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The direct sampling (DS) multiple-point statistical technique is proposed as a non-parametric missing
data simulator for hydrological flow rate time-series. The algorithm makes use of the patterns contained
inside a training data set to reproduce the complexity of the missing data. The proposed setup is tested in
the reconstruction of a flow rate time-series while considering several missing data scenarios, as well as
a comparative test against a time-series model of type ARMAX. The results show that DS generates more

realistic simulations than ARMAX, better recovering the statistical content of the missing data. The
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predictive power of both techniques is much increased when a correlated flow rate time-series is used,
but DS can also use incomplete auxiliary time-series, with a comparable prediction power. This makes
the technique a handy simulation tool for practitioners dealing with incomplete data sets.
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1. Introduction

The reconstruction of missing data portions inside time-series is
a critical topic in applied hydrology since a large number of the
numerical simulation techniques, used to model the hydrological
processes, need continuous data records as input. Sometimes,
technical failures of measurement instruments produce missing or
unreliable data for long time periods for which the uncertainty
about the observed phenomena is high. For this reason, a technique
capable of generating realistic simulations of the missing data,
reflecting the complex structures of the signal, and possibly making
use of auxiliary information, is needed.

Many different approaches have been proposed for time-series
gap filling in earth sciences: techniques based on mean diurnal
variation or regression (Falge et al.,, 2001; Moffat et al.,, 2007),
autoregression (Bennis et al., 1997; Wang, 2008), singular spectrum
analysis (Schoellhamer, 2001; Kondrashov et al., 2014), self-
organizing maps (Wang, 2003; Lamrini et al., 2011), look-up ta-
bles (Bamberger et al., 2014), rough sets (Dumedah et al., 2014), and
artificial neural networks, widely used in recent years (Aminian
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and Ameri, 2005; Dastorani et al., 2009; Diamantopoulou, 2010;
Nkuna and Odiyo, 2011; Bahrami et al., 2011; Nourani et al., 2012;
Dumedah et al, 2014). In this paper, we propose a non-
parametric method to simulate missing data inside flow rate
time-series based on the Direct Sampling (DS) technique
(Mariethoz et al., 2010) belonging to multiple-point statistics
(MPS). Already tested on gap filling in multivariate data sets rep-
resenting natural heterogeneities (Mariethoz et al., 2012, 2015) and
on rainfall time-series simulation (Oriani et al, 2014), DS can
simulate the outcome of a complex natural process by reproducing
similar patterns to the ones found in the available data without
imposing a specific statistical model. More particularly, missing
data are simulated by sampling the available data set where a
sufficiently similar pattern is found. High-order statistical relations
in the variable of interest are preserved by respecting the similar-
ities in the neighborhood at multiple scales. The approach is almost
entirely data-driven and fairly simple, but its efficiency largely
depends on finding the good ensemble of auxiliary variables suit-
able to the current application. We present a multivariate standard
setup for missing data simulation inside hydrological flow rate
time-series using a correlated time-series as auxiliary variable. The
setup is tested on the gap filling of a high-resolution karst flow rate
time-series using different auxiliary variables. To make the test
systematic and relevant for application, a gap size varying from a
few hours to 20 days and total missing data percentage up to 30%
are considered. Finally, a last group of tests focuses on the com-
parison of the proposed technique with a classical time-series
model of type ARMAX. The general methodology, the setup, as
well as the data set used, are illustrated in Section 2, the results are
presented in Sections 3 And 4, while Section 5 is dedicated to the
conclusions.

2. Methodology
2.1. The data set
The data set used to test the proposed technique is the

1990—-2013 flow rate record from two karst springs of the Jura
mountains (Switzerland) provided by the Swiss Federal Office for
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—— rivers
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— - topographic subcathments

the Environment (FOEN). This paleozoic karst system is character-
ized by flashy spring discharges (Painter et al., 2008). Three high-
resolution (10-min) time-series are used: the Areuse creek
measured at St. Sulpice station (Ar) is used as a target variable,
while the same water flow measured at Boudry station (Ar2) and
the Seyon creek measured at Valangin station (Se) are used as
auxiliary variables. The two river basins are contiguous (Fig. 1) and
their regimes have been both classified as Jurassian pluvial and
nivo-pluvial (FOEN). Ar station (443 m a.s.l.) lies at a distance of
about 20 km from Ar2 (750 m a.s.l.) and 30 km from Se (628 m
a.s.l.). Measuring from the same river, Ar and Ar2 are highly
correlated (Pearson's correlation coefficient PCC = 0.96), whereas
Ar and Se show a medium to weak correlation (PCC = 0.72). The
considered time-series do not contain any missing data, but Ar and
Ar2 show isolated sharp fluctuations around the local trend due to
instrumental errors. To remove this kind of artifact, the following
preprocessing treatment is applied (Oriani, 2015): given a time-
series Z(t) and computing the differential operator
0Z(t) = Z(t) — Z(t — 1), the artifacts are identified with the portions
of Z(t) presenting d(t,a) > b, where a(t, a) is the local standard de-
viation of 0Z(t), computed on the time interval [t + a] and b is a
user-defined threshold. The appropriate value for a and b
depending on the smoothness of the signal and the magnitude of
the artifacts, can be manually set by visually checking the results. In
this paper, the chosen values are a = 19, b = 0.3 for Z(t) = Ar and
b = 0.05 for Z(t) = Ar2. The data detected as artifacts are replaced by
a cubic spline interpolation.

2.2. The Direct Sampling technique

Multiple-point statistics (MPS) techniques are based on the
concept of training data set (TI): a representative sample of the
target variable or conceptual model which is used to estimate the
probability of occurrence of each event inside the simulation. MPS
methods (Guardiano and Srivastava, 1993; Strebelle, 2002; Allard
et al., 2006) generally consider a catalog of neighboring data pat-
terns found in the TI to impose high-order conditioning in the
simulation and thus reproduce similar structures to the ones found
in the TL This requires the estimation of the conditional probability

Fig. 1. Aerial photo of the study region (Jura mountains and Neuchtel lake), with location of the measure stations and topographic basin subdivision (modified from Swiss Federal

Office of Topography, map. geo.admin.ch).
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density function for each pattern and limits the application of the
method to categorical variables. The Direct Sampling technique
(Mariethoz et al., 2010) avoids this preliminary step by sampling
the TI where a sufficiently similar neighborhood occurs in the TI.
This principle also extends the application to continuous variables
and multivariate data sets. In the case of missing data simulation,
only the uninformed time steps are simulated and the rest of the
data set is used as conditioning (CD). We refer to Straubhaar et al.
(2011) and Oriani et al. (2014)for a detailed description of the al-
gorithm implementation. We present here the main workflow of
the algorithm, in the case of multivariate simulation, i.e. when the
variable of interest (target variable) is simulated together with one
or more given auxiliary time-series. These can be fully or partially
informed. The required inputs for the simulation are a data set used
as TI and the simulation grid (SG), a time vector hosting the CD
together with the simulated data. Both the TI and SG are multi-
variate, containing the target and the auxiliary variables. In case of
missing data simulation, the TI and the CD may be the same data
set, meaning that the gaps are filled using the data already present
in the SG at the beginning of the simulation. In this case, only the SG
is filled with simulated data, not the TI, that will preserve the
original data and gaps. The algorithm proceeds as follows:

1 Arandom permutation of the index vector is done to obtain a
random simulation path inside the SG.

2 Each variable is linearly normalized to a range of [0,1].

3 Following the random simulation path, and uninformed time
step t of the SG is chosen for simulation.

4 A pattern of neighboring data of t is retrieved independently
for each variable and according to a search template defined
by a radius Ry and a maximum number of considered time
steps Nj for each k-th variable. For example, if Ry = 20 and
Ny = 10, the pattern is composed by the 10 informed time
steps closest to t inside the time span [t + 20]. This local data
subset sampled for the SG is called data event (di.), and
constitutes the pattern on which the simulation of the k-th
variable at t is conditioned. Since di; is composed by the
closest available data, it does not require the variable to be
completely informed. R, and Ny, are user-defined parameters.

5 A random time step y of the TI is randomly scanned to
retrieve a data events dyy. The time-steps in diy, have the
same time lag as the ones in d.

6 A distance Dy(dndyy), ie. a measure of dissimilarity, is
computed between the two data events for each variable. Dy
is the fraction of non-matching elements for categorical
variables and the absolute mean error for continuous
variables.

7 If Dy is below a prescribed threshold Ty for all k, the datum in
y is assigned to t for all uninformed variables. Otherwise the
procedure is repeated from step 5 to 7 until a suitable dy is
found or a prescribed TI fraction F is scanned.

8. If no time step y presenting Dy < Ty for all k is found, the one
which minimizes X Dy, with K simulated variables, is
assigned to t.

9. The procedure from step 3 to 8 is iterated until the SG is
completely informed.

10. The variables are linearly back transformed to their original
range.

To summarize, the main DS parameters, related to each simu-
lated variable are: i) the search neighborhood radius R, that defines
the time interval t + R, used to retrieve the conditioning pattern for
the simulation at time step t; ii) the maximum number of neighbors
N used to form the conditioning pattern; and iii) the distance
threshold T, a scalar value used to accept or reject the pattern

scanned inside the TI. These parameters can take different values
for each variables in the multivariate case. One last parameter
defined once for all variables is the maximum TI fraction (F) scan-
ned at each algorithm iteration. The value F = 0.5 is adopted for all
the tests presented in this paper. This is a standard value used in
previous time-series applications (Oriani et al., 2014) that, in case of
a representative training data set, generally allows scanning a
sufficient training data amount at each iteration. The scanning of
the total Tl is avoided since it may lead to oversampling of the same
TI regions and the reproduction of entire data set portions.

As explained in Oriani et al. (2014), the main difference of this
approach with respect to the existing resampling techniques for
time-series simulation, e.g. Rajagopalan and Lall (1999); Buishand
and Brandsma (2001); Wojcik and Buishand (2003); Clark et al.
(2004), is the combined use of i) a random simulation path and
ii) a variable conditioning scheme, using the N informed neighbors
closest to the simulated time step. These two elements allow
considering large-scale patterns at the beginning of the simulation
and denser small-scale patterns toward the end of the simulation.
For instance, by setting R = 100 and N = 10, the conditioning
pattern for the simulation of the first random time steps will be
formed by 10 or less sparse neighbors in the time t + R, while, for
the last simulated time steps, it will be composed by 10 time steps
much closer to the simulated one, since at this stage, the SG is more
densely informed. This imposes a variable time-dependence, which
allows preserving the statistical structure at multiple scales
without the formulation of a high-dimensional prior statistical
model. Moreover, when multiple variables are simulated together,
their statistical correlation is preserved in the multivariate data set.
For example, one can use a sufficiently informed variable to guide
the simulation of large missing data portions inside the target
variable (see Section 2.3). It is worth remembering that since DS
samples the data found in the TI, the use of a representative TI is
crucial to obtain a reliable simulation (see Section 3).

2.3. The DS setup for flow rate time-series

In this section, we present a standard multivariate DS setup for
the simulation of missing flow rate time-series data composed by a
series of variables and the main DS parameter values (Table 1). A
flow rate time-series (Z(t)) is simulated in its missing data parts
together with a group of auxiliary variables. This allows the pres-
ervation of the temporal structure contained in the original data
set. The river flow processes are characterized by an annual sea-
sonality and spatio-temporal correlation. For this reason, the pro-
posed auxiliary variables include two periodic functions describing
the annual seasonality (A{(t) and Ax(t)), a correlated flow rate time-
series (Q(t)) measured from a nearby location (if available) and an
indicator variable describing the hydrographic structure (H(t)). This
multivariate data set is defined at the same temporal resolution of
Z(t), that may vary according to the considered data set. A more
detailed description of these variables and the respective DS
parameterization are given in the following. We removed the
temporal reference from the notation where possible.

e The flow rate time-series Z is the target variable, presenting
missing data portions that are generated in the simulation and
informed time-series portions that are used as conditioning
data. A variable high-order conditioning is applied to Z by
extending the search neighborhood radius (R) to 10,000 10-min
time steps and considering a maximum (N) of 15 neighbors. The
distance threshold value T = 0.002 includes 0.2% of total varia-
tion on the conditioning pattern. The chosen values for R and N
for all variables can be related to the correlation length of their
temporal structure. The user is recommended to change the
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DS setup proposed for flow rate time-series simulation. The parameters for each variable are: search window radius R, maximum number of conditioning neighbor data N and
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value of these parameters according to the time-series resolu-
tion. Conversely, the proposed T values, lacking a physical
meaning related to the variable, are manually set up by trying a
limited set of values (0.002, 0.01, 0.05, 0.07) and using the in-
dicators presented in Section 2.6 as optimization criteria. A
sensitivity analysis of the DS parameters (Meerschman et al.,
2013) showed that, for the majority of the application cases
considered until now, the optimal T values lie within [0.001,0.1],
with lower values suitable for highly autocorrelated, smooth
signals and higher values for low-correlated, more noisy signals.
In case of lower resolution or more noisy data sets, a higher T
value may be more appropriate.

e Two out-of-phase periodic triangular functions (A; and A,) with
period 365.25 days, indicate the position of each datum inside
the annual cycle. A1 and A; are given as CD to help the simula-
tion respecting the annual seasonality. Since high-order condi-
tioning is not necessary for this purpose, R and N are set to 1. The
distance threshold T set to 0.07 allows sampling from the same
period of the year with a maximum 7% of the total variation of
the variables. As already observed for rainfall and climate vari-
ables (Oriani et al., 2014), T varying between 0.05 and 0.07 al-
lows imposing the annual seasonality without over-
conditioning the simulation.

o A flow rate time-series (Q) from a nearby located station is given

as CD but it is not necessarily fully informed. Any missing data

inside Q will be co-simulated with the target variable. If Q is
correlated to Z, its conditioning helps restricting the uncertainty

around the missing data, e.g. indicating a flood occurrence if a

peak is present in Q. The same DS parametrization as Z is applied

to Q.

An indicator variable called recession indicator (H), takes values

H = 1 to indicate a recessing hydrograph limb and H = O for a

rising hydrograph limb observed in Q. H is necessary to simulate

a more realistic flood pattern in the target variable. Since the

flow rate time-series is a complex signal, showing abrupt fluc-
tuations of different magnitude, computing the sign of the de-
rivative in Q is not sufficient to identify the effective succession
of rising and recessing limbs, corresponding to the main flood
pattern. For this reason, H is computed with a more complex
procedure (Oriani, 2015) summarized in the following. H is a
deterministic function of time t and the user defined parameters
(w, v). First, the local extremes (minimum and maximum) of Q
inside a moving temporal window [t + w] are identified.
Moreover, each extreme is considered only if: i) it shows a
variation greater than v with respect to the previously consid-
ered extreme and ii) the next extreme found is not of the same
type (minimum or maximum). Finally, H is obtained by applying
a logical test on the selected local extremes: a local minimum
activates a rising limb (H = 0) until a local maximum occurs
activating a recessing limb (H = 1), ensuring a continuous
alternation of the two categories. If Q is incomplete, H also
presents missing data at the corresponding time steps. The
values (w=50,v=2)forQ=Ar2 and (w=50,v=0.3) forQ=Se
have been set up by trial and error to allow an adequate visual
representation of the hydrographic structure. The user is rec-
ommended to set up these values by visually checking the
result, so that the main alternation of rising and recessing limbs
can be detected. This may vary significantly according to the
regime type. The DS parameter values for H are R = 10’000 time
steps, N = 20 and T = 0.05.

The proposed DS setup makes use of Q as source of additional
information. The rest of the variables are in fact derived from it (H)
or known a priori (A7 and Ay). If Q is not available, the simulation is
still possible with H computed on the informed part of Z. Since the
most adequate parameter values for DS and H may vary as a
function of the flow rate characteristics and the time-series sample
rate, the user should not consider the suggested values as fixed but
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rather as a starting point for optimization to a specific application.

2.4. Multiple scenario test

In the first test, artificial gaps are created in the multivariate data
set and the corresponding missing data are simulated using the
proposed DS setup. Ar is considered as target in 5 simulation tests
presenting different time-series as Q: 1) In test Ar, no Q variable is
used and H is computed on the informed part of Ar. 2) In test Ar-
Ar2, Ar2 is used as complete Q variable, highly correlated to Ar. 3)
An incomplete version of Ar2 (Ar2*) is used in test Ar-Ar2*. 4) In test
Ar-Se, Se is used as Q to represent a case where the auxiliary time-
series is poorly correlated with Ar. 5) Finally, in test Ar-Se*, Q = Se*,
representing a case where Q is incomplete and poorly correlated
with Z. To test the sensitivity of the method performance to
different gap sizes and missing data quantities, random groups of
untouching and equally sized gaps are generated inside Z according
to different missing data scenarios: as shown in Table 2, three
different classes of missing fraction up to 30% and three different
classes of gap size up to 3000 time steps per gap are considered for
a total of 9 fraction-size combinations. Since the time step is 10 min,
the generated gap sizes vary between 8 h and 20 days. This time
range can represent the data loss due to small mechanical failures
or large breakdowns comprising entire wet periods (see Fig. 2). For
each fraction-size combination, 10 different missing data series
(gap scenarios) and 10 DS realizations per scenario are generated
for a total of 900 runs per test. For test Ar-Ar2* and Ar-Se*, gap
scenarios for Q are generated independently from those for Z and
present always a 20% missing fraction with 300-time-step gaps.

2.5. Comparative test

2.5.1. The ARMAX model

The last group of experiments focuses on the comparison of the
proposed direct sampling setup with a time-series model of type
autoregressive moving average with exogenous variable (ARMAX).
Under the hypothesis of weak stationarity, the ARMAX model (Box
and Jenkins, 1976) aims at preserving the temporal structure of the
observed process by considering the linear dependence of the
simulated time-step Z(t) with a series of past values of both Z and
an exogenous (auxiliary) variable Q, with the addition of a noise
term that is also correlated with its past values. The result is the
following regression model:

I J K
Z(t)=e(t) + > aZ(t—i)+ > _BQt—j+N)+ > yee(t —k)
i=1 j=1 k=1
(1)

where Z(t) is the target variable simulated at time ¢, I is the autor-
egression order for Z(t), ] the regression order for Q(t), with a delay
time N, and K is the autocorLelation order for the noise term, with
&(t) being a white-noise. @, 8, and ¥ are the regression coefficient
vectors. This ones are numerically calibrated on the training data

Table 2

Simulation schedule for each test: 9 missing fraction-gap size combinations, 10 gap
scenarios per combination, 10 realizations per gap scenario, for a total of 900
realizations.

missing fraction — 5% 10% 30%
gap size (num. Time steps) |

1)50 (~8 h) 10 scenarios x 10real. 10 x 10 10 x 10
2) 300 (~2 days) 10 x 10 10x 10 10 x 10
3) 3000 (~20 days) 10 x 10 10x 10 10 x 10

set of the comparison test (2.5.2) with a prediction-error iterative
method (PEM, Ljung, 1999), minimizing the quadratic prediction
error on the given training (input, output) data set (Q(t),Z(t)). To
choose the model orders I,],N,K €N, all the combinations up to
the 5-th order have been considered: the values =1, =2, N=1,
and K = 1 have been chosen since they gave the best results in
terms of visual comparison with the reference. Moreover, the error
(RMSE) between the simulated and reference time-series and their
distribution mismatch (RMSE on the quantiles) were among the
lowest.

2.5.2. Comparative test design

To compare DS with ARMAX, two of the data sets previously
presented in the paper (Section 2.4) are used, namely: test Ar-Ar2,
where the auxiliary variable Ar2 is highly correlated to the target
Ar, and Ar-Se, where the auxiliary variable Se is poorly correlated to
Ar. Since the ARMAX technique, in its original version, is not
adaptive to simulate partially informed time-series, the two tech-
niques are compared on a simple test using the first 3 years of the
time-series as training data set and the following 3 years as vali-
dation data set: the training data set is entirely informed, while the
validation data set is entirely simulated. The auxiliary variables
used (Ar2 and Se) are also entirely informed. Each simulation
ensemble includes 10 realizations.

2.6. Evaluation

The performance of the proposed simulation technique is
analyzed separately for each test and fraction-size combination.
The visual comparison between the generated and reference
time-series as well as a group of statistical indicators are consid-
ered. To test the efficiency in simulating the statistical content of
the missing data, the probability distribution of the simulated and
reference missing time-series portions are compared using
quantile-quantile (qqg-) plots. To show the behavior of the simu-
lation ensemble, the median, 5th and 95th percentile of the re-
alizations are plotted for each quantile. The predictive power of
the technique is tested using classical goodness-of-fit measures:
the Pearson's correlation coefficient (PCC) between the simulated
and reference missing data, the root mean square error (RMSE)
and the Nash-Sutcliffe model efficiency coefficient (NSE). In the
comparison test (Section 2.5.2), the percentage bias (PBIAS) is also
computed.

3. Multiple scenario test results

In the following, we analyze the results of the first test about the
application of the proposed simulation technique to different
missing data scenarios (Section 2.4).

3.1. Visual comparison

Fig. 2 shows a time-series portion of approximately 100 days
presenting two simulated gaps and the corresponding missing data
together with the auxiliary variables used. Among the considered
gap scenarios, one presenting 30% missing fraction and 3000-time-
step gaps has been chosen for visual comparison, since it better
illustrates how the signal is reconstructed by the algorithm. In
general, the algorithm generates hydrographic structures similar to
the one found in the reference by sampling each datum from the TI
where a similar neighborhood is found: the simulated flood events
are in the same magnitude range and the asymmetric shape of the
hydrograph looks realistic although it contains a modest noise. In
test Ar (Fig. 2, A), where no Q variable is used and H is computed on
the informed part of Z, the flood occurrence in the simulation does
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Fig. 2. Multiple scenario experiment: A flow rate time-series portion (m>/s, 10-min average, approximately 100 days) showing two simulated gaps, the reference and the auxiliary
variable used for all the tests. The shown examples belong to one scenario presenting 30% missing fraction and 3000-time-step long gaps. A randomly chosen realization (orange
color) is put in evidence over the simulation ensemble (dark gray color). The auxiliary variable (green line) is shifted upward with respect to the vertical scale for illustration
purpose. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

not match the reference flood structure but flow rate values are in
the same range. This is expected since, within the missing data
portion, the simulation is only conditioned by A; and A, informing
about the annual seasonality. Therefore, the algorithm explores a
larger variability, generating different types of flood structures.
Conversely, when Q is present and highly correlated to Z as in test
Ar-Ar2 (Fig. 2, B), the uncertainty is restricted around the reference
flood structure. Local extremes are estimated quite accurately as

shown by the simulation mean (red line). When Q is poorly
correlated to Z (test Ar-Se, Fig. 2, D), the simulation mean follows
the main reference shape, but the simulation ensemble shows
larger uncertainty. This suggests that Q and its derived variable (H)
are highly informative about the hydrograph structure and play an
important role in conditioning the simulation. When this auxiliary
information is incomplete as in test Ar-Ar2* (Fig. 2, C), the algo-
rithm shows a similar performance: even if some portions of the
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auxiliary variables (Q and H) are missing in correspondence to
peaks, DS can efficiently simulate the local extremes, if the auxiliary
variable is sufficiently correlated to the target. It is not the case for
Ar-Se* (Fig. 2, E), where the time-series Se is incomplete and poorly
correlated with Ar, so it cannot improve the simulated structure.
Normally, this result cannot be achieved with a parametric tech-
nique based on fixed time dependence, since it requires the pre-
dictor variables to be fully informed. Conversely, DS uses a variable
conditioning pattern adapted to the data available in a temporal
range defined by the parameter R (see Section 2.3). The missing
data are simulated in a random order which allows first defining
the large-scale structure of the missing portion. Then, the data
sequence is completed by considering the already simulated values
as conditioning data. This leads to a realistic reconstruction even if
the auxiliary time-series used is incomplete.

3.2. Statistical content

In Fig. 3, the probability distributions of the missing reference

gap fraction = 5% gaps size = 50

gap fraction = 10% gaps size = 50
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and simulated data are compared by means of qqg-plots. This al-
lows testing the efficiency of the technique in recovering the
statistical content lost with the missing data. The results may vary
significantly depending on the missing time-series portions. For
this reason, 10 scenarios for each fraction-gap combination and
test have been considered (see Section 2.4). For all tests, the me-
dian of the simulations (solid lines) mainly lies on the bisector of
the graph, indicating that the simulation preserves the reference
distribution on average. Nevertheless, a tendency to under-
represent data between 40 and 60 m>/s is observed when the
simulated data quantity is limited (5—10% of the data set, Fig. 3 left
and center column). This suggests that the algorithm is not an
appropriate tool to represent the extremal behavior of the target
variable at the temporal scale of the data since it may under-
represent the extreme values in this case. This happens because,
direct sampling it is not capable of generating values not observed
in the training data set. Nevertheless, the underrepresented data
correspond to very rare events: for example, in this case, they
constitute only 0.0014% of the observations and occur sparsely in
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Fig. 3. Multiple scenario experiment: QQ-plot of the reference distribution against the simulation ensemble for all tests and gap scenario classes. Each graph contains the simulation
of a specific fraction-size combination (10 realizations by 10 scenarios): the missing fraction increases from left to right and the gap size from top to bottom. Each test is indicated
with a different color, solid lines indicate the realization median and dashed lines the 5-95th percentile boundary.
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the time-series with a negligible impact on the hydrological
regime. Therefore, their underrepresentation is not a main issue
unless the user is studying the extremal behavior of the process at
the 10-min scale. Increasing the missing data quantity, this bias
tends to disappear (30% of total data set, Fig. 3 right column). In
this case, the algorithm scans more deeply the training data set to
generate a larger number of data patterns, with a higher chance to
sample extreme values. The 5th and 95th percentile boundaries
(dashed lines) of the realizations indicate the uncertainty on the
recovered statistical distribution. This is larger when a small
percentage of the data is missing since it is dependent on the
statistical content of the missing data, different for each scenario
(Fig. 3 left column). Conversely, with a larger missing data amount
(Fig. 3 right column), the missing statistical content varies much
less depending on the scenario and also the uncertainty of its
estimation is lower. In summary, these results show that the al-
gorithm can efficiently recover the main statistical content even
when no auxiliary information is used (test Ar).

271
3.3. Predictive power

In this section, the predictive performance of the technique is
analyzed by means of some goodness-of-fit indicators computed
for each test and gap fraction-size combination. The box-plot of the
root mean squared error (RMSE) between the simulation and the
reference missing data is shown in Fig. 4: the results are grouped
hierarchically by test, missing percentage and gap size (indicated
by different colors).

The most important influence on the prediction is played by the
gap size: for all simulation groups, RMSE is lower than 1 m’/s in
case of small-sized gaps (50 time steps) and does not present any
substantial change as a function of the missing percentage and test
type. This can be explained by the fact that the variable is highly
autocorrelated and does not show big variations in 50 missing time
steps (see for example Fig. 2). The variability of the missing data in
gaps of this size is very limited and can be efficiently performed
without using any auxiliary information. A comparable result may
be achieved with a reliable method of interpolation. When the gap
size is larger, the variability of the possible data patterns is higher
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Fig. 4. Multiple scenario experiment: Boxplot of the root mean square error (RMSE) computed on the simulated missing flow rate data [m?/s] for all tests and gap scenario classes.
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and the simulation is much more dependent on the setup used. For
test Ar, where Q is not used, RMSE increases rapidly with the gap
size: between 2 and 4 m?/s for 300 time-step gaps and between 4
and 10 m3/s for 3000 time-step gaps, with the median of the re-
alizations between 7 and 8 m>/s. For all tests, the variability of the
performance is dependent on the gap size and missing percentage:
as shown by the interquartile range (thick part of the box-plots),
the error variability is maximized for largest gap sizes and small-
est missing percentage. In this case, the performance is very
dependent on the content of the random missing portion, while,
increasing the missing percentage or reducing the gap size, this
effect is statistically compensated and the RMSE of the simulation
ensemble converges towards its median. The error on large gaps is
limited below 2 m>/s if a highly correlated Q variable is used (Ar-
Ar2). This confirms the efficiency of a highly correlated auxiliary
variable in reducing the uncertainty of the simulation. Conversely, a
moderate RMSE increase is observed when Q is incomplete (Ar-
Ar2*). Test Ar-Se and Ar-Se*, where Q is poorly correlated to Z,
present a performance in-between tests Ar and Ar-Ar2: the RMSE is
between 1 and 3 m®/s for 300 time-step gaps and between 2 and
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6.5 m>/s with median around 4.5 m>/s for 3000 time-step gaps.
The Pearson's correlation coefficient (R, Fig. 5) and the Nash-
Sutcliffe model efficiency coefficient (NSE, Fig. 6) confirm the
same results shown by the RMSE. R can be interpreted as the
fraction of the reference variability predicted by the simulation: for
example PCC = 0.7 the model can predict the 70% of the variability.
NSE is of less immediate interpretation: NSE = 0 indicates that the
simulation has the same predicting power as the estimated mean,
NSE = 0.7 indicates that the RMSE is equal to the 30% of the
observed variance (Legates and McCabe, 1999) and NSE = 1 cor-
responds to a perfect prediction. Referring to Fig. 5 and 6, we can
consider the predictive performance of the simulation very good
(PCC > 0.9 and NSE > 0.8) in case of small gaps for all considered
tests, in case of medium gaps when Q is used and in case of large
gaps when Q is highly correlated to Z (Ar-Ar2 and Ar-Ar2*). In
absence of Q (test Ar), the prediction remains reliable only for gaps
up to the medium size. The prediction is not efficient in case of large
gaps and absent or lowly correlated Q variable. In these cases, the
flood sequence generated by the algorithm may still be a realistic
estimation, but it does not correspond to the present one in the
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classes.

reference since it is not properly guided by Q and it explores a larger
uncertainty space, without preserving the actual flood sequence.

4. Comparative test results

We analyze here the performance of the DS technique compared
to the one of the ARMAX model, as described in Section 2.5. Among
the data sets shown in the paper, the ones used here are Ar-Ar2 and
Ar-Se.

4.1. Visual comparison

Fig. 7 shows a time-series portion simulated by both techniques
for the two data sets used. For Ar-Ar2, where the auxiliary variable
Ar2 (not shown in Fig. 7) is well correlated to the target Ar, the
simulation ensemble generated by both techniques follows the
reference time-series quite accurately. The specific flood sequence
is efficiently preserved as shown by the simulation mean (solid
lines). Since the auxiliary variable is highly informative in this case,
the explored uncertainty space (shaded areas) is generally narrow

and it includes the reference time-series. Nevertheless, the DS
technique presents a higher variability in the simulations in cor-
responding to hydrograph peaks. This allows a more reliable esti-
mation of the local uncertainty, while, with the ARMAX technique,
sometimes the local extremes lie outside the space covered by the
simulation ensemble. When the auxiliary variable is poorly infor-
mative (Ar-Se test), the uncertainty on the prediction is higher:
ARMAX preserves the flood sequence but underestimates the local
extremes systematically. Conversely, the DS technique generates a
more representative simulation ensemble, without always
following the reference flood sequence, but usually including the
reference values. Finally, the ARMAX time-series shows a higher
small-scale noise with respect to DS.

4.2. Statistical content

The statistical content of the simulation is compared with the
reference by means of qq-plots (top of Fig. 8). For the test Ar-Ar2,
both techniques can preserve the reference probability distribu-
tion, although ARMAX tends to over-estimate the extremal part.
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Conversely, for test Ar-Se, ARMAX shows and under-estimation of
the local intense values (30—40 m?/s), in accordance with the re-
sults of Section 4.1. Finally, for both techniques, the simulation
ensemble shows a very low uncertainty about the estimated dis-
tribution, as shown by the 5—95 percentile boundaries (dashed
lines).

4.3. Predictive power

The predictive power of both techniques is compared with two
statistical indicators (bottom of Fig. 8): the percentage bias (PBIAS)
and the NashSutcliffe model efficiency (NSE). In the test Ar-Ar2 the
ARMAX model shows a less biased estimation (PBIAS between —1
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and —2%) with respect to DS (PBIAS between 6 and 8%), while, in
the test Ar-Se, DS shows a more variable performance (PBIAS be-
tween 5 and -9%) and ARMAX significantly increase the bias to-
wards negative values (PBIAS between —20 and —28%). This last
result is probably linked to the underestimation of the local ex-
tremes as shown in the previous indicators. According to the NSE,
both techniques have a good predictive power for test Ar-Ar2, with
values higher than 0.8 for ARMAX and 0.9 for DS. Conversely, for
test Ar-Se, the performance is poorer for DS (NSE around 0.35) than
ARMAX (NSE around 0.55). This last results may be linked to the
fact that DS presents a higher variability in the simulation, for
example generating peaks where they don't occur (se bottom of
Fig. 7), with a subsequent increase in the error with respect to the
reference. Conversely, ARMAX, although underestimating the un-
certainty, respects better the main flood pattern, resulting in a
higher NSE.

5. Discussion and conclusions

The aim of this paper was to propose and test a stochastic
methodology for missing data simulation inside hydrological flow
rate time-series based on the Direct Sampling technique (DS). Its
rationale is fairly simple: without imposing a statistical model for
the process of interest, the missing data are simulated by resam-
pling data patterns of the variable of interest together with a group
of auxiliary variables. By scanning the available data, a similar
pattern is found and the datum at its center is assigned at the
simulated time step. The process is repeated until all the data set is
complete. Since multiple neighbors and different pattern size are
considered for conditioning, realistic structures at multiple scales
can be generated.

A standard setup for flow rate time-series is proposed, including
the variable of interest (Z) and a series of auxiliary variables: a
couple of periodic theoretical functions describing the annual
seasonality, a predictor variable (Q), which is a correlated flow rate
time-series, and a categorical variable computed on Q describing
the hydrographic structure as a succession of rising and recessing
flood limbs. The setup can be adapted to any type of flow rate time-
series, with or without the use of auxiliary variables, but it may
require an adjustment of the parameters.

The model is tested on the gap filling of a high-resolution (10-
min) karst flow rate time-series from the Areuse St. Sulpice sta-
tion (Jura mountains, Switzerland), belonging to a flashy spring
discharge system that exhibits abrupt changes in the hydrograph.
The performance of the technique is analyzed by considering
different auxiliary time-series Q. Moreover, variable missing per-
centage up to 30% and multiple gaps of size up to 3000 time steps,
corresponding to about 20 days. The generated missing data por-
tions show realistic asymmetrical hydrographic structures similar
to the one found in the reference even when large gaps are simu-
lated and no Q variable is used. The statistical content lost with the
missing data is mainly recovered even when these constitute large
portions of the data set, but extreme values may be underrepre-
sented in some cases. For this reason, the training data set (being
the incomplete time-series itself or another data portion) should
correctly represent the high return time events, since direct sam-
pling is not able to extrapolate values not observed in the available
data. Finally, the predictive power of the technique, measured by
classical goodness-of-fit measures, is very high when Q, even if
incomplete, is highly correlated to Z If Q is absent or poorly
correlated to Z, the prediction is more uncertain since the vari-
ability of the possible data patterns within large gaps is much
higher.

In the last group experiments, DS is compared with a classical
time-series model of type ARMAX. The results show that DS is

capable to generate more realistic simulated time-series with
respect to the concurrent technique, that heavily rely on the linear
dependency with recent past time-step of the target and auxiliary
variables. In fact, when the auxiliary variable is highly correlated
with the target, the two techniques have a comparable prediction
power, with DS recovering more efficiently the probability distri-
bution and ARMAX showing a lower bias. Conversely, when the
auxiliary variable is poorly correlated and contains information
only about the main flood sequence, a technique relying on linear
correlation and a simple error structure is not sufficient to repre-
sent the entire variability of the process. Although better repre-
senting the main flood pattern and resulting in a higher NSE value,
ARMAX does not preserve the sufficient variability in the simula-
tions, underestimating the uncertainty and the local extremes. It is
also noted that the computation time for ARMAX is much lower
than DS depending on the implementation used for both tech-
niques: the latter can be significantly accelerated with parallel-core
implementation, but it requires a cpu time significantly higher
(about 10 times in this case) than the ARMAX calibration and
simulation. Nevertheless, ARMAX requires a more complex
parameterization, e.g. to decide the order of the model time de-
pendency, while DS is mainly data driven and adaptive to different
data sets: in fact its setup usually needs minimal modification
when changing data set (see e.g. Oriani et al., 2014).

Compared to DS, classical time-series techniques like ARMAX
remain a more parsimonious option with a similar performance,
but only if the variables conditioning the simulation are complete
and highly informative. Since they are based on a specific cross-
correlation structure, they cannot deal with uninformed condi-
tioning variables. Moreover, their time dependency is usually based
on past values, ignoring the data subsequent to each gap. In these
cases, DS constitutes a more attractive approach since, as seen in
the first group of experiments, it uses the available portions of the
auxiliary data to condition the simulation, exploring in a rather
realistic way the remaining uncertainty. This makes the proposed
method a convenient alternative for gap-filling in the everyday
professional practice, with the only requirement of a representative
training data set. Future developments may include the use of other
types of auxiliary source of information, like for example a rainfall
amount time-series, to better represent lagged processes or
recurring events that introduce non-stationarity or periodicity in
the statistical properties of the target variable.
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