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The equivalent conductivity (Keq) of a binary medium is known to vary with the proportion of the two
phases, but it also depends on the geometry and topology of the inclusions. In this paper, we analyze
the role of connectivity and shape of the connected components through a correlation study between
Keq and two topological and geometrical indicators: the Euler number and the Solidity indicator. We
show that a local measure such as the Euler number is weakly correlated to Keq and therefore it is not
suitable to quantify the influence of connectivity on the global flux; on the contrary the Solidity indicator,
related to the convex hull of the connected components, presents a direct correlation with Keq. This result
suggests that, in order to estimate Keq properly, one may consider the convex hull of each connected com-
ponent as the area of influence of its spatial distribution on flow and make a correction of the proportion
of the hydrofacies according to that. As a direct application of these principles, we propose a new method
for the estimation of Keq using simple image analysis operations. In particular, we introduce a direct mea-
sure of the connected fraction and a non-parametric correction of the hydrofacies proportion to compen-
sate for the influence of the connected components shape on flow. This model, tested on a large ensemble
of isotropic media, provides a good Keq approximation even on complex heterogeneities without the need
for calibration.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The adoption of Darcy’s law for the description of a macroscopic
flow through porous media is commonly accepted, but the prob-
lem of finding a representative hydraulic conductivity arises in
the case of a heterogeneous medium. This type of problem and
the proposed solutions are concerning all the physical processes
which follow the same type of laws, e.g. electricity or heat conduc-
tance. Regarding hydrogeology, the subject is of primary impor-
tance for hydrocarbon reservoir and hydrological basins flow
modeling, since local parameterization needs to be conveniently
upscaled to represent large-scale properties in the model. The
upscaling can be done by substituting each volume of heteroge-
neous sediments with a homogeneous medium characterized by
an equivalent hydraulic conductivity (Keq) value in order to present
the same mean flow response. In a complex aquifer, this value is a
function of the small-scale hydraulic conductivities and the pro-
portion of each hydrofacies, but also of their sub-scale geometry
[1]. The arithmetic and the harmonic mean of the local conductiv-
ities are known to be the widest upper and lower Keq bounds
respectively [2]. These bounds are referred to as Wiener bounds
and correspond to the cases in which the flow is parallel or perpen-
dicular to a set of plain layers of different conductivities. In the case
of a binary and statistically isotropic medium, the Keq range can be
reduced to the Hashin–Shtrikman bounds [3]. The Effective Med-
ium Theory (EMT), based on Maxwell formula [4] on spherical
inclusions, gives an exact analytical solution for the effective con-
ductivity Keff of a very dilute suspension of inclusions in a homoge-
neous matrix of conductivity K0, in which the mean flow is uniform
and governed by the matrix. This formula, then developed by
Matheron [5], Dagan [6,7] and applied to bimodal formations by
Rubin [8], has been recently generalized for three-dimensional het-
erogeneous medium of log-normal distribution [9], giving an accu-
rate approximation for denser configurations of the inclusions [10],
different radius [11], shape and distribution [12]. The main limit of
this approach lies in some assumptions that are not satisfied when
the integral scale of the inclusions material is large with respect to
the size of the upscaled volume, the non-linear interactions be-
tween the inclusions become more and more important and the
estimation less accurate.

Many other approaches have been developed for the study and
estimation of Keq including for example, the stochastic theory ap-
plied to random multi-Gaussian fields [13,14], power averaging
equations [15], homogenization theory [16] and renormalization
[17,18]. For an extensive overview about these methods see
[19,20]. These techniques give accurate results for specific types
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of heterogeneities and do not provide a thorough topological and
geometrical analysis. Recently, the topology and geometry of the
sub-scale structure has been recognized to be of crucial importance
for the upscaled conductivity [21–25]. Knudby et al. [26] devel-
oped a model for the estimation of Keq in random binary fields con-
taining multiple inclusions. Their formula, derived from the
empirical observations of Bumgardner [27], is based on a static con-
nectivity measure: the mean distance between the inclusions along
the mean flow direction. This approach leads to good estimations
for fields presenting isolated inclusions however it is not flexible en-
ough to deal with more complex heterogeneities, for instance chan-
neled textures or non-convex inclusions penetrating each other.
Finally, Herrmann and Bernabé [28,29] proposed a site percolation
model for binary fields that accounts for the connectivity of the more
conductive hydrofacies as a function of its proportion. This paramet-
ric approach can be applied on known stochastic fields, otherwise it
has to be calibrated through physical or numerical experiments.

The aim of this paper is to analyze how the geometry and connec-
tivity of heterogeneities influence the equivalent hydraulic conduc-
tivity (Keq) of isotropic binary media. For this purpose, we perform an
analysis of the correlation between Keq and two topological and geo-
metrical indicators: the Euler number and the Solidity indicator.
This is done on a group of 2D binary fields which present a large var-
iability of these indicators. Furthermore, we propose a new method
based on image analysis to estimate Keq for isotropic binary fields.
The proposed algorithm is tested mainly on 2D fields, but an early
3D implementation of the algorithm is also presented. The proposed
approach is essentially empirical. It finds its roots in the correlation
studies and the analysis of the flow fields from numerical simula-
tions. This method allows to rapidly estimate the equivalent, or
‘‘block’’, conductivity on any given isotropic binary field, using no
information about the underling statistical model. The analysis is
conducted on 2D realizations of stochastic fields and 3D natural het-
erogeneities without assuming stationarity, mean uniform flow or
restrictions on the integral scale of the conductivity field.

The paper is organized as follows: in Section 2 the techniques
used for the generation of the binary conductivity fields, the com-
putation of the spatial indicators and the reference Keq values are
described. In Section 3, the results obtained from the correlation
studies are presented and discussed. In Section 4, the new formula
for the estimation of Keq is presented together with its application
on complex heterogeneities. Section 5 is devoted to conclusions.

2. Materials and methods

In this section, we describe the different steps required to make
a quantitative analysis of the influence of geometry and topology
on the equivalent conductivity and develop a Keq estimation model.
The preliminary part consists in the generation of several groups of
two-dimensional binary fields, presenting isotropic textures and
varying proportion, shape and connectivity values for each hydrof-
acies. This gives us a wide basis for our correlation study. Second,
the equivalent conductivity is computed performing flow simula-
tions on the generated fields and it is used as reference. Third,
the Euler number of the more conductive hydrofacies is calculated
for each field and adopted as connectivity indicator. Fourth, the
average Solidity indicator is computed and used as a geometrical
indicator. Finally, a correlation study between Keq and these indica-
tors is performed and an experimental algorithm to estimate Keq

based on image analysis is proposed as an application of the infor-
mation achieved through the correlation study.

2.1. Generation of binary fields

The binary fields used in this study are composed of a highly
permeable material (represented by the symbol HP in the rest of
the text, the value 1 in the binary fields and the white color in
the figures) with a hydraulic conductivity value kh ¼ 5� 10�2 (m/s)
and a less permeable one (LP, value 0, black color) with
kl ¼ 5� 10�6 (m/s). In the first part of the study the aim is to vary
one spatial indicator at a time (e.g. varying the Euler number and
keeping constant the Solidity indicator and the hydrofacies propor-
tion) in order to investigate its correlation with Keq. This is
achieved by adding randomly placed non-touching inclusions of
one hydrofacies on a clean background until the desired proportion
p of the inclusions is reached. In this way, one can control the level
of connectedness indirectly by varying the dimension, number and
minimal distance between the connected components, while keep-
ing a constant proportion p, or control the geometry choosing
among any type of shape (Table 1, tests 1 and 2). In the second part,
the aim is to test the new method of Keq estimation as systemati-
cally as possible on fields presenting both simple and complex
geometries. For this purpose, a group of 2D Bernoulli fields (Table 1,
test 3) is obtained by imposing different threshold values on 400
arrays composed of uniformly distributed pseudo-random
numbers. All the range of proportion p 2 ½0;1� is covered and the
obtained fields are statistically isotropic.

Moreover, we generate 10,800 binary images presenting vari-
ous types of texture with the following procedure (Table 1, test 4):

1. We start from a group of 20 realizations of a 2D multivariate
Gaussian random model, simulated using a Gaussian variogram
with a correlation length of 40 pixels.

2. Using the technique proposed by Zinn and Harvey [22], each
realization is transformed to obtain two different fields: in the
first one, continuous channels are formed by the minima of
the 2D multivariate Gaussian random function and, in the sec-
ond one, the same type of structures are formed by the maxima.

3. 18 combinations of coupled threshold values are imposed on
each field to obtain different types of binary, generally well con-
nected, distributions. In order to maximize the geometrical and
topological variability among the binary images, the threshold
values are computed as T ¼ ðDþ SÞ=2, where D is a vector of
values taken at regular intervals in the range of the generated
variable and S is a vector of equally distant quantiles of its
empirical probability distribution.

4. Finally, each of these images is edited using the matlab function
Randblock (Copyright 2009 Jos vander Geest), which divides the
image in squares of the same size and randomly mixes them.
We use this tool to obtain several fields with the same material
proportions but different geometries and connectivities. This
operation is repeated 10 times, progressively reducing the
square size to obtain finer textured mosaics.

This ensemble of techniques allows to cover the space of the
possible ðp;KeqÞ solutions widely (see Section 4.1). Even if the start-
ing images are isotropic, using Randblock may cause the formation
of anisotropic media. For this reason, the fields presenting a ratio
between the principal components of the reference Keq tensor
(see Section 2.2) out of the interval (0.5–2) are excluded from the
study. This operation reduces the number of fields to 10,216.

Finally, the resolution of each image is augmented from
100� 100 to 400� 400 pixels in order to reduce the numerical
error in the flow simulations that may be caused by connected
components presenting a width inferior to 3 pixels.

The last test (Table 1, test 5) is done on 2196 3D binary fields
of size 100� 100� 100, obtained from an ensemble of micro-
computerized-tomography (micro-CT) images of micro-metric
sandstone, carbonate, synthetic silica and sand samples (Imperial
College of London [30]). The aim of this test is not to give a credible
Keq estimation related to these materials, which should be done
using pore-scale modeling techniques, but to have some initial



Table 1
Summary of the generated fields, with the imposed values of proportion (p), Euler
number (E) and Solidity indicator (S). The values may be fixed ({�}) or vary in a certain
interval ((�),[�), etc.). The intervals of possible values for a finite raster image are
shown in the header.

Test Description Number of
images

p [0,1] E
ð�1;þ1Þ

S
(0,1]

1 Rectangular LP and HP
inclusions

960 {0.81,
0.18}

ð�1;þ1Þ {1}

2 LP and HP inclusions,
various shapes

1680 {0.64,
0.36}

{�40,41} (0,1]

3 Bernoulli fields 400 [0,1) a a
4 Complex geometries 10216 (0,1) a a
5 3D micro-CT images 2196 (0,1) a a

a = The parameter is not controlled.
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feedback of the application of the principles exposed in this paper
on three-dimensional isotropic fields. This group includes several
natural binary textures, showing different levels of connectivity
of the two materials. To exhaustively cover the possible range of
proportion, the phase-inversion of the fields has also been consid-
ered, but only the isotropic ones have been selected, according the
same criterion used for test 4.
2.2. Estimation of the equivalent conductivity using flow simulations

Following Rubin and Gómez-Hernández [31], we compute the
equivalent conductivity tensor of each binary field by solving
numerically the following equation:

1
V

Z
V

udv ¼ �Keq
1
V

Z
V
rhdv

hui ¼ �Keqhji; j ¼ rh
ð1Þ

where V is the total volume of the medium, u the specific flux vector
and Keq the equivalent conductivity tensor. For 2D fields, two
numerical flow simulations are performed on a regular squared grid
using the finite element method (FEM) implemented in the Ground
Water library [32]. It has to be remarked that FEM applied to this
type of grid gives a discrete solution in

QN
i¼1ðdi þ 1Þ points for a

N-dimensional local conductivity matrix of size d. This solution rep-
resents also the diagonal flow paths between the elements, in
accordance to the criterion adopted for the connectivity measures
used this paper (see Section 2.3).

Permeameter-type boundary conditions are applied: the first
simulation has a prescribed head h ¼ x along the vertical bound-
aries and no-flow conditions along the horizontal ones. This leads
to a horizontal main flow direction with the following mean gradi-
ent and mean velocity vectors:

hji ¼
1
0

� �
hui ¼

Kxx

Kyx

� �
ð2Þ

Performing a second flow simulation with the same type of bound-
ary conditions but turned perpendicularly, we obtain the complete
equivalent conductivity tensor from (1):

Keq ¼
KxxKxy

KyxKyy

� �
ð3Þ

The tensor is computed similarly in 3D fields obtaining a 3� 3
matrix. Keq is symmetric and diagonal for isotropic fields, which is
the case for the ones used in this paper (with a reasonable approx-
imation, see Section 2.1). The principal components of the obtained
Keq tensor are therefore considered the reference Keq values.
2.3. Connectivity and the Euler number

In a digital image, which is a squared tessellation of a
continuous space, connectivity can be related to the concept of
path-connectedness through the definition of neighborhood. A
2D digital image is an array P of lattice points having positive
integer coordinates x ¼ ðx; yÞ, where 1 6 x 6 M and 1 6 y 6 N.
Following [33], for each point ðx; yÞ, we consider two types of
neighborhoods: the 4-neighbors, which are the four horizontal
and vertical adjacent points ðx; y� 1Þ ðx� 1; yÞ, and the 8-neighbors,
which are the
4-neighbors plus the points ðxþ 1; y� 1Þ and ðx� 1; y� 1Þ. A path
between two points p and q of P can be defined as a sequence of
points ðpiÞ ¼ ðp0; p1; . . . ; pnÞ such that p0 ¼ p; pn ¼ q and pi is a
neighbor of pi�1; 1 6 i 6 n. G being a non-empty subset of P,
two points p and q of G are said to be connected in G (p$G q) if a path
ðpiÞ with i ¼ 0;1; . . . ;n exits from p to q such that ðpiÞ# G. Accord-
ing to the type of neighborhood adopted in defining the path, we
can talk about 4 or 8-connected points.

For a matter of consistency in connectivity (the Jordan curve
theorem [34]), we cannot consider the same type of neighborhood
for both G and its complement in P (�G). Therefore, for a two-
dimensional square lattice, the possible connectivities are the
½8;4�, i.e. considering the 8-neighbors for G and the 4-neighbors
for �G and the opposite one ½4;8�. In this paper, where the G and �G
represent HP and LP respectively, the ½8;4� connectivity is adopted,
since punctual contacts of HP result to be locations of high-velocity
flow paths, as seen from the output velocity fields of the flow sim-
ulations. For the 3D case, the ½26;6� connectivity is adopted, i.e.
considering all the voxels in the 3� 3 neighborhood cell for the
HP material and only the ones sharing an entire face for the LP
material.

Moreover, the largest disjoint non-empty subsets of G satisfying
the equivalence relation p$G q are called connected components of G.
Roughly speaking, a connected component is an isolated portion of a
given material. A connected component of �G which does not contain
the borders of P, i.e. totally surrounded by G, is called a hole in G.

The Euler number is a topological indicator which quantifies
the connectivity of a space (representing a medium here) in n
dimensions. On the basis of the previous definitions, for a
two-dimensional subset G of P, it can be defined by the following
relation [35]:

E ¼ n0 � n1; ð4Þ

where n0 is the number of connected components of G and n1 the
total number of holes in G. Well connected spaces have negative E
values, whereas poorly connected spaces have positive values. For
example, if we add a path between two connected component
obtaining a single one, we reduce n0, or, if we add two distinct
paths, we obtain a single connected component with a hole inside,
reducing n0 and augmenting n1. Doing this kind of operations leads
to lower E values and an increased connectivity.

In this paper, the computation of E is performed using the mat-
lab function bweuler (Copyright 1993–2005 The MathWorks, Inc.,
based on [36]). For topological and geometrical measures in two-
dimensional digital images see [33,37].

2.4. Computation of the Solidity indicator

In a binary field, the flow is influenced by the two hydrofacies
distributions. This level of interaction is not only a function of
the proportion and connectivity but also of the shape of the con-
nected components. This is obvious when looking at Fig. 1, which
represents four binary distributions with a HP matrix and LP inclu-
sions. Fields 1 and 3 have similar p and E values and so have fields 2
and 4. Their respective specific flux fields are shown below, the
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boundary conditions are described in Section 2.2 such that the
average hydraulic gradient magnitude is hj j ji ¼ 1, with the main
flow directed from top to bottom. In these conditions, the portions
which are far from the hydrofacies transition present a local spe-
cific flux magnitude j u j� kh (gray areas) for the HP material and
j u j� kl (black areas) for LP material, i.e. they correspond to undis-
turbed zones where the flow response is the same as a homoge-
neous medium. On the other hand, the HP material near the LP
inclusions is subjected to a local gradient j j j – 1 and a subse-
quent increase or decrease of k, creating higher (red) or lower
(blue) velocity zones. In particular, if the inclusions are convex,
the red and blue zones are equally present in the medium, com-
pensating their influence to the mean flow (fields 1 and 2). On
the contrary, if the shape of the inclusions is very articulated (fields
3 and 4), the blue zones cover a wider region than the red ones and
the mean flow through the medium is low.

The opposite phenomenon is present in fields composed of a LP
matrix with HP inclusions: when their shape is more articulated,
they allow the flow to force its way up the LP matrix, creating high-
er velocity paths.

To quantify this effect, we propose to use the Solidity indicator S.
It is defined for a given connected component CC as the ratio be-
tween its area (A) and its convex hull (H), which corresponds to
the smallest convex polygon containing CC. S varies from values
close to 0 for very articulated shapes, to 1 for convex shapes. In
our correlation study, we consider the average value over all the
inclusions:

S ¼ 1
N

XN

i¼1

Ai=Hi ð5Þ

where Ai is the area of the ith inclusion, Hi its convex hull and N the
total number of inclusions. This is computed for LP inclusions in a
HP matrix and vice versa. The indicator S is calculated using the
matlab function regionprops (Copyright 1993–2008 The Math-
Works, Inc., based on [38]).

3. The impact of connectivity and shape on Keq

In this section the influence of connectivity and shape of the
connected components on the equivalent conductivity is investi-
gated through the correlation study with the Euler number and
the Solidity indicator.
Fig. 1. Example of binary distributions with non conductive inclusions: with convex (
magnitude field with the main flow directed from top to bottom.
3.1. Correlation between the Euler number and the equivalent
conductivity

Fig. 2 shows the results of test 1. In this numerical experiment,
the equivalent conductivity is only weakly correlated with the
Euler number. Inside each of the two groups of fields (Fig. 2 top
and bottom respectively), Keq presents only small variations due
to the position of the connected components with respect to each
others or to the boundaries of the fields. This observation is sup-
ported by the fact that this variability is strongly reduced going
toward higher absolute E values, where the number of inclusions
increases and the mean distance among each other becomes con-
stant, as well as in the case of E ¼ 0 or E ¼ 1, where there is only
one inclusion. More importantly, this experiment is clear evi-
dence of the inefficiency of any local connectivity measure in pre-
dicting a variation of the mean global flow: any indicator based
on the neighborhood of each pixel or on the number of connected
components, as the Euler number does, would show here a dra-
matic distance between the fields, which does not correspond
to a significant Keq variation. On the contrary, there exists a con-
siderable variation in the mean global flow between the two
groups, related to the presence in the second group of the perco-
lating HP cluster, i.e. the portion of HP connecting the opposite
borders of the fields. Its presence determines a Keq increase of
four orders of magnitude. In conclusion, a connectivity measure
relying on the quantification of the percolating HP cluster (see
the model proposed in Section 4) may lead to a better prediction
of the mean global flow through the medium. It has to be noted
that such a measure is still based on the topological definition of
path-connectedness, but it is applied globally, since it requires
isolation of the HP connected components which form connected
paths between the boundaries of the entire medium. Moreover, it
involves a quantification of the number of pixels belonging to this
region, an operation which goes beyond the topological character-
ization of the domain.

3.2. Correlation between the Solidity indicator and the equivalent
conductivity

The results of test 2 (Fig. 3) are the following: when the propor-
tion of the two hydrofacies is kept constant, the shape of the inclu-
sions has a significant influence on Keq and shows a clear
1) and (2) and articulated (3) and (4) shapes. Below: the respective specific flux



Fig. 2. Test 1, correlation between E (computed on HP) and Keq (geometric mean of x and y components): HP inclusions in a LP matrix (top), HP matrix presenting LP inclusions
(bottom). A hybrid log/linear scale is adopted in order to show E ¼ 0.
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non-linear correlation with it. In particular, fields presenting LP
inclusions show a positive correlation between Keq and S,
while a negative correlation is observed in fields with HP
inclusions. The small variability inside each group of fields
presenting the same S can be explained, similarly to test 1 (Sec-
tion 3), with the influence of the relative position of the connected
components, still present but less significant compared to the role
of the shape.

A strong advantage of the Solidity indicator is that it is dimen-
sionless and invariant to the dimensions of the connected compo-
nents, thus easy to introduce as a parametric shape correction.
Moreover, it is less prone to local noise, since the convex hull of
a connected component does not change significantly depending
on its small-scale features as little holes or rugged surfaces. On
the other hand, being a local measure, it should be weighted
accounting for each connected component area with respect to
the field size to obtain a more precise parametric measure. In case
of finer textures, this operation may significantly raise the compu-
tation time. In general, the important finding given by this correla-
tion study is that the area of influence of each inclusion can be
represented by its convex hull and different geometries may signif-
icantly influence the Keq value.



Fig. 3. Test 2, correlation between S and Keq (geometric mean of x and y components). S is computed on HP inclusions (top) and on LP inclusions (bottom) respectively.
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4. A new formula for the estimation of the equivalent
conductivity

On the basis of the results obtained by the correlation studies
shown in this paper (Section 3), we propose a new technique of
Keq estimation based on image analysis (KIA).

According to bond percolation theory [39], increasing the prob-
ability of having an ‘‘open site’’ on a random infinite graph, large
clusters of open sites begin to form until a specific threshold is
reached (the percolation threshold) and an infinite path exists
through the entire graph. This principle is applicable to binary ran-
dom fields, where infinite connected components of both materials
can exist or coexist. In the case of finite fields representative of an
ergodic process, we can consider a connected component infinite if
it touches two opposite borders of the field, this is called infinite
cluster in the rest of the paper.

The Herrmann and Bernabé (HB) model [28], which inspires the
new technique KIA, is based on the quantification of the infinite
cluster of the more conductive material (HP), which brings the pri-
mary contribution to the overall flow through the medium. In par-
ticular it is constituted by the following steps:

1. first it makes an estimation of the proportion of the total med-
ium occupied by the infinite HP cluster based on a parametric
power law derived from percolation theory [40];

2. then it considers the remaining part of the medium as a HP-LP
mixture and approximates its equivalent conductivity using the
lower Hashin–Shtrikman (LHS) bound [3];
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3. finally it approximates the overall equivalent conductivity
using the upper Hashin–Shtrikman (UHS) bound [3] of the
resulting mixture.

As it has been discussed by Herrmann and Bernabé [29], the
limits of this method are that it considers both the infinite HP clus-
ter and the HP-LP mixture as statistically isotropic and homoge-
neous and it does not take into account any interaction between
HP and LP materials. Furthermore, the quantification of the con-
nected HP fraction based on the parametric approach needs to be
calibrated over a range of experimental data and still shows large
errors around the percolation threshold. On the contrary, the KIA

model features a direct identification of the infinite HP cluster
via image analysis and operates a correction of the proportion
substituting each inclusion with its convex hull. Moreover it ap-
plies the HS bounds approximation to the infinite cluster and the
isolated part separately, considering them both mixtures of HP
and LP materials. In this way, any parametric law and spatial mea-
sure is avoided, taking as inputs the field image and the conductiv-
ity value of the two materials only. The algorithm is described in
details below (see also Fig. 4).

Let us consider a binary medium as represented by the spatial
categorical variable ZðxÞ : N2 # 0;1f g with xk ¼ 1; . . . ;Nk and
k ¼ 1;2; describing the local conductivity (0 = low conductivity,
1 = high conductivity) in two dimensions. The HP and LP materials
can be defined as subsets of the finite discrete coordinate space
X � N2:

HP ¼ x 2 X j ZðxÞ ¼ 1f g
LP ¼ x 2 X j ZðxÞ ¼ 0f g

ð6Þ

Moreover, the labeling of a generic subset G of X (G may represent
here the spatial distribution of a given material or a mixture of
materials) is a transformation which assumes values in
i ¼ 1;2; . . . ; I for each ith connected component CCi of G and can
be defined as follows:

LGðxÞ : N2 # 0 [ if g LGðxÞ ¼
i if x 2 CCi

0 if x R G

�
ð7Þ

Finally, the convex hull transformation of G, which is the set of con-
vex hulls of each CCi of G is defined as follows:

ConvðGÞ ¼
[I

i¼1

Hi ð8Þ

where Hi is the convex hull of CCi.
Fig. 4. Schematic illustration of the KIA algorithm, the images show the result of each ste
not considered.
Based on these definitions, given the same binary distribution
ZðxÞ, the algorithm to estimate the kth principal component of
the Keq tensor consists of the following steps:

1. HP is labeled in order to distinguish its connected components:
LHPðxÞ;

2. the infinite HP cluster C is isolated looking at the labels (A and B)
which are present on both the boundaries of the field perpen-
dicular to the kth direction:
p, indica
A ¼ LHPðxÞ j xk ¼ 1f g
B ¼ LHPðxÞ j xk ¼ Nkf g
C ¼ x 2 HP j LHPðxÞ 2 ðA \ BÞ ^ LHPðxÞ – 0f g

ð9Þ
3. the convex hull transformation is applied to C in order to
approximate the area where the flow is influenced by its pres-
ence (this is a mixture of LP and HP materials): C	 ¼ ConvðCÞ;

4. the proportion of LP in C	 is corrected extending LP to its convex
hull transformation:
ZðConvðLP \ C	ÞÞ ¼ 0 ð10Þ
5. the equivalent conductivity Kc of C	 is approximated to the UHS
bound [3]:
Kc ¼ kh þ
ð1� p	Þ

1
kl�kh
þ p	

2kh

ð11Þ
where p	 is the proportion of HP in C	;
6. the complement of C	 is considered the non-percolating part of

the medium: M ¼ �C	;
7. the proportion of HP in M is corrected extending HP to its con-

vex hull transformation:
ZðConvðM \ HPÞÞ ¼ 1 ð12Þ
8. the equivalent conductivity Km of M is computed using the LHS
bound [3]:
Km ¼ kl þ
p

1
kh�kl
þ ð1�pÞ

2kl

ð13Þ
where p is the proportion of HP in M;
9. finally, the estimated equivalent conductivity KIA of the whole

medium is approximated using again the UHS bound:
KIA ¼ Kc þ
ð1� pcÞ

1
Km�Kc

þ pc
2Kc

ð14Þ
where pc is the proportion of C	 with respect to the whole medium.
ted by the corresponding number. The gray shading indicates parts that are



54 F. Oriani, P. Renard / Advances in Water Resources 64 (2014) 47–61
The algorithm is implemented in the matlab KIA package, freely
available on request. The labeling and the convex hull substitution
are performed using the matlab functions bwlabel and bwconvhull
(Copyright 1984–2011 The MathWorks, Inc., based on [38,41]),
according to the [8,4] connectivity criterion (see Section 2.3). This
algorithm is applied to each direction, giving an estimation of the
principal components of the Keq tensor. In case of absence of the
infinite HP cluster or the non-percolating zone (C ¼£ or
M ¼£), a part of the process is avoided, directly imposing
KIA ¼ Km or KIA ¼ Kc respectively.
4.1. Estimation of Keq on complex heterogeneities

The results of test 3 (Fig. 5) demonstrate the efficiency of the
proposed method on a group of 400 Bernoulli fields covering
the whole range of proportions p. HB	 refers to a modification of
the HB model, necessary to apply to this type of field, not knowing
all the parameters requested as input of the original algorithm.
More precisely, it consists of making a direct quantification of
the infinite HP cluster instead of using a parametric law, i.e. point
1 in HB algorithm is substituted by point 2 of the KIA algorithm (see
Section 4). The results of the HB	 model are clearly divided in two
distinct groups (Fig. 5): Keq is generally overestimated for the fields
that present an infinite HP cluster (fields c,d,e,f for instance), while
there is an underestimation for the ones which have not passed the
percolation threshold (fields a and b). Results are clearly improved
by the KIA model, which incorporates the shape correction.

Test 4 (Fig. 7) is an attempt to verify the validity of the KIA model
on more complex geometries. Fig. 6 shows that the considered fields
can have very different Keq values for the same proportion and a
wide range of the possible solutions is covered. There are two dis-
tinct groups of fields, corresponding mainly to KeqðxÞ values above
10�3 and below 10�4 respectively. The images of Fig. 7, linked to
the alphabetical references in Fig. 6, suggest that this separation
may be linked to the percolation threshold: fields c; d; e and i pres-
ent continuous HP (white) paths connecting the opposite borders in
the horizontal direction, while fields a; b; f ; g;h; j do not. Moreover,
some evidence in support of the concepts presented in Section 3 is
present: field d presents a p value slightly inferior to field h and HP
have the same local level of connectedness in both fields (visually
similar Euler number values). Nevertheless, HP is globally more con-
nected in field d, being beyond the percolation threshold. This leads
to a keqðxÞ value one order of magnitude higher than in field h.

On the contrary, field j gives a similar result to h in terms of
mean global flow although presenting a dramatically lower p va-
lue: this difference is compensated by the higher convexity of HP
connected components (lower Solidity indicator) in j, having a po-
sitive influence on flow.

Fig. 7 shows that the KIA model generally gives reasonable Keq

estimations, remaining in the same order of magnitude as the ref-
erence values obtained from the simulations. The less accurate
estimations seem to correspond to fields in the proximity of the
percolation threshold.

In terms of performance, for test 3, where the texture is finer
and the morphological operations are more time demanding, the
average computation time ratio between the numerical simula-
tions and the KIA model is 7.8. This means that the algorithm is
at least 7 times faster than a numerical finite-elements flow simu-
lation, without considering the pre- and post-processing opera-
tions needed by the latter. In regards to test 4, the complexity
and the large quantity of the fields have demanded the use of a
parallel-computing 64 cores cluster, taking several hours to solve
the flow simulations. On the contrary, a linear matlab implementa-
tion of the KIA model provides the estimation for all the fields in
less than 1 h and a half, using an ordinary personal computer.
4.2. The role of inclusions shape in 3D

The flow through a three-dimensional medium is less con-
strained in 3D than in 2D, therefore the influence of the connected
components shape on the global flow significantly depends on
their orientation and its quantification is not straightforward. Let
us consider, for example, a cross-shaped LP torus inclusion sur-
rounded by a HP matrix, the global flow following the x direction
as in Fig. 8. The hydrogeological parameterization and boundary
conditions are the same as the previous experiments (see Sections
2.1 and 2.2). The chosen shape presents concavities in both the in-
ner and the outer part, which are supposed to have a certain influ-
ence on the local flow of the convex region. There are two extreme
cases for which the flow response is different according to the ori-
entation of the inclusion:

1. In Fig. 8, case 1, the torus minor axis (z direction) is perpendic-
ular to the main flow direction x. The local flow deviates as it
encounters the outer surface of the inclusion. Consequently,
lower velocity (blue–white) regions appear in the x-component
of the specific flux field beside both inner and outer concavities
of the torus.

2. In Fig. 8, case 2, the torus minor axis (x direction) is parallel to
the main flow direction x. The fluid is free to pass through all
the concavities without being perturbed by the surrounding
LP material. The influence on the local flow in the nearby HP
matrix is therefore minimal.

In the general case, a rule to recognize which part of the concav-
ity influences the local flow can be the following: only concave sur-
face portions non-parallel to the main flow direction generate a
lower velocity region in the adjacent HP regions. For example, in
case 1 (Fig. 8), a consistent portion of the concave surface is per-
pendicular to the main flow direction, having a clear influence on
the local flow. As one can imagine, an even stronger influence is
played by closed concave surfaces, e.g. the inside of a hollow
sphere. Based on these observations, to estimate the kth Keq com-
ponent, a correction of the LP proportion accounting only for the
convex hull of the concave surfaces non-parallel to the kth direc-
tion is needed. A good approximation of this concept is given by
a novel image analysis operation called pseudo-convex hull transfor-
mation: it computes the union of the convex hull transformation of
all the 2D sections normal to each principal direction, except the
kth one. Let us consider a generic subset G of the 3D coordinate
space x 2 N3 with xi ¼ 1; . . . ;Ni, being Ni the size of the domain
in the ith direction. Following the notation of Section 4, the pro-
posed operation is defined as follows:

PconvðG; kÞ ¼
[
i–k

[Ni

j¼1

ConvðG \ xi ¼ jf gÞ; ð15Þ

where G \ xi ¼ jf g is the jth 2D slice of G, normal to the direction i.
The kth direction is excluded from the operation, being the one for
which the parallel concavity has to be ignored.

Fig. 8 shows that the Pconvð�Þ transformation approximates
fairly well the volume of influence on the local flow of the cross-
shaped torus according to its orientation. In particular, in field 2,
where all the concave surface is parallel to the x direction, no vol-
ume augmentation occurs, reflecting the almost null influence of
the concavity on the local flow. Fig. 9 illustrates the efficiency of
the operator on a more complex shape: again, only the concave
portions of surface non-parallel to the main flow direction produce
a low velocity area, which is approximated by the Pconvð�Þ trans-
formation. Finally, it has to be remarked that for closed concave
surfaces Convð�Þ and Pconvð�Þ have the same result.



Fig. 5. Test 3, scatter-plot of the reference Keq values as a function of the estimated ones, using the KIA model and the HB	 model. The bisector line indicates the exact
estimation. Some examples of the fields are shown on the right, with link to the corresponding data.
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The principle described above is restricted to LP inclusions,
since the influence of HP inclusions shape on the nearby LP matrix
is radically different. Fig. 10 shows the same type of fields of Fig. 8
but with an inversion of the materials. The influence of the concav-
ity itself on the local flow does not vary significantly with the ori-
entation, in both cases the concavity does not generate a high
velocity region in the nearby HP matrix. On the contrary, the orien-
tation of the whole inclusion has an influence on the local flow:
when it is elongated towards the main flow direction (field 1),
the local flow is canalized into the inclusion and a higher velocity
path forms. This effect is negligible on statistically isotropic fields,
since the local anisotropy is averaged over the global hydrofacies
distribution, i.e. there is not a predominant orientation of the con-
nected components. Anyway, as shown in 2D (see Section 2.4), the
level of concavity of HP inclusions is still supposed to play a signif-
icant role in 3D, reducing the distance between each others, thus
incrementing the presence of higher velocity paths. For this reason,
the Convð�Þ transformation can still be applied to the LP inclusions
in 3D.

4.3. The role of the infinite cluster in 3D

The presence of the infinite cluster still plays a significant role
in 3D fields, as it implies a sharp augmentation of the Keq value.
Similarly to the 2D case, the infinite cluster can be detected and
isolated from the rest of the field using a 3D labeling function,
but only a limited part of it corresponds to higher velocity
flow paths. Let us consider for example the conductivity field of



Fig. 6. Test 4, scatter-plot of the x component of Keq as a function of p (proportion of
the more conductive hydrofacies). The two curves represent the HS bounds. The
alphabetical references correspond to the fields in Fig. 7.

Fig. 7. Test 4, scatter-plot of the reference Keq values as a function of the estimated ones,
of the fields are shown on the right, with link to the corresponding data.
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Fig. 11, on which the flow field has been computed with the main
flow direction following x, the hydrogeological parameterization
and boundary conditions being the same of the previous experi-
ments (see Sections 2.1 and 2.2). The HP material inside the infinite
cluster occupies 75% of the total field, while only 16% is consti-
tuted by higher velocity regions (vx P 0:05 ðm=sÞ). Moreover, the
figure shows that these regions correspond to portions of the infi-
nite cluster where the section perpendicular to the local flow direc-
tion is reduced. In other words, the higher velocity flow paths are
limited by the presence of bottlenecks inside the HP material of the
infinite cluster, therefore the HP proportion needs to be conve-
niently reduced in order to quantify the actual fraction of the med-
ium which allows a high velocity percolation process. In 2D, this is
achieved by applying the convex hull transformation of the LP
material inside the infinite cluster (point 4 of the KIA algorithm).
This operation leads to accurate Keq estimations on isotropic fields,
but it is not applicable on the 3D case, since it may lead to consider
a LP region fully surrounding the HP material and causing the total
cancelation of the latter. Finding an efficient way to correct the HP
proportion (p	) inside the infinite cluster is not trivial, a first
approximation proposed in this paper is to consider the minimum
p value found among all 2D sections perpendicular to the consid-
ered flow direction. Let us consider a generic subset G, representing
the infinite cluster, of the 3D coordinate space x 2 N3 with
using the KIA model. The bisector line indicates the exact estimation. Some examples



Fig. 8. 3D image of a cross-shaped-torus LP inclusion surrounded by a HP matrix (non-visible), its minor axis being parallel to: (1) the z direction and (2) the x direction. In
both cases, the pseudo-convex hull transformation PconvðLP; xÞ and the specific flux x-component vx are shown. The main flow direction is x. For a matter of visibility, regions
presenting vx > 0:04 (m/s) (undisturbed HP matrix) are omitted from the flow field image.

Fig. 9. 3D image of a LP inclusion surrounded by a HP matrix (non-visible). The pseudo-convex hull transformation PconvðLP; xÞ and the specific flux x-component vx are
shown. The main flow direction is x. For a matter of visibility, regions presenting vx > 0:04 (m/s) (undisturbed HP matrix) are omitted from the flow field image.
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Fig. 10. 3D image of a cross-shaped-torus HP inclusion surrounded by a LP matrix (non-visible), its minor axis being parallel to: (1) the z direction and (2) the x direction. In
both cases, the specific flux x-component vx is shown. The main flow direction is x. For a matter of visibility, regions presenting vx < 6:5� 10�06 (m/s) (undisturbed LP matrix)
are omitted from the flow field image.

Fig. 11. Example of a 3D binary field presenting a large infinite cluster: LP (black) and HP (white) materials distributions on the left, HP material (blue) and higher velocity
regions (gray) on the right, obtained from a flow simulation along the x direction and isolating the regions with vx P 0:05 (m/s). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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xk ¼ 1; . . . ;Nk and k ¼ 1;2;3. The correction of G to estimate the kth
Keq component is defined as follows:
p	 ¼ min pðG \ xk ¼ jf gÞf g; j ¼ 1; . . . ;Nk; ð16Þ
where pð�Þ is the computation of the HP proportion and Nk the
dimension of the domain along k. In this way, the proportion of
the infinite cluster is reduced considering the presence of
bottlenecks.
4.4. An early 3D implementation

To test the validity of the principles established in Sections 4.2
and 4.3, and following the notation of Section 4, an early 3D ver-
sion of the KIA algorithm is proposed here.

Let us consider a 3D binary medium as represented by the spa-
tial categorical variable ZðxÞ : N3 # 0;1f g with xk ¼ 1; . . . ;Nk and
k ¼ 1;2;3; describing the local conductivity (0 = low conductivity,
1 = high conductivity). The estimation of the kth principal compo-
nent of the Keq tensor consists of the following steps:
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1. HP is labeled in order to distinguish its connected compo-
nents: LHPðxÞ;

2. the infinite HP cluster C is isolated looking at the labels (A
and B) which are present on both the boundaries of the field
perpendicular to the kth direction:
A ¼ LHPðxÞ j xk ¼ 1f g
B ¼ LHPðxÞ j xk ¼ Nkf g
C ¼ x 2 HP j LHPðxÞ 2 ðA \ BÞ ^ LHPðxÞ– 0f g

ð17Þ
3. LP is labeled as well: LLPðxÞ
4. the LP inclusions F are isolated looking at the labels which

are absent from both the field boundaries (D and E) perpen-
dicular to the kth direction:
D ¼ LLPðxÞ j xk ¼ 1f g
E ¼ LLPðxÞ j xk ¼ Nkf g
F ¼ x 2 LP j LLPðxÞ R ðD [ EÞ ^ LLPðxÞ– 0f g

ð18Þ
5. the proportion of F is corrected extending it to its pseudo-
convex hull transformation:
ZðPconvðF; kÞÞ ¼ 0 ð19Þ
6. the convex hull transformation is applied to C in order to
approximate the area where the flow is influenced by its
presence (this is a mixture of LP and HP materials):
C	 ¼ ConvðCÞ
7. the HP proportion p	 in the infinite cluster C	 is calculated
with the following formula:
p	 ¼ min pðC	 \ xk ¼ jf gÞ; j ¼ 1; . . . ;Nk;f ð20Þ
8. the equivalent conductivity Kc of C	 is approximated to the
UHS bound [3]:
Kc ¼ kh þ
ð1� p	Þ

1
kl�kh
þ p	

3kh

ð21Þ
9. the complement of C	 is considered the non-percolating part
of the medium: M ¼ �C	

10. the proportion of HP in M is corrected extending HP to its
convex hull transformation:
ZðConvðM \ HPÞÞ ¼ 1 ð22Þ
11. the equivalent conductivity Km of M is computed using the
LHS bound [3]:
Km ¼ kl þ
p

1
kh�kl
þ ð1�pÞ

3kl

ð23Þ
where p is the proportion of HP in M;
12. finally, the estimated equivalent conductivity KIA of the

whole medium is approximated using again UHS bound:
KIA ¼ Kc þ
ð1� pcÞ

1
Km�Kc

þ pc
3Kc

ð24Þ
where pc is the proportion of C	 with respect to the whole medium.

In case of C ¼£ or M ¼£, a part of the process is avoided, di-
rectly imposing KIA ¼ Km or KIA ¼ Kc respectively. The constant in
the HS bounds formula is changed according to the dimensionality.

The algorithm is part of the matlab KIA package, freely available
on request. The 3D labeling is performed using the matlab function
bwlabeln (Copyright 1984–2011 The MathWorks, Inc., based on
[42]) and the 3D computation of the convex hull is based on
[38], according to the [26,6] connectivity criterion (see Section 2.3).

Test 5 (Fig. 12) checks the validity of the KIA algorithm on 3D
natural isotropic heterogeneities (see Section 2.1). The given Keq

estimation are less accurate than in the 2D case, although generally
remaining in the same order of magnitude of the reference. In par-
ticular, fields constituted by a LP matrix and HP inclusions or vice
versa (Keq values toward the extremes) show more accurate esti-
mations, confirming the validity of the operations applied to this
type of fields. On the contrary, fields closer to the percolation
threshold (reference values around 10�3) present a more consis-
tent overestimation of Keq. This result suggests that a more effi-
cient image analysis operation is needed to correct the
proportion of the infinite cluster. In particular, the overestimation
may be due to the fact that p	 is quantified considering a whole 2D
section of C	, instead of being restricted to the portions corre-
sponding effectively to direct paths connecting the two opposite
boundaries of the field. For this purpose, a future aim is to find a
combination of fast and robust image analysis operations to select
the minimum diameter found on each percolating branch of C	 and
derive from it a more correct p	 value.
5. Conclusions

The aim of this work was to analyze the influence of the geom-
etry and the topology on the equivalent hydraulic conductivity
(Keq) of binary media, since in many cases the measure of the pro-
portion of the hydrofacies is not sufficient to make a reliable Keq

estimation.
The correlation between the Euler number and Keq has been

tested on a large group of more than 900 isotropic fields presenting
low permeability inclusions in a highly permeable matrix and vice
versa, keeping constant the proportion and the shape of the
hydrofacies. The results have shown a bad correlation between
the Euler number and Keq, with a small variability of Keq being pri-
marily controlled by the relative position of the inclusions, as al-
ready described by Knudby et al. [26]. This is a clear signal that a
pure topological connectivity measure may not be suitable to catch
the connectedness related to flow properties. Moreover, this result
demonstrates that any local measure solely based on the number
of connected components or on the neighborhood of each pixel
cannot catch the global level of connectedness of the medium,
which is the main factor of control of the global flux after the pro-
portion of the hydrofacies.

The Solidity indicator, calculated for each connected component
as the ratio between its area and the area of its convex hull, has
presented an interesting non-linear correlation with Keq that was
not discussed previously to our knowledge. This relationship
shows that the area of influence of each inclusion is related to its
convex hull, as one can intuitively expect.

In order to verify the validity of these principles, a new model of
estimation of the equivalent conductivity based on Image Analysis
(KIA) has been proposed. Its most important features are: (i) the di-
rect quantification of the connected fraction against the uncon-
nected one; (ii) the substitution of each inclusion by its convex
hull. In this way, the estimation takes into account three funda-
mental aspects of the spatial distribution: the proportion of the
hydrofacies, the connectivity and the geometry of the inclusions.
The resulting model, tested on 400 Bernoulli fields and 10,216
fields presenting a great variety of geometries, shows a good reli-
ability and numerical efficiency on isotropic 2D fields.

The proposed 3D version of the KIA algorithm is based on the
same main principles as the 2D implementation, with the intro-
duction of two different image analysis operations: (i) the pseu-
do-convex hull transformation to account for the different
behavior of the low permeability inclusions and (ii) a correction
of the highly permeable material proportion inside the percolating
cluster, based on the minimum value found on the 2D sections nor-
mal to the considered flow direction. The latter operation is just a
first approximation of a more complex analysis that should take



Fig. 12. Test 5, scatter-plot of the reference Keq values as a function of the estimated ones, using the KIA model. The bisector line indicates the exact estimation. Some
examples of the fields are shown on the right.
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into account each branch of the percolating cluster separately. The
algorithm, tested on 2196 fields presenting natural isotropic heter-
ogeneities, shows lower accuracy in the estimations as compared
to the 2D version, but it demonstrates that the proposed principles
are still valid in 3D. A future development of the algorithm could
include a more efficient image analysis operation for the correction
of the highly permeable material inside the percolating cluster and
the extension of its applicability to anisotropic fields.
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