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Abstract Daily rainfall is a complex signal exhibiting

alternation of dry and wet states, seasonal fluctuations and

an irregular behavior at multiple scales that cannot be

preserved by stationary stochastic simulation models. In

this paper, we try to investigate some of the strategies

devoted to preserve these features by comparing two recent

algorithms for stochastic rainfall simulation: the first one is

the modified Markov model, belonging to the family of

Markov-chain based techniques, which introduces non-

stationarity in the chain parameters to preserve the long-

term behavior of rainfall. The second technique is direct

sampling, based on multiple-point statistics, which aims at

simulating a complex statistical structure by reproducing

the same data patterns found in a training data set. The two

techniques are compared by first simulating a synthetic

daily rainfall time-series showing a highly irregular alter-

nation of two regimes and then a real rainfall data set. This

comparison allows analyzing the efficiency of different

elements characterizing the two techniques, such as the

application of a variable time dependence, the adaptive

kernel smoothing or the use of low-frequency rainfall

covariates. The results suggest, under different data

availability scenarios, which of these elements are more

appropriate to represent the rainfall amount probability

distribution at different scales, the annual seasonality, the

dry-wet temporal pattern, and the persistence of the rainfall

events.

Keywords Rainfall � Simulation � Markov chain � Multiple

point statistics � Long-term � Time-series

1 Introduction

It has been observed that daily rainfall can have a chaotic

behavior (Basu and Andharia 1992; Jayawardena and Lai

1994; Sivakumar et al. 1998, 2001; Millan et al. 2011;

Jothiprakash and Fathima 2013; Sivakumar et al. 2014),

requiring high-order statistical or deterministic models

(Schertzer et al. 2002; Khan et al. 2005) to generate real-

istic simulations and reliable short- and long-term

predictions.

The Markov-chain (MC) family of techniques is one of

the most common stochastic approach to simulate daily

rainfall since the 60’s (Gabriel and Neumann 1962),

treating rainfall occurrence and amount separately as two

joint random variables. The simulation of both quantities is

usually sequential and conditional to recent past (low-order

time dependence). The drawback of classical daily Markov

models is the under-representation of the variance of

monthly and annual historical wet days and rainfall totals

(Buishand 1978; Wilks 1989), an issue known as overdis-

persion. Even the use of higher-order dependence under-

estimates higher time-scale variances (Katz and Parlange

1998), while dramatically increasing the number of

parameters. A key improvement has been brought to the

latest generation of MC based algorithms, introducing non-
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stationary parameters consistent with the underlying recent

past variations. In particular, the daily rainfall occurrence

probability is conditioned using either exogenous climatic

variables, for example large-scale atmospheric indicators

(Hay et al. 1991; Bardossy and Plate 1992; Katz and Par-

lange 1993; Woolhiser et al. 1993; Hughes and Guttorp

1994; Wallis and Griffiths 1997; Wilby 1998; Kiely et al.

1998; Hughes et al. 1999; Buishand and Brandsma 2001),

lower-frequency daily rainfall covariates (Wilks 1989;

Briggs and Wilks 1996; Jones and Thornton 1997; Katz

and Zheng 1999) or indexes based on the recent past

rainfall behavior (Harrold et al. 2003a, b; Mehrotra and

Sharma 2007a, b) to simulate the low-frequency fluctua-

tions observed in the training data set. An alternative

strategy allowing the preservation of the mean and variance

at multiple scales is model nesting (Wang and Nathan

2002; Srikanthan 2004, 2005; Srikanthan and Pegram

2009), which involves the correction of the generated daily

rainfall using a multiplicative factor to compensate the

low-order moments bias at the monthly and annual scales.

In this paper, we compare two of the few techniques

proposed in the literature that can preserve rainfall statistics

up to the decennial scale without any additional informa-

tion apart from the historical daily rainfall time-series. The

first one, representative of the latest generation of MC

based algorithms, is the modified Markov model (Mehrotra

and Sharma 2007a; Mehrotra et al. 2015), which conditions

the Markov chain parameters on the number of past wet

days to impart the low frequency fluctuations. The second

one is direct sampling (Mariethoz et al. 2010), belonging to

multiple-point statistics (MPS), a family of geostatistical

techniques widely used in spatial data simulation (Guar-

diano and Srivastava 1993; Strebelle 2002; Zhang et al.

2006; Arpat and Caers 2007; Honarkhah and Caers 2010;

Straubhaar et al. 2011; Tahmasebi et al. 2012; Straubhaar

et al. 2016). MPS algorithms are based on the concept of

training data set (or training image, TI): a data set repre-

sentative of the simulated variable used to infer the

occurrence probability of each event conditionally on

multiple neighbor points. This high-order conditioning

allows respecting a complex covariance structure by

reproducing the same type of patterns as found in the TI at

multiple scales. The direct sampling algorithm takes this

principle further: instead of defining a conditional pdf, the

simulation is generated by sampling with replacement the

TI where a pattern similar to the conditioning data is found.

MPS has already been successfully applied to the simula-

tion of spatial rainfall occurrence patterns (Wojcik et al.

2009). Direct sampling has been tested as a rainfall time-

series generator on data sets from different climate settings

(Oriani et al. 2014) and has shown to be a relatively simple

and efficient tool to simulate daily rainfall without the need

of calibration. On the other hand, the modified Markov

model, expressing a non-stationary Markovian dependence,

is able to preserve the probability distribution at higher

scales. These are related to the low-frequency indicators

included in the algorithm formulation (Mehrotra and

Sharma 2007a).

In the mentioned papers, both techniques have been

tested on the simulation of rainfall data presenting a sta-

tionary seasonality and inter-annual fluctuations. Never-

theless, recent studies confirm that irregular seasonality and

non-stationary behavior at different scales are observed in

reality. For example, irregular rainfall patterns for different

climate types (Garcia-Barron et al. 2011; Kelley 2014;

Elsanabary et al. 2014), seasonal anomalies correlated to

atmospheric circulation indexes (Munoz-Diaz and Rodrigo

2003; Chou et al. 2003; Trigo et al. 2005; Feng and

ChangZheng 2008; Zanchettin et al. 2008) and highly

variable occurrence of storms (Andrade et al. 2008) are

observed. In these cases, a stationary model adapted to

different periods of the year is not sufficient to correctly

represent this complexity. The two considered techniques

are based on multiple statistical principles: the Markov-

chain temporal dependence, the low-frequency indicators as

conditioning variables, the variable kernel estimation

technique for the conditional rainfall distribution, the non-

parametric resampling with adaptive conditional neigh-

borhood, and the random versus linear simulation path. The

aim of this paper is to analyze the capability of these dif-

ferent elements to preserve a highly variable spell length

and regime pattern, the rainfall amount distribution, and the

storm persistence at different temporal scales. In order to

make the analysis relevant for application, different data

availability scenarios have been considered. Both tech-

niques are tested first on the simulation of a synthetic signal

composed of an irregular alternation of two regimes, each of

which shows a specific Markovian dependence and an

extremely variable spell duration (101–103 days). This

synthetic model presents a prior statistical structure known

precisely, but used only in the validation phase. This allows

testing the efficiency of both techniques in simulating: (1)

the particular statistical signature of two different rainfall

regimes, (2) their irregular alternation and (3) the asymp-

totic behavior of the simulation under different data avail-

ability conditions. In a second step, the two algorithms are

compared on the simulation of the Sydney daily rainfall

time-series: using a limited fraction of the data to train the

models, this exercise allows testing the ability to preserve

the time-dependence structure at different scales and to

estimate the long-term behavior up to 150 years on a real

case study. This analysis provide information to guide the

design of an appropriate technique for specific applications

and give insights about possible methodological

improvements.
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The paper is organized as follows: in Sect. 2 the two

techniques are described as well as the experiments design

and the method of evaluation, the statistical analysis of the

simulated time-series is presented in Sect. 3 for the syn-

thetic experiment and in Sect. 4 for the Sydney time-series

experiment. Section 5 is dedicated to the discussion of the

results and Sect. 6 to the conclusions.

2 Methodology

In this section, a description the considered simulation

techniques is given, focusing on the distinctive elements of

each one. Then, the used time-series and the methods of

evaluation are presented in details.

2.1 The modified Markov model

In the fashion of the MC based techniques, the modified

Markov model (MMM) is split into two sub-models: for

rainfall occurrence Rt and amount Zt respectively at time t,

following a sequential simulation path generating each

subsequent day from the beginning to the end of the time-

series. Rt is simulated using a variation of an order-1

Markov model where the probability of having a wet day

PðRt ¼ 1Þ is conditioned by the previous day state Rt�1 and

a predictor variable vector Xt, expressing long-term vari-

ability and persistence. The authors of (Mehrotra and

Sharma 2007a) identified two variables composing Xt

appropriate for daily rainfall simulation over Sydney,

Australia: the 30- and 365-day wetness indexes (30W and

365W), i.e. the number of wet days found on the past 30-

and 365-day running window, allowing conditioning on

monthly and annual fluctuations. The estimation of the

conditional rainfall occurrence probability PðRt ¼
1jRt�1;XtÞ is based on the hypothesis of normality on the

joint probability distribution of Xt, that was found to pro-

vide good results over the study region and for the chosen

wetness indexes.

The occurrence time-series Rt is simulated with the

following procedure:

1. For all calendar days of the year, calculate, on the

historical record, the transition probability of the

standard first-order Markov model using the observa-

tions falling within the moving window of 31 days

centred on each day. Denote the transition probability

as p11 ¼ PðRt ¼ 1jRt�1 ¼ 1Þ for previous day being

wet and p10 ¼ PðRt ¼ 1jRt�1 ¼ 0Þ for previous day

being dry.

2. Also estimate the mean, variance and covariance of the

higher time scale predictor variables (the elements of

Xt) separately for occasions when the current day is

wet/dry and the previous day is wet/dry.

3. To simulate Rt, consider Rt�1, ascertain the appropriate

critical transition probability to the day t based on the

value of Rt�1. If Rt�1 ¼ 1 (wet), assign the critical

transition probability p as p11; otherwise, assign p10.

4. Calculate the values of 30W and 365W for t from the

available generated sequence. If t is at the beginning of

the simulation, without enough days already generated,

randomly pick the matching calendar day of a random

year from the historical record and calculate the

historical 30W and 365W.

5. Modify the critical transition probability p of step 3

using the following equation:

p¼PðRt¼1jRt�1¼ i;XtÞ

¼p1i

1

detðV1;iÞ1=2
exp �1

2
ðXt�l1;iÞV�1

1;i ðXt�l1;iÞ0
n o

P
j¼0;1

1

detðVj;iÞ1=2
exp �1

2
ðXt�lj;iÞV�1

j;i ðXt�lj;iÞ0
n o

pji

ð1Þ

where Xt is the predictor set for Rt, l1;i parameters

represent the mean EðXtjRt ¼ 1;Rt�1 ¼ iÞ and V1;i is

the corresponding variance-covariance matrix esti-

mated on the historical record. Similarly, l0;i and V1;i

represent, respectively, the mean vector and the vari-

ance-covariance matrix of X when Rt�1 ¼ i, and

Rt ¼ 0. p1i parameters are the baseline transition

probabilities of the first-order Markov model defined

by PðRt ¼ 1jRt�1 ¼ iÞ and detð�Þ is the determinant

operation.

6. Compare p with the random variate ut generated from

the standard uniform distribution. If ut � p, assign

rainfall occurrence Rt ¼ 1; otherwise, Rt ¼ 0.

7. Move to the next date in the generated sequence and

repeat steps 3–6 until the desired length of generated

sequence is obtained. The underlying hypothesis of

normality regarding the joint probability distribution of

Xt holds in general for the chosen wetness indexes

applied to daily rainfall.

The amount Zt is simulated on wet days of the generated

Rt sequence using the kernel density estimation technique

proposed in Sharma et al. (1997). For each Zt, a conditional

probability density function f ðZtjCtÞ conditioned on a

predictor variable vector Ct is used. For example, Ct can be

composed by the rainfall amount on previous days or by

some other correlated variables. In this study, Ct consists of

the rainfall amount on the previous day (see Sects. 2.4,

2.6). The density f ðZtjCtÞ is built as a sum of weighted

kernels, each one associated to an historical datum Zi. In

this case, a Gaussian kernel with with the adaptive band-

width estimation procedure, as mentioned in Scott (1992),
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is used. This gives an appropriate estimation of the con-

ditional probability density function, especially at the

lower boundary of the distribution. As kernel density

estimate can lead to rainfall amounts that are less than the

threshold amount of 0.3 mm (the minimum non-zero

rainfall amount considered in the algorithm), a minimum

rainfall amount of 0.3 mm is assigned to such days, with-

out any observed effective bias in the distribution amount.

An in-depth description of the MMM algorithm can be

found in (Mehrotra and Sharma 2007b).

2.2 The direct sampling technique

Direct sampling (DS) is a non-parametric resampling

technique from the MPS family, based on a pattern-simi-

larity rule. In this paper, we use the DeeSse implementation

(Straubhaar 2011) which allows generating the rainfall

occurrence and amount at the same time. The simulation

follows a random path which visits a time referenced

empty vector t called simulation grid (SG), becoming

progressively populated until rainfall at all time steps is

simulated. The target variable Z is generated by sampling

with replacement of the training data set (TI) composed of

historical data. The sampled data are chosen conditionally

to a data neighborhood varying throughout the course of

the simulation. The DS workflow is the following:

1. Select a random position xt of the SG that has not yet

been simulated.

2. To simulate the rainfall amount (and occurrence)

ZðxtÞ: retrieve a data event dðxtÞ, i.e. a group of

already simulated or given neighbours of xt, according

to a fixed time interval t � R. dðxtÞ consists of at most

the N informed time steps closest to xt inside the

mentioned interval. The size and configuration of dðxtÞ
is therefore limited by the user-defined parameters

N and R, and the number of already informed

neighbours inside the considered window.

3. Visit a random time-step yi in the TI, and retrieve the

corresponding data event dðyiÞ.
4. Compute a distance DðdðxtÞ; dðyiÞÞ, i.e. a measure of

dissimilarity between the two data events. For cate-

gorical variables (e.g. the dry/wet rainfall sequence)

the proportion of non-matching elements of dð�Þ is

used as criterion, while for continuous variables the

choice is the mean absolute error.

5. If DðdðxtÞ; dðyiÞÞ is smaller than a fixed threshold T,

assign the value of ZðyiÞ to ZðxtÞ. Otherwise repeat

from step 3–5 until the value is assigned or a

prescribed TI fraction F has been scanned. T is

expressed as a fraction of the total variation shown

by Z in the TI. For example, T ¼ 0:05 allows

DðdðxtÞ; dðyiÞÞ up to 5% of this total variation. In case

of a categorical variable, T ¼ 0:05 allows a mismatch

between dðxtÞ and dðyiÞ for 5% of the composing

neighbours.

6. If the prescribed TI fraction F has been covered by the

scan, assign to ZðxtÞ the scanned datum Zðyi�Þ that

minimizes D.

7. Repeat the whole procedure until all the SG is

informed.

The parameters of the model, related to the size of the

data pattern used for conditioning, are: (1) the maximum

scanned TI fraction F 2 ð0; 1�, (2) the search neighborhood

radius R, i.e. the maximum time lag considered to look for

conditioning neighbors (t � R), (3) the maximum number

of considered neighbors N inside t � R, and (4) the distance

threshold T 2 ð0; 1�, used to accept or reject a conditioning

data pattern found in the TI. The same process is applicable

to a multivariate data set, where a vector Zt, composed of

rainfall amount and some auxiliary variables, is simulated

instead. The parameters Nk, Rk and Tk allow defining dif-

ferent conditioning pattern dimensions and acceptance

threshold for each k-th variable. For more details on the DS

algorithm applied to rainfall time-series, see (Oriani et al.

2014).

2.3 Fixed versus variable time dependence

In this section, we emphasize the different ways in which

the two algorithms deal with time dependence (Fig. 1),

since this is a crucial aspect regarding the simulation of

rainfall heterogeneity at multiple scales. Both techniques

operate in a multivariate framework where it is possible to

have conditioning variables describing large scale fluctua-

tions, e.g. the wetness indexes (see Sect. 2.1), contained in

the predictor variable vectors Xt for MMM and among the

auxiliary variables for DS. This helps the preservation of

the distribution at larger scales. On both the target and

these conditioning variables, MMM applies a fixed time

dependence, meaning that the conditioning time lags are

rigorously defined by the order of the Markov chain and

remain constant throughout the course of the simulation.

Conversely, DS makes use of a variable conditioning pat-

tern: following a random simulation path where the SG

becomes more and more populated in a random order. The

conditioning neighborhood changes progressively from a

large-scale, sparse-neighbors to a small-scale, close-

neighbors pattern by considering the closest N informed

time steps inside the search window of length 2Rþ 1. For

this reason, the conditioning time lags vary for each sim-

ulated datum and they cannot be defined a priori, but the

order of the conditioning is limited by the parametrization

of the search window. On the other hand, MMM is focused

on a specific choice of long-term statistical indicators
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contained in the vector Xt and on the order-1 Markov-chain

time dependence (see Sect. 2.1).

It is worth noting that, in case of missing data simulation

inside a given time-series (a problem not treated in this

paper), DS treats the already informed time-series portions

as conditioning data as well as the values generated during

the simulation. This allows dealing with the problem of

missing data with various gaps sizes in a simple and fairly

robust way. Conversely, a Markov chain technique would

require a modification of the algorithm to preserve the

correlation with the sparse data that already populate the

time-series.

2.4 Synthetic experiment

In order to compare the performance of the considered

methods in capturing the complex properties of a rainfall

signal, a synthetic time-series Ut is generated and used as a

reference. The desired properties of this time-series are that

it shows a non-stationary behavior, presenting two regime

types with different autocorrelation properties and variable

spell duration (see Sect. 2.5). Here the term non-station-

arity indicates that the rainfall signal probability distribu-

tion and covariance function change as a function of time.

Random samples from Ut are used as training data set. The

two techniques are tested on four different simulation

groups (Table 1), each of which considers a different

training data amount: 1 million, 10,000, 1000 and

100 days. This allows analyzing the algorithms’ perfor-

mance under different data availability conditions. The

experiment for groups 2, 3 and 4 are repeated 3000 times,

each time with a different random sample of the reference

as training data to assure the absence of any bias due to the

use of a specific sample. A preliminary convergence test on

the number of the training data used (not shown here)

showed that this number of realizations is sufficient to

cover exhaustively the variability of the reference time-

series. Conversely, for the first group, 10 realizations are

generated using the whole reference time-series as training

data set. For all groups, the simulated time-series are

1-million-day long as the reference signal. The arbitrary

choice of the realizations number for the first group is

justified by the fact that, using the whole reference as TI

and being of the same size, the realizations do not show a

significant statistical variability.

The two algorithms use the same training data and the

same auxiliary variables used in real application, apart

from the theoretical variables that describe the position of

the day in the year in the standard direct sampling setup for

rainfall. These are not used here since the regular annual

seasonality is not present in the reference. As shown in

Table 1, the predictor variable vector Xt used in the MMM

occurrence model is composed of the 30- and 365-day

wetness indexes (30W and 365W). In the MMM amount

model, the conditioning vector Ct ¼ Zt�1 (i.e. the gener-

ated rainfall amount in the previous day) is used, therefore

applying an order-1 dependence. The Gaussian kernel with

adaptive bandwidth is also used as explained in Sect. 2.1.

Regarding the DS technique, a multivariate TI is used

including the following variables: (1) 365W, (2) dry/wet

sequence (dw) (i.e. a categorical variable indicating the

position of a day inside the rainfall pattern, taking on the

labels: 0—dry day, 1—wet day with wet day either side,

2—solitary wet day, and 3—wet day at the beginning or at

the end of a wet spell) and (3) rainfall amount (mm). The

DS parameters used with each variable are shown in

Table 2. For example, for the variable ‘‘rainfall’’ R ¼ 5000

and N ¼ 21, meaning that the pattern considered for con-

ditioning will be composed of at most the 21 already

simulated data closest to the time step being simulated, at a

Fig. 1 Comparison of the two considered simulation techniques: the

MMM, using a linear simulation path together with an order-1 time

dependence, and DS, using a random simulation path and a variable

time dependence. The arrow indicates the time step being simulated,

the black time steps are already simulated and the numbered ones are

used for conditioning. For DS, the sketch illustrates the behavior

using N ¼ 4 and R ¼ 6, the search window being represented by the

dashed line
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time distance of at maximum 5000 days (about 14 years)

in the past or future. Moreover, the distance threshold value

T ¼ 0:05, used to compare patterns between the TI and the

SG (see Sect. 2.2), corresponds to 5% of the total variation

of the simulated variable.

Note that 30W is only used with DS in the last simula-

tion group, where the 100-day TI do not allow the com-

putation of 365W. In the other groups the use of 30W is not

needed, since the high-order conditioning applied at the

daily scale is generally sufficient to preserve the fluctua-

tions at the monthly scale.

2.5 The synthetic reference signal

The rainfall time-series Ut used as reference for the

experiment described in Sect. 2.4 is a synthetic daily time-

series generated with an occurrence model composed of

two alternating regimes showing a different Markovian

time dependence structure. The transition from one regime

to the other depends on the sum of wet days in the previous

200 days, creating an irregular regime alternation. The

period length of 200 days has been arbitrarily chosen,

being comparable to the duration of the humid season in

several observed climates. This stochastic model mimics a

dynamical system unpredictable and highly sensitive to

initial conditions, reflecting a complexity similar to the

rainfall heterogeneity found in some real cases (see

Sect. 1). Using a synthetic model allows disposing of a

very long reference time-series for which the exact prior

structure is known in the validation phase. This way, it is

possible to illustrate how each of the two considered

techniques can detect and simulate a non-stationary time

dependence structure and preserve its asymptotic behavior.

To initialize the model, the rainfall occurrence and

amount for the first 200 days is generated using the model

Zt ¼ 10NtINt [ 1 where Nt is a random number from the

standard normal distribution and INt [ 1 ¼ 1 if Nt [ 1 and 0

otherwise. For the successive time steps, the occurrence Ut

is simulated by following two possible regimes. In regime

A the probability of having a wet day is conditioned by the

MC rule:

PðUt ¼ 1 j Ut�l1 ;Ut�l2Þ ð2Þ

with the following conditional probability values:

PðUt ¼ 1 j Ut�l1 ¼ 0;Ut�l2 ¼ 0Þ ¼ l5

PðUt ¼ 1 j Ut�l1 ¼ 0;Ut�l2 ¼ 1Þ ¼ l6

PðUt ¼ 1 j Ut�l1 ¼ 1;Ut�l2 ¼ 0Þ ¼ l7

PðUt ¼ 1 j Ut�l1 ¼ 1;Ut�l2 ¼ 1Þ ¼ l8

ð3Þ

where l ¼ l1; l2. . .; l10; is the parameter vector of the model.

Regime A is active if the sum of Ut in the previous

200 days meets the condition:

X200
i¼1

Ut�i [ l3 ð4Þ

otherwise regime B takes place, with the rule:

PðUt ¼ 1 j Ut�l4Þ ð5Þ

with:

PðUt ¼ 1 j Ut�l4 ¼ 1Þ ¼ l9

PðUt ¼ 1 j Ut�l4 ¼ 0Þ ¼ l10
ð6Þ

In order to obtain a reference time-series with a non-

stationary and highly irregular statistical structure, the

parameters of the model described in Eqs. 2–6 are adjusted

using the optimization procedure described in the follow-

ing. For each combination of l, a 1-million long time-series

Ut is generated. The parameter vector l is calibrated such

Table 1 Summary of the training data sets and auxiliary variables used in the setup of the two algorithms

Group Training data

amount (days)

Number of data

sets used

Realizations

per data set

MMM setup DS setup

1 1 million 1 (reference) 10 Xt = [30W, 365W], Ct ¼ Zt�1 365W, dw, rainfall

2 10,000 3000 1 Xt ¼ ½30W ; 365W �, Ct ¼ Zt�1 365W, dw, rainfall

3 1000 3000 1 Xt ¼ ½30W ; 365W �, Ct ¼ Zt�1 365W, dw, rainfall

4 100 3000 1 Xt ¼ 30W , Ct ¼ Zt�1 30W, dw, rainfall

The auxiliary variables listed are: the 30- and 365-day wetness indexes (30W and 365W), the previous day simulated rainfall amount Zt�1, the

dry/wet sequence (dw), the daily historical rainfall amount (rainfall). In the MMM algorithm, the vectors Xt and Ct condition the rainfall

occurrence and amount simulation respectively

Table 2 The multivariate setup

used with DS in the synthetic

data experiment

Variable R N T

(1) 365W 5000 21 0.05

(2) dw 10 5 0.05

(3) rainfall 5000 21 0.05

The parameters are: amplitude

of the search radius R (days),

maximum number of neighbors

considered N (days) and dis-

tance threshold T (-)
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that Ut presents two regimes with a large variability in their

spell duration and a different time dependence structure.

To contain the computational burden, the following ele-

ments of l are arbitrarily defined: l4 ¼ 1, l6 ¼ 0:51,

l7 ¼ 0:45, l8 ¼ 0:64, l9 ¼ 0:65, while the others are

numerically calibrated to minimize the following objective

function:

where ZA and ZB are the portions of Ut belonging to the

regime A and B respectively, acð�Þ is the lag-1 autocorre-

lation coefficient and �S is the mean length of the time-

series segments belonging to one regime. According to

Eq. 7, low values of the objective function OðlÞ correspond
to a reference time-series presenting one or both of the

following features: (1) a large difference between the lag-1

autocorrelation index of the two regimes and (2) a large

difference in the their mean spell length. This allows set-

ting a up the parameters l such that the two regimes present

a sufficient variability in the spell length (creating an

irregular regime alternation) and a sufficiently different

time-dependence structure. Some arbitrary constraints to

the optimization are imposed by accepting a solution only

if 10\�SA\70 and 0\�SB\70, otherwise it is rejected by

putting OðlÞ ¼ 0. This is necessary to avoid an excessive

spell duration, assuring a sufficiently repeated regime

change. Such numerical optimization, constituting a mixed

integer problem, is solved with a genetic algorithm

(Chipperfield et al. 1994), which is often used to find the

minimum of highly non-linear or non-continuous func-

tions. Even if it is not assured that, for a finite time-series

Ut, the algorithm can find the global minimum in a rea-

sonable amount of iterations, it has been observed that, for

this problem, limiting the optimization workflow to 200

iterations is sufficient to obtain an appropriate setup of the

reference model. The resulting parameter values l1 ¼ 6,

l2 ¼ 12, l3 ¼ 95, l5 ¼ 0:30, l10 ¼ 0:31 lead to a similar

wetness level for the two regimes (PðUt ¼ 1Þ � 0:46) but a

different time dependence: regime B presents a higher day-

to-day persistence since Ut is correlated to Ut�1, while, in

regime A, Ut is correlated to lags Ut�6 and Ut�12, resulting

in a more discontinuous dry/wet pattern. Moreover, the

spell duration obtained for both regimes varies from a few

days to about 1500 days (see Fig. 4). A random sample of

the reference is shown in Fig. 2.

The rainfall amount on wet days of both regimes (his-

togram in Fig. 2) is simulated by randomly sampling the

log-normal distribution lnNð2:74; 0:34Þ, which is fitted on

the starting sequence (first 200 days, then discarded). A

time-series of 1 million days is so obtained by using the

presented model and considered as the reference for the

synthetic test.

2.6 Real data experiment

In this second experiment, the two techniques are compared

on the simulation of the daily rainfall time-series from the

Observatory Hill station, Sydney (Australian Bureau of

Meteorology). This data set has been selected for this study

since the region presents a temperate climate with intense

rainfall events related to extra-tropical cyclones. Moreover,

the influence of the Southern Oscillation (ENSO), causes

extreme droughts and floods, with a highly variable dry/wet

pattern. Finally, the historical record of the chosen station

allows observing with continuity the long-term behavior for

a period of about 150 years. As summarized in Table 3, the

first time-series portion of about 30 years is used as training

data set and initial conditioning data to simulate the

remaining period of about 125 years. An ensemble of 100

realizations is generated with both techniques.

The two algorithms use the canonical setup previously

applied for real rainfall data sets: in addition to the auxiliary

variables used in the previous experiment, MMM includes a

1200-daywetness index (1200W) to condition the simulation

upon long-term fluctuations. Conversely, DS, following the

setup proposed in Oriani et al. (2014), makes use of the 365

moving average (365MA) instead of 365W. This setup also

includes two periodic triangular functions (tr1 and tr2),

based on the day of the year, to describe the annual cycle, and

the 2-day moving sum (2MS) to help respecting the lag-1

autocorrelation. Since tr1 and tr2 are theoretical and known a

priori, they are used in the simulation as conditional data.

2.7 Evaluation

For the synthetic experiment, different statistical indica-

tors, used to analyze the results, describe the overall time-

series as well as the specific statistical signature of the two

regimes. The purpose of studying the regime-specific

statistics allows verifying whether the specific statistical

signature of each regime is detected and preserved in the

OðlÞ ¼ �10jacðZAÞ � acðZBÞj � j�SA � �SBj if 10\�SA\70 and 0\�SB\70

0 otherwise

�
ð7Þ
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simulation. The probability distribution of daily rainfall

amount on wet days, the annual and decennial amount of

the total signal are compared using qqplots. The two-

regime sequence is then reconstructed inside each simu-

lated time-series with the original criterion used to generate

the reference: the number of wet days over the previous

200 days. This allows separating the two regimes inside the

simulations, to study their alternation and their statistics

separately. A qqplot is used to compare the quantiles of the

two-regime spell length distribution and the dry/wet spell

distribution. To verify the accuracy in the preservation of

the time dependence, the sample autocorrelation function

(ACF) is computed separately for both regimes as well as

on the total signal. Finally, the minimum moving average

(MMA), i.e. the minimum value obtained from the total

daily signal by computing the average on different moving

window sizes, is used to compare the simulation of the

long-term behavior for up to the centennial scale.

For the real data experiment, the same statistics are used,

except for the two-regime analysis, replaced by a group of

indicators describing the annual seasonality, namely: the

monthly probability of occurrence, mean, standard deviation

of the rainfall amount, and the monthly ACF.

3 Synthetic experiment results

The results of the synthetic experiment (described in

Sect. 2.4) are shown in the following and a summary is

given in ‘‘Appendix’’.

3.1 Multiple scale distribution

The comparison with the reference distribution for each

simulation group and technique is shown in Fig. 3. At the

daily scale and using the whole reference as training data

set (1 million-day group), both techniques can accurately

preserve the marginal distribution: the realizations median

shows virtually no bias and the narrow region between the

05–95 % of the simulations indicates very low uncertainty.

Since the reference exhibits a skewed distribution (see

Fig. 2), training data sets smaller than the reference lack

Fig. 2 Rainfall amount

histogram and a random sample

of the synthetic reference signal,

with alternating regimes:

A = lag-6 and -12 Markov

chain and B = lag-1 Markov

chain. The rainfall amount on

all rainy days have been

generated from the same log-

normal probability distribution

Table 3 Summary of the data set and the algorithm setups used in the

applied experiment. The auxiliary variables listed are: the 30-, 365-

and 1200-day wetness indexes (30W, 365W, and 1200W), the previous

day simulated rainfall amount Zt�1, the 365-day moving average

(365MA), the 2-day moving sum (2MS), the annual seasonality

triangular functions (tr1 and tr2), the dry/wet sequence (dw), the daily

historical rainfall amount (rainfall). In the MMM algorithm, the

vectors Xt and Ct condition the rainfall occurrence and amount

simulation respectively

Training data Reference data

Sydney observatory hill Sydney observatory hill

01.01.1858–21.07.1889 (	 30 years) 22.07.1889–13.10.2015 (	 125 years)

MMM setup DS setup

Xt ¼ ½30W; 365W ; 1200W �, Ct ¼ Zt�1 365MA, 2MS, tr1, tr2, dw, rainfall
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information about the distribution tail, as indicated by a

progressive under-representation of the extremes in the

other simulation groups. MMM, based on conditional

kernel density estimation, resolves in part this issue by

extrapolating extreme values not present in the training

data set and approaching the reference distribution even for

extremely small available data amounts (Fig. 3a). Con-

versely, DS, being based on resampling, is limited to the

range of values found in the TI and cannot represent

properly the asymptotic behavior at the daily scale if the TI

is not sufficiently informative. The truncation of the dis-

tribution at a series of specific values visible in the qqplot

clearly illustrates this phenomenon (Fig. 3b).

This limitation is not observed for larger temporal

scales, for which both techniques can preserve an unbiased

distribution up to the decennial rainfall, showing a modest

underestimation of the extremes only when using a

100-day training data set (Fig. 3c–f). This result is

achieved with the help of the wetness indexes, tracking the

low-frequency fluctuations (see Sect. 2). Both techniques

(a) (b)

(c) (d)

(e) (f)

Fig. 3 qqplots of the empirical

probability rainfall amount

distributions (mm), showing for

each quantile: the median of the

realizations (dots), 5th and 95th

percentiles (dashed lines). The

bisector (solid straight line)

indicates the exact quantile

match
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have a comparable performance: we observe only a slight

tendency to overestimate low annual rainfall values by

MMM when using large training data sets. DS is able to re-

aggregate the sampled TI values in different ways and

correctly explore the uncertainty at large scales. Never-

theless, with both techniques, this uncertainty is large when

extremely limited training data sets are used: the 05–95

percentile boundaries of the realizations are very wide

when using 100-day or 1000-day training data groups,

meaning that the used training data sets of this size present

a variable statistical content. This result follows our

expectation: a longer historical record is needed to repre-

sent the large scale variability and better characterize the

uncertainty of the underlying model.

3.2 Regime alternation

As mentioned in Sect. 2.7, the alternation between regimes

A and B is reconstructed inside the generated time-series and

the spell length distribution of each one is shown in Fig. 4.

Even if the reference model is calibrated to assure a con-

tinuous regime alternation, the very skewed spell distribu-

tion still suggests an irregular behavior, with a maximum

spell duration up to about 1500 days for both regimes. The

region delimited by the 05–95 % of the simulations

indicates that the uncertainty increases when reducing the

amount of training data. The 100-day group constitutes the

degenerate case for which the regime transition rule, based

on the 200-day wetness index, is not observable and the

regime alternation cannot be exhaustively represented. In

fact, the 05–95 percentile boundaries (not visible for this

group) correspond to null and infinite spell duration

respectively, meaning that the whole generated time-series

belongs to one single regime. For large training data sets (1

million- and 10,000-day groups) the distribution is preserved

fairly well by both techniques, with a modest under-repre-

sentation of the very upper quantiles for regime A (Fig. 4a,

b). The main difference in their performance is observed in

the 1000-day group, where MMM shows a negative bias

larger than the one obtained in the 100-day group (Fig. 4a, c).

This may indicate that a larger data set is needed to calibrate

the parameters of MMM using the 30- and 365-day wetness

indexes. On the contrary, using the 30-day wetness index

only and a 100-day training data set results in a smaller bias

but larger uncertainty. Representativeness of the training

data set plays again a fundamental role: since no information

about the irregular regime alternation is contained in the

prior structure of both simulation techniques, the distribution

is simulated accurately only when the training data set con-

tains a sufficient repetition of the two-regime transition.

(a) (b)

(c) (d)

Fig. 4 qqplots of the two

regime spell-length distributions

(days) for each simulation group

(different colors), showing for

each quantile: the median of the

realizations (dots), 5th and 95th

percentiles (dashed lines). The

bisector (solid straight line)

indicates the exact quantile

match
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3.3 Time dependence structure

The specific short-term time dependence structure of the

total signal as well as the two separate regimes are ana-

lyzed using the sample autocorrelation function (ACF,

Fig. 5). According to its occurrence model, the reference

signal shows a distinctive autocorrelation level (red line)

for lags 6 and 12 in regime A and for lag 1 in regime B,

with the total signal presenting a mixture of both.

The two simulation techniques show different behav-

iors: on the total signal, MMM simulates the lag-1

dependence correctly, but does not preserve the lag-6 and

lag-12 autocorrelation, with a subsequent underestimation

of the persistence (Fig. 5a). This is due to the fact that only

the lag-1 dependence is considered in the MMM occur-

rence model. For this reason, the model is weak to any

other time dependence observable in the training data.

Conversely, DS can preserve the whole time dependence

structure with no need for any prior information about it

(Fig. 5b). This is achieved by applying a random simula-

tion path and a variable conditioning pattern composed of

multiple neighbors (see Sect. 2.2). In other words, a vari-

able high-order time dependence is considered during the

simulation, which allows preserving on average the auto-

correlation at any lags. The advantage of this feature is that

complex non-linear time dependencies are simulated more

easily than using a parametric technique. Note that, for

highly autocorrelated signals, the autocorrelation is not

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Sample ACF of the total

signal and the two regimes for

each simulation group (different

colors). Median of the

realizations (solid lines), 5th

and 95th percentiles (dashed

lines). The red line indicates the

reference
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exactly preserved using DS. Even with the most appro-

priate setup, the resampling process adds a small noise to

the data, which is detectable on very smooth signals and

may need a post-processing treatment. In case of daily

rainfall this effect is negligible since the signal presents a

very low autocorrelation.

Both techniques fail in simulating the time dependence

for the two separate regimes. In particular, MMM always

preserves the lag-1 autocorrelation estimated from the total

training data set (Fig. 5c, e) and DS does the same with the

overall dependence structure (Fig. 5d, f). Thismeans that the

non-stationary time dependence linked to the regime alter-

nation cannot be automatically captured and preserved in the

simulation. Designing an ad-hoc model structure based on

the analysis of the training data set is therefore necessary

with both techniques in order to correctly simulate this fea-

ture. For example, information about the irregular regime

alternation can be incorporated in the DS setup using a dis-

crete auxiliary variable as it is done with the dry/wet

sequence (see Sect. 2.2). The mentioned variable would be

simulated together with the rainfall helping the simulation of

the two-regime alternation. Conversely, using a parametric

approach like MMM, a regime switch could be accommo-

dated in theMC structure as it has been done for the reference

signal generation (see Sect. 2.5). In both cases, the main

point is to catch the relevant non-stationary features from the

available data in a preliminary analysis, which may not be

straightforward in case of highly irregular fluctuations.

3.4 Dry/wet pattern and long-term behavior

The dry/wet spell length distribution of the total signal is

compared with the reference using qqplots (Fig. 6a–d).

When using large training data sets (1 million- and 10,000-

day groups), both techniques can preserve the dry/wet spell

distribution accurately. Reducing the available training

data, we observe in both cases a large uncertainty in the

upper quantiles, but DS tends to underestimate the extreme

dry and wet spells more than MMM. MMM preserves a

fairly accurate distribution of the simulation median.

The minimum moving average (MMA, Fig. 6e, f),

expressed as a function of different moving window lengths,

gives information about the accuracy in preserving the

variability of the signal at different scales. According to the

maximum dry spell length, the reference shows a zero-val-

uedMMAuntil about a 30-daymovingwindow length. Then

it progressively increases up to a rainfall amount of about

7 mm, showing little variation after the 12-years window

length. This suggests that the signal may present an effective

stationarity at the decennial scale. Both techniques preserve

the reference behavior quite accurately with a modest over-

estimation in the 100-day group. The performance of DS is

superior in case of large training data sets butMMM remains

more reliable in case of limited data availability.

4 Real data experiment results

In the following sections, the results about the Sydney daily

rainfall time-series simulation are presented. Each statisti-

cal indicator is computed on both the training (TI) and

simulated (MMM and DS) data: this way, it is possible to

link the simulation statistics to the ones of the TI used. It is

important to note that, since the TI time-series is shorter

than the reference (see Sect. 2.6), it also shows smaller

statistical variability. This allows analyzing the ability of

the algorithms to extrapolate the appropriate extremes for

the simulated time period. Moreover, the results show how

the variability at multiple scales is affected by the extrap-

olation of the daily extremes and data patterns.

4.1 Visual comparison

Figure 7 shows random 500-day samples from the data and

the simulations: the overall rainfall temporal structure

looks fairly similar between the data and the simulated

time-series for both techniques, as well as the covered

range of values and the frequency of the extremes.

4.2 Multiple scale rainfall distribution and spell

length

Figure 8 shows the qqplots used to compare the empirical

distribution of the rainfall amount and dry/wet spell length.

At the daily scale (Fig. 8a) the distribution is preserved by

both algorithms with an underrepresentation of the very

upper tail: while DS is strictly limited to the TI range,

MMM generates some higher value still underestimating

the maximum of about 300 mm observed in the reference.

At the annual scale (b), both algorithms can successfully

simulate the rainfall amount distribution, being able to

extrapolate extremes beyond the ones shown in the training

and reference data. At the decennial scale (c), the TI

underrepresents the extremes and shows a modest positive

bias compared to the reference. Conversely, both algo-

rithms can represent a larger variability than the reference

and the TI. While MMM simulation ensemble shows a

positive bias, the one from DS presents a central tendency

more in line with the reference distribution. Conversely,

the solitary wet day rainfall (d) is better represented by the

MMM simulation, while DS tends to overestimate the

maximum rainfall amount. Finally, the dry and wet spell

distributions are represented reasonably well by both

techniques, generating longer spells than the ones observed
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in the TI, but generally underestimating the extreme wet

spells of the reference.

4.3 Time dependence structure and long-term

behavior

Figure 9 shows some statistics about the annual seasonality, the

autocorrelation and the long-term behavior of the reference, TI

and simulated time-series.As shownby thewet-day occurrence

probability (Fig. 9a), the mean rainfall amount (b), and the wet

day standard deviation (c), the annual seasonality is preserved

reasonably well by both techniques, considering that the TI

(shown in the same figures) shows sometimes a significant bias

with respect to the reference. The long-term variability of the

time-series is accurately preserved by both algorithms, as

shownby theminimummoving average (d),with no significant

difference in their performance.The autocorrelation functionof

the signal, at the daily (e) and monthly (f) scales, is efficiently

preserved byMMM,whileDS shows amodest bias for the lag-

1 at both scales. The seasonal variation, also visible from the

monthly ACF, is represented reasonably well by both simula-

tion techniques.

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Top: qqplots of the dry

and wet spell length

distributions (days) for each

simulation group (different

colors), showing for each

quantile: the median of the

realizations (dots), 5th and 95th

percentiles (dashed lines). The

bisector (solid straight line)

indicates the exact quantile

match. Bottom: minimum

moving average (MMA) of the

rainfall amount (mm) for

different moving window

lengths (d—days, m—months,

y—years). Median of the

realizations (solid line), 5th and

95th percentiles (dashed lines)

and the reference (red line)
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5 Discussion

The first test presented in this paper is based on the simulation

of a synthetic daily rainfall time-series exhibiting an alter-

nation of two regimes. Each regime shows a specific time

dependence structure and an extremely variable regime spell

duration. The asymptotic behavior of the two techniques is

tested by generating a 1 million-day long reference and

considering a variable amount of training data.

The results show that both techniques can efficiently

preserve the rainfall amount distribution at the daily and

higher scales when the full 1-million-day reference is

available as a training data set. Reducing the available data

amount, MMM can extrapolate extreme rainfall amount

values by using the adaptive kernel and approach the ref-

erence distribution. DS, being based on resampling,

remains limited to the range of data found in the training

data set and thus underestimates the extremes. This con-

firms that a resampling technique without an innovation

stage of the sampled data, such as DS in its present form, is

not a suitable tool to model the asymptotic behavior of

rainfall at the daily scale. Nevertheless, as seen in the

second simulation experiment on the Sydney time-series,

an extrapolation method may also underrepresent the

extremes if the training data set used is not sufficiently

informative. For larger temporal scales, both techniques

can preserve an unbiased rainfall amount distribution even

using a limited amount of daily data, avoiding the problem

of overdispersion that commonly affects daily rainfall

simulation techniques. Therefore, the use of large scale

indicators as auxiliary or predictor variables, is of primary

importance to preserve the non-stationary behavior of the

simulation, and it is therefore necessary to preserve the

long-term variability of rainfall. Moreover, we observe

that, with both techniques, the uncertainty boundary is very

broad on these distributions if a limited amount of training

data is used: this suggests that the possibility of extrapo-

lating daily values not observed in the training data sets

does not have a significant impact on the statistics at larger

scales, while the use of a training data set showing a larger

pattern variability does. Therefore, resampling- and MC-

based techniques can be equally efficient in making esti-

mations about large-scale variability, involved, for exam-

ple, in the estimation of the long-term recharge of a basin.

In this case, the primary requirements are the use of con-

ditioning variables describing the low-frequency variability

together with a training data set representative of the large-

scale variability.
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Fig. 7 Sydney time-series

experiment, visual comparison

of samples from the data and the

simulated time-series

(500 days)
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The highly irregular two-regime alternation of the syn-

thetic reference signal is preserved fairly well by both

techniques using a large training data set. The specific

high-order temporal correlation contained in the whole

signal is automatically captured and preserved by DS,

while MMM underestimates the persistence since it is

limited to the lag-1 time conditioning contained in its prior

structure. These results confirm that, using a Markov-chain

based approach, a preliminary analysis is necessary to

include the salient high-order time dependence features in

the prior structure of the model. The autocorrelation

function of the two separate regimes, showing a different

time dependence signature, is not correctly preserved by

either the approaches, meaning that information about this

kind of non-stationarity should first be detected then

explicitly incorporated in the prior structure of both mod-

els. In the case of MMM, this should be is possible by

implementing a regime switch in the Markov-chain con-

ditioning structure. Using DS, a regime indicator can be

calculated on the training data set and jointly simulated

with the rainfall signal.

Finally, the dry/wet spell distribution and the minimum

moving average of the rainfall amount confirms the higher

accuracy of DS in simulating long wet periods and the

multiple-scale features when a sufficient training data set is

available. MMM is more reliable in case of scarce data

availability, where DS underestimates the length of both

the dry and wet extreme spells.

The second and last test sees the simulation of a daily

rainfall time-series from Sydney using the initial recorded

30 years as training data set and simulating the longer

remaining portion of about 125 years. The results show a

similar performance of the techniques with respect to the

first experiment, underlining the importance of a repre-

sentative training data set, despite the capability of

extrapolation of the techniques at different scales. As seen

in the results, an exiguous training data set with respect to

the simulated period may not only underrepresent the

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Sydney time-series

experiment results, qqplots of

different indicators, including:

daily (a), annual (b), 10-year
(c), solitary wet-day (d) rainfall
amount, wet (e) and dry (f) spell
length (days). For each

indicator, DS and MMM

simulations together with the

training data set distributions

are compared with the reference

one. For DS and MMM, the

median of the realizations (solid

line) is shown as well as the 5th

and 95th percentiles (dashed

lines)
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extremes, but it may also present a significant bias in some

central tendency indicators, for example the ones regarding

the annual seasonality.

6 Conclusions

In this paper, we investigate the performance of some

advanced statistical strategies used to simulate the complex

structure of rainfall at multiple scales. This is done by

comparing two recent techniques for daily rainfall simu-

lation: the Markov-chain based modified Markov model

(MMM) and the direct sampling technique (DS) belonging

to the multiple-point statistics family. The two algorithms

use the same type of information under the form of vari-

ables computed from the rainfall amount, namely: the

rainfall state (dry or wet) and the wetness indexes, i.e. the

number of wet days in the past, informing about low-fre-

quency fluctuations. MMM is a semi-parametric model

where the rainfall state generation is conditioned on a fixed

order-1 time dependence and low-frequency fluctuations.

The rainfall amount is generated using an order-1 condi-

tional kernel density estimation (the adaptive kernel). This

way, non-stationarity is introduced in the parameters of

both the occurrence and amount models allowing the

preservation of the essential small- and large-scale char-

acteristics of rainfall. Conversely, DS is a fully non-para-

metric resampling technique based on a pattern-similarity

rule. Using a random simulation path and a variable con-

ditioning pattern, DS simulates the same type of patterns

found in the training data set at multiple scales. Conse-

quently, high-order statistics contained in the training data

are indirectly preserved in the simulations without the need

for a complex parameterization.

The results presented in this paper suggest a series of

elements that can be incorporated in a daily simulation

approach to preserve, at a reasonable level, the complexity

of the rainfall variability:

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Sydney time-series

applied experiment: monthly

wet-day probability of rainfall

occurrence (a), mean rainfall

(b), standard deviation (c),
minimum moving average (d),
daily (e) and monthly (f) rainfall
sample autocorrelation. For

each indicator, DS and MMM

simulation ensembles (boxplots)

are compared to the training and

reference data sets (solid lines).

For d, the median of the

realizations (solid line) is shown

as well as the 5th and 95th

percentiles (dashed lines)
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1. The daily variability in both the dry/wet structure and

rainfall amount can be better preserved with an

adaptive kernel technique when a scarce training data

set is used, while a non-parametric resampling strategy

is more suitable when a rich training data set is

available. Ideally and in both cases, the recommended

training data set length should encompass a longer

period than the one simulated to represent long

recurrence time events;

2. The extrapolation of values not observed in the

training data set is of primary importance to correctly

represent the extremes at the daily scale, while it is not

fundamental to preserve the variability at higher scale,

for example to estimate the long-term recharge of a

basin—in these cases, a technique purely based on

resampling at the daily scale may suit the purpose;

3. The use of low-frequency covariates of daily rainfall is

an efficient strategy to preserve the long-term behav-

ior—a Markov-chain based as well as a resampling

technique can accommodate the use of these variables;

4. To preserve a complex time dependence structure, a

resampling procedure considering a variable time

dependence, as it has been implemented in DS, is

more convenient than a MC-model, since it is adaptive

to different data patterns with a simple parameteriza-

tion. Nevertheless, this approach entirely relies on the

training data set. Therefore, in case of scarce training

data, a parametric technique taking into account only

the low-order dependency may be more appropriate,

since the high-order statistics, like the long-term

behavior of rainfall, are not observable in the data;

5. A simulation strategy accommodating a variable time-

dependence is convenient in case of conditional or

missing data simulation: considering data patterns of

different configuration allows for conditioning data

anywhere in time, simplifying the simulation from the

user-perspective;

6. Non-stationarity, like the presence of different rainfall

regimes, should be investigated a priori and included in

the structure of the algorithm, e.g. under form of

conditioning variables.

To incorporate all these features in a unified framework,

future research could focus on the development of a semi-

parametric or kernel based amount model inside the DS

framework to perturb the sampled historical values. This

idea has been already proposed for k-nearest neighbor

resampling techniques (Lall and Sharma 1996; Rajagopa-

lan and Lall 1999) and applied to some stochastic hydro-

logical models of the same family: inspired by traditional

autoregressive models, they consider the non-linear

regression mðHiÞ to describe the relationship between the

training data Zi and a predictor variable vector Hi. The

simulated value Zt ¼ mðHtÞ þ et is the sum of the deter-

ministic conditional mean mðHtÞ and an innovation term et,

generated by sampling from the local residuals of mðHtÞ
(Prairie et al. 2006) or calibrating a random noise on them

(Singhrattna et al. 2005; Sharif and Burn 2007). These

works show that the introduction of an innovation term is a

promising path to increase the prediction skills of resam-

pling techniques. Moreover, the parametric framework of

these algorithms present a fixed time-dependence condi-

tioning, which, on the contrary, is variable in the non-

parametric approach of DS. For these reasons, the devel-

opment of a perturbation stage of the sampled values in the

direct sampling framework may lead to an improved

model. Finally, future simulation techniques may also

include a variable describing the non-stationarity in the

training data set. This could influence the variation of MC

parameters through time or guide a resampling procedure

in generating non-stationary data patterns.
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Appendix: Summary of the test on synthetic data

As shown in Sect. 3, the two considered algorithms present

a different behavior with respect to various characteristics

of the signal and training data amounts considered. The

relative error D ¼ ðs� rÞ=r (r = reference, s = simula-

tions median) is calculated on a selection of indicators

(Table 4), to summarize the average performance of the

two techniques. Positive values indicate overestimation and

negative ones underestimation: for example DQ95 ¼
�0:50 indicates that the 95-th percentile has been under-

estimated by 50%. The chosen error indicators mainly

regard the error in the tail of the considered probability

distributions, since the central and lower part are generally

preserved by both algorithms.

In accordance with the results shown in previous pub-

lications (Mehrotra and Sharma 2007a, b; Oriani et al.

2014), it is shown here that both techniques can generate

replicates of the same size as the training data set pre-

serving the rainfall variability at multiple scales. The error

on the tail of the distribution (DQ99 and DQ100) is in fact

very low for the daily rainfall amount up to the decennial

scale in the 1-million simulation group. Reducing the

available amount of data, MMM can extrapolate extremes

by using a conditional kernel smoothing technique, while

DS remains limited to the range of data found in the TI. At
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higher scales, both techniques can preserve an unbiased

distribution even when using a small amount of daily data.

Nevertheless, the uncertainty shown by the 05–95 per-

centile boundaries of the realizations (Fig. 3) suggests that,

for a reliable simulation of the considered reference signal,

a 10,000-day training data set should at least be used. This

principle is confirmed by all the results shown in the pre-

vious sections.

Both techniques have a comparable performance

regarding the regime A and B spell length distribution: the

reference model presents an extremely variable regime

duration and a highly skewed distribution which can be

preserved when using large training data sets only. In

addition, MMM shows a considerable error in the 1000-day

group: this may indicate that the model based on the 30-

and 365-day wetness indexes needs a larger data set to be

calibrated.

The time dependence structure of the total signal is sim-

ulated quite accurately by DS as confirmed by a small ACF

error on all relevant lags. Conversely, MMM is structured to

accurately preserve the lag-1 autocorrelation. To avoid the

underestimation of persistence using MMM it is therefore

necessary to include the appropriate information in the time

dependence structure of the model. This is not needed using

Table 4 Selection of indicators summarizing the average perfor-

mance of the techniques. The relative error of the simulations median

is considered for: the i-th quantile of the distribution (DQi), the i-th

lag of the autocorrelation function (ACF, Dlagi) and the minimum

moving average using a n-months-long moving window (MMA,

Dnm). For each error indicator, a couple of values referring to the two

algorithms is given. Bullets indicate a superior performance by MMM

and asterisks a superior performance by DS

Sim. group Daily amount Annual amount 10-year amount Regime A spells Regime B spells

DQ99 DQ100 DQ05 DQ95 DQ05 DQ95 DQ99 DQ100 DQ99 DQ100

MMM 1Mi 0.00 -0.01 -0.01 -0.01 -0.01 0.00 -0.03 *-0.35 -0.06 0.03

DS 1Mi -0.00 -0.00 0.00 -0.00 -0.01 0.00 -0.01 *-0.25 -0.00 -0.04

MMM 10,000 0.03 •-0.1 -0.00 -0.01 -0.01 -0.00 -0.06 -0.32 -0.10 -0.13

DS 10,000 0.00 •-0.30 -0.01 -0.02 -0.02 -0.01 -0.13 -0.36 0.11 0.10

MMM 1000 0.06 •-0.12 0.03 -0.02 0.01 -0.01 *-0.35 *-0.57 *-0.27 *-0.31

DS 1000 -0.01 •-0.46 0.00 -0.02 -0.01 -0.01 *-0.14 *-0.37 *0.07 *0.05

MMM 100 0.02 •-0.31 0.05 -0.04 0.02 -0.01 *-0.35 -0.51 -0.08 -0.06

DS 100 -0.09 •-0.58 0.06 -0.04 0.01 -0.01 *-0.26 -0.43 -0.13 -0.09

Sim. group ACF total signal ACF regime A ACF regime b

Dlag1 Dlag6 Dlag12 Dlag1 Dlag6 Dlag12 Dlag1 Dlag6 Dlag12

MMM 1Mi -0.00 *-0.85 *-0.88 56.89 -0.98 -0.98 -0.24 -23.70 20.78

DS 1Mi 0.05 *-0.12 *-0.44 88.27 -0.60 -0.75 -0.34 -123.79 99.04

MMM 10,000 -0.02 *-0.82 *-0.87 55.72 -0.96 -0.97 -0.25 -27.24 22.34

DS 10,000 0.03 *-0.27 *-0.63 88.78 -0.69 -0.84 -0.36 -108.58 66.59

MMM 1000 0.00 *-0.77 *-0.89 67.35 -0.94 -0.97 -0.28 -38.78 17.08

DS 1000 -0.04 *-0.23 *-0.46 82.51 -0.67 -0.77 -0.40 -116.63 99.69

MMM 100 •-0.05 *-1.25 *-1.21 80.44 -1.08 -1.08 -0.38 43.44 -49.60

DS 100 •-0.18 *-0.78 *-0.55 71.49 -0.88 -0.80 -0.45 -34.07 89.27

Sim. group Dry spells Wet spells MMA

DQ99 DQ100 DQ99 DQ100 D2 m D6 m D17 m

MMM 1Mi 0.00 0.14 *-0.10 *0.12 *-0.48 *-0.21 -0.09

DS 1Mi 0.00 -0.09 *0.00 *0.04 *-0.06 *0.01 0.00

MMM 10,000 0.00 0.03 -0.10 *0.21 *-0.36 *-0.16 -0.06

DS 10,000 0.00 -0.06 -0.10 *0.04 *-0.02 *-0.02 -0.01

MMM 1000 0.00 •-0.03 •0.00 *0.33 *-0.17 0.03 0.09

DS 1000 -0.08 •-0.23 •-0.10 *-0.12 *0.27 0.05 0.02

MMM 100 •-0.08 •-0.17 •-0.10 •-0.17 •0.38 0.23 0.13

DS 100 •-0.25 •-0.46 •-0.30 •-0.38 •1.06 0.29 0.13
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DS since it can automatically simulate complex time

dependence by generating multiscale patterns similar to the

ones found in the training data set. Large errors shown by

both techniques in theACF of the separate regimes are due to

their inability to capture the non-stationarity of the two-

regime alternation in absence of prior information about it.

Finally, the error on the dry/wet spell length distribu-

tions and on the minimum moving average confirms the

same tendency: we observe a better performance of DS

when sufficient training data are available. MMM is more

reliable in case of scarce data availability.
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