interest — the topography — in the
realizations. The TI contains all DEMs for the available time steps
(Fig. 2). As for each state, the topography is a two-dimensional data set;
it results in a three-dimensional TI, the third dimension representing
the time steps. Fig. 6 illustrates a 2D slice of the TI and its auxiliary vari-
ables at time step ‘March 1999’.

The auxiliary variables — distances to the centerline and to the
edges — are exhaustive for the simulations as shown in Fig. 7A and B.

Four possible realizations of DEMs with the same values for the
exhaustive auxiliary variables (Fig. 7A and B) are displayed in Fig. 7C,
D, E, and F. The parameters employed for the simulations with the DS
algorithm are listed in Table 1.

As one can see, the different topography structures are well
reproduced andwell placed according to the edges and to themain active
channel. Moreover, the exhaustive auxiliary variables do not constrain
toomuch the simulation:with the same auxiliary variables, every realiza-
tion is unique. So, themain active channel centerline and edges appear to
A

B

C

D

E

F

es, and four DEM simulations (C), (D), (E), and (F) with a three variable TI.



Table 1
DS algorithm parameters for initial topography simulation.

Parameters Value

Homothety None
Rotation None
Search neighborhood 30 pixels × 15 pixels
Maximum number of neighboring nodes 20 for auxiliary variables

30 for the simulated variable
Maximum density of neighboring nodes 0.1 for auxiliary variables

1.0 for the simulated variable
Type of acceptance distance L − 1
Distance acceptance threshold 0.2 for the distance to centerline variable

0.15 for the distance to edge variable
0.05 for the simulated variable

Maximum scanning fraction for each TI 0.7
Post-processing None

153G. Pirot et al. / Geomorphology 214 (2014) 148–156
be sufficient to simulate realistic DEMs. A quantitative criteria to test the
quality of the DEM simulations is proposed in Section 5.

4.3. Simulation of a topography conditional to a previous topography

The DS algorithm enables realistic simulations of DEMs using ex-
haustive auxiliary variables based on the given centerline and edges.
As a consequence, the same auxiliary variables— distance to the center-
line and distance to the edges — shall be kept to simulate successive
DEMs. In order to simulate a DEM at time step n + 1 with respect to
the previous DEM at time step n, the auxiliary variables are informed
at two different time steps, n and n+1; and an additional auxiliary var-
iable providing the elevation in meters at time step n is considered. This
results in the use offive exhaustive auxiliary variables along the variable
of interest for the simulations, taking into account the evolution of the
centerline and the evolution of the edges in addition to the evolution
of the elevation. As illustrated in Fig. 8, the simulated variable (elevation
at time step n+ 1) in the training data set (Fig. 8) is the February 2000
DEM (C2). The five exhaustive auxiliary variables are the February 1999
DEM (C1) and the distance to the edges (B1 and B2) and the distance to
the centerline (A1 and A2) both at time steps February 1999 and Febru-
ary 2000.

The parameters employed for the simulationswith DeeSse are listed
in Table 2.

Some examples of successive topography simulations are presented
in Fig. 9B, C, D and E. The first DEM (Fig. 9A) is obtained with the simu-
lationmethod described in Section 4.2. The following simulations allow
us tomodel the evolution of the channels and of the side bars, grouping,
diverging, or moving through time. Compared to the TI, the results are
visually satisfactory. A statistical test of the successive DEM simulations
is proposed in Section 5.

5. Statistical validation of topography simulations

This section is focused on the variable of interest: the elevation in
meters, as the auxiliary variables are only used for guiding the simulation
A1

A2

Fig. 8. TI and its five auxiliary variables to simulate successive topographies: distance to center
time step 2; elevations (in meters) C1 at time step 1 and C2 at time step 2.
of successive DEMs. To test the quality of the simulated DEMs, they are
compared to the TIs (Fig. 2) through (i) the empirical cumulative distribu-
tion functions (ECDF) regardless of the location (one-point statistics), and
(ii) the gamma connectivity function (Renard and Allard, 2013) for test-
ing the spatial organization of the structures.

Two-point statistics like variograms or multiple-point statistics such
as spatial cumulants (Dimitrakopoulos et al., 2010) or statistics on pat-
terns could also be used. However two-point statistics are not sufficient
to characterize complex structures Guardiano and Srivastava, 1993;
Gómez-Hernández andWen, 1998. Multiple-point statistics are limited
by the dimensions and the geometries of the retained neighborhood as
well as by the necessity of discretizing continuous variables into cate-
gorical variables if the assessment is based on MPS histograms
(Boisvert et al., 2010). Themain reasonwhywe use the gamma connec-
tivity function is that the DEM simulations are intended to be used for
solute transport and groundwater flow simulations. In this case, the re-
production of the connectivity patterns is crucial (Renard, 2007). More-
over, the connectivity function provides a global measure for the entire
domain, and it can be computed over a continuous field such as the el-
evation in meters for instance.

The validation is performed for the two following cases. The initial
topography simulations presented in Section 4.2 will be referred to as
case (A). In this case, 100 realizations obtained with the same fully in-
formed auxiliary variables are considered; the centerline and the
edges are fixed for all the realizations. The successive topography simu-
lations presented in Section 4.3 will be referred to as case (B). In that
case, 100 realizations represent 100 successive time steps, and therefore
have different fully informed auxiliary variables as the centerline
evolves at each time step.
5.1. Empirical cumulative distribution function (ECDF)

To assess the quality of simulations from a one-point statistics point
of view, we compare the elevation variable ECDF of the TIs in blackwith
those of the realizations in gray in Fig. 10.
B1 C1

B2 C2

lines A1 at time step 1 and A2 at time step 2; distance to edges B1 at time step 1 and B2 at



Table 2
DS algorithm parameters for successive topography simulations.

Parameters Value

Homothety None
Rotation None
Search neighborhood 30 pixels × 15 pixels
Maximum number of neighboring nodes 20 for distance variables

30 for elevation variables
Maximum density of neighboring nodes 0.1 for auxiliary variables

1.0 for the simulated variable
Type of acceptance distance L − 1
Distance acceptance threshold 0.2 for distance auxiliary variables

0.15 for the elevation auxiliary variable
0.05 for the simulated variable

Maximum scanning fraction for each TI 0.7
Post-processing None
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The first thing to notice is that in the TIs, the ECDFs are close but not
identical for the four available time steps. These differences can be
explained because the centerlines are slightly different, which induces
a different distribution of the nonstationarities. Another reason is that
these time steps are part of some cycles in the evolution of the braided
river: the topography is slightly but constantly eroded between two
floods, but each flood event is a way of resetting the topography distri-
bution (Lane et al., 2003).

Seemingly the ECDFs are better reproduced in case (B) than in case
(A). The main reason for it, again, is a difference in the localization of
the nonstationarities. As in case (A), the centerline is the same for the
100 realizations, it does not offer as much exploration possibilities in
the TIs as in case (B) where the centerlines are different.

5.2. Gamma connectivity indicators

As previously discussed, the gamma connectivity function defined
by Renard and Allard (2013) is used to check the quality of the pattern
reproduction. Given an indicator variable I, its gamma-connectivity
measure, ΓI, is defined as the probability that two points belonging to
themedium I=1are connected. In our situation, this connectivitymea-
sure is computed on indicator variables obtained by thresholding the
simulated altitude field at several levels. Each threshold τ defines two
complementary zones: a lower level (zone 1) below the threshold and
Fig. 9. Realization of five successive topographies: (A) initial DEM at time step 1; (
an upper level (zone 2) above the threshold. The gamma connectivity,
Γτ,z, is then defined for each threshold level τ and zone z ∈ {1,2} as the
proportion of connected pairs of points belonging to z regarding the
number of pairs of points in z. Results are displayed in Fig. 11.

For both cases (A) and (B) as well as for both zones, the simulations
have a gamma connectivity function quite close to the reference gamma
connectivity functions of the TIs: the jumps in the connection propor-
tions take place at the same range of thresholded values and have the
same amplitude. The quality of the realizations in terms of connectivity
may then be considered as fulfilled.

6. Discussion and conclusion

Themodels presented above reproduce the spatial statistics of braid-
ed river elevation at successive time steps. The proposedmethod allows
the generation of models showing a realistic evolution of the bars and
channels, while it is not based on direct physical processes. We have
shown that with a relatively small training data set, the DS algorithm
successfully simulates the successive time-related DEMs, using exhaus-
tive auxiliary variables that help localize structural nonstationarities.
Variable transformation allows reducing the complexity of the problem
and gives satisfactory resultswithin really short computing times, espe-
cially when transforming a two-dimensional variable such as a center-
line or edges into a one-dimensional variable.

The statistical validation of themodels is based on the comparison of
connectivity functions as it is of main concern for flow and transport
modeling. A comparison of computing requirements and similar or
other statistics with cellular automata and event-based models could
also be performed for further performance testing and validation.

The successive DEMs are simulated under the assumption that the
simulated edges and the simulated centerlines are valid themselves.
The initial centerline simulation can be considered valid as it is simulat-
ed with a TI derived from braided river centerline interpretation. The
way of constructing the edges might seem artificial, but in real case
studies, edges can be easily delimited through aerial photography. Fur-
thermore, their evolution is usually much slower than the topography
or the centerlines. Similarly, theway centerline perturbations are creat-
ed seems artificial too. Here, as no additional information was available
from the field, randomperturbationswere used to simulate their evolu-
tion. Acquiring more field data about centerline evolution over decades
A

B

C

D

E

B), (C), (D), and (E) successive DEMs at time steps 2, 3, 4, and 5, respectively.
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would be possible through low resolution aerial photography time se-
ries, which are not as expensive as high resolution LIDAR data acquisi-
tion. Having these data, it would be straightforward to model their
evolution using the same statistical principle used here for the
topography.

Finally, the simulation of DEM time series opens awide range of per-
spectives in the fields of water-related risk management and braided
river aquifer modeling. Indeed such aquifers are built by successive ero-
sion and deposition processes affecting geological records and surface
morphology. Stacking up successive topographies could enable us to
mimic the erosion and deposition steps and allow simulating the main
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Fig. 11. Comparison of the gamma connectivities, function of the inundation threshold, between
levels.
internal structures of a braided river aquifer. Of course it would require
some scale adjustment as the scale characteristics of the site to model
might differ from the scale characteristics of the successive DEMs used
as TIs for the simulations. This work is going to be pursued in that
direction.
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