
1. Introduction
Groundwater resources represent 99% of the total liquid fresh water on Earth and provides approximately 50% 
of the total volume of water withdrawn for domestic use in the world (United Nations Educational Scientific and 
Cultural Organization, 2022). However, because the resource is at depth below the ground surface, the interest 
of the general public and policy makers tends to wane due to its invisible aspect (United Nations Educational 
Scientific and Cultural Organization, 2022). In a changing climate, being able to understand, predict and model 
underground flows and resources is crucial. These questions can only be properly addressed by local to regional 
groundwater modeling.

Another issue owing to the underground position of groundwater is the difficulty in collecting data. Data are 
usually sparse and often represent only a tiny fraction of the total volume of the aquifer. The data can therefore 
miss most of the spatial heterogeneity. Conjectures based on such groundwater models could lead to inadequate 
decisions. A recent paper by Adams et al. (2022) reviews the different existing remote sensing techniques (includ-
ing geophysical techniques) and possible future approaches that could help fill this gap. They argue that satellite 
or airborne remote sensing could be key methods for understanding groundwater dynamics at various scales, 
which would have been impossible with classical spare in situ observations. One method mentioned in their paper 
is the electromagnetic induction techniques, and especially the Time Domain Electromagnetic (TEM). The TEM 
method is relatively inexpensive, fast and has a depth of investigation ranging from a few meters to a few hundred 
meters (Christiansen et al., 2009; Fitterman, 1987). Due to its inductive principle, the Electromagnetic Magnetic 
(EM) method will be mainly sensitive to underground electrical resistivity. Consequently, it will also be sensitive 
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to all parameters that will affect this property, such as porosity, water saturation, clay content, and water electrical 
conductivity. EM was successfully applied to various hydrogeological situations, usually in combination with 
sparse borehole data (e.g., Barfod et al., 2018; Christensen et al., 2017; Dumont et al., 2018; Paine, 2003).

However, the use of electromagnetic (EM) data for hydrogeological interpretation also poses some challenges. 
First, the method will provide only limited information regarding the water storage capacity or the hydraulic 
conductivity. Second, it is also sensitive to the geological composition of the underground. The amount of conduc-
tive clay will strongly affect the measured field and, therefore, the resulting inversion. Third, due to the nature 
of the inverse problem and its high nonlinearity in the case of EM, the inverted resistivity models are nonunique 
(Tarantola, 2005). As underlined by Adams et al. (2022), therefore a good understanding of the geological prop-
erties of the aquifer and their spatial variations is necessary in order to interpret geophysical data robustly. So far, 
the most popular workflow has been to independently invert EM data and then relate them to boreholes or other 
types of data (Christensen et al., 2017; Dumont et al., 2018; Jørgensen et al., 2013, 2015; S. Kang et al., 2021; 
Knight et al., 2018; Neven, Christiansen, & Renard, 2022; Ringrose & Bentley, 2015). Often, the inversion and 
some steps in the workflow are considered deterministic. Therefore, the final structural model, the so-called 
cognitive model, is the one that, according to the modeler, fits most of the comprehensive knowledge available on 
site (Henriksen et al., 2003; Høyer et al., 2015; Kollet & Maxwell, 2006; Lemieux et al., 2008). The calibration 
of the groundwater model parameter is then carried out while keeping the cognitive model fixed. By doing so, 
there is no way to account for additional information about the geometry coming from the hydrogeological data, 
while the transmissivity and therefore the aquifer thickness clearly influence the head gradient or solute trans-
port. If the geometry was fixed before inverting for hydrogeological parameters, and not correctly estimated, the 
hydrogeological parameters will likely have to be incorrectly identified during inversion in order to compensate 
for these initial errors. Furthermore, the use of a single cognitive model derived from geophysical data completely 
neglects structural uncertainty and, consequently, overall uncertainty in the aquifer characterization procedure.

To ensure consistency and the propagation of errors throughout the workflow, we propose to reverse the method-
ology described in the previous paragraph. Instead of going from the geophysical data to the structural model, we 
start by generating a set of prior plausible geological models and then updating these 3D models iteratively to fit 
the observed data. We adjusted the models jointly on the EM data acquired at the surface and the hydraulic heads 
measured in the aquifer. Since prior data are generated from the boreholes, we ensure that the final ensemble of 
models (posterior) agrees with them, even after parameter adjustment.

In this study, we generate geological models using the ArchPy hierarchical modeling approach (Schorpp 
et al., 2022). This method offers a formal description of a geological concept, the stratigraphic pile, that encom-
passes the succession of units, lithologies, and properties that must be modeled within a given domain. It also 
integrate knowledge from wells and conceptual understanding of the geological setup to create geostatistical 
realizations of potential aquifer geometries and properties. ArchPy utilizes a hierarchical approach that first simu-
lates the main stratigraphic units, then the litho-facies, and finally the petrophysical parameters. The result is a 
complex and accurate representation of the aquifer structure. However, ArchPy cannot integrate other knowledge, 
such as geophysical or hydrological. The prior set of models needs then to be updated, in order to account for all 
the other types of data available on-site.

When updating models, the Markov chain Monte Carlo (MCMC) has been shown to be capable of producing 
consistent models and properly quantifying the final uncertainty (Irving & Singha, 2010; Jardani et al., 2013; 
Mosegaard & Tarantola,  1995; Reuschen et  al.,  2021). One downside of this method is the large number of 
forward calls required to converge and the associated computational cost (Linde & Doetsch, 2016). Ensemble 
Smoother algorithms have proven to be a reasonable alternative to MCMC for high-dimensional problems. It 
managed to identify solutions for complex nonlinear inverse problems, with fewer computational resources and 
time than MCMC (Emerick & Reynolds, 2013; Juda et al., 2022). Ensemble Smoother with Multiple Data Assim-
ilation (ESMDA) (Emerick & Reynolds, 2013) is a variant of the Ensemble Smoother (ES) algorithm proposed 
by van Leeuwen and Evensen (1996). It approximates the relationship between the parameters and the data using 
their covariance computed using a finite prior ensemble of models. For large or extremely non-linear problems, 
the data can be assimilated multiple times iteratively (Chen & Oliver, 2013). ESMDA was used successfully 
in various groundwater studies (X. Kang et al., 2019; Lam et al., 2020; Li et al., 2015; Xu et al., 2021). Simi-
lar algorithms (ENKF, e.g.,) were also successfully applied to jointly integrate different types of data, such as 
geophysical and hydrological (Bouzaglou et al., 2018). However, this application was adapted only on a relatively 
small-scale lab experiment.
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In a previous study, we used a synthetic 2D data set and showed that joint hierarchical inversion combined with 
ESMDA can improve the identification of model parameters and the reliability of a prediction and its uncertainty, 
while integrating complex geological prior knowledge (Neven, Schorpp, & Renard, 2022). In the present study, 
we extend the method and show that this novel approach can be applied to real field data to integrate geophys-
ical and hydrogeological data in 3D geologically consistent models. A new and important aspect of this paper 
is the development of a simple and consistent approach to identify the 3D parameter fields while computing the 
forward simulations in lower-dimensional spaces that can be different for each physical problem. To demonstrate 
its applicability, the new methodology is illustrated on a part (∼15 km 2) of the upper Aare Valley, Switzerland. 
The area is densely sampled, with a towed Transient Electromagnetic survey (Neven et al., 2021), several hundred 
boreholes, and 25 piezometers.

2. Methodology
The proposed methodology can be divided into three steps (Figure 1): (a) the generation of prior geological 
models, (b) the forward simulations in a reduced dimensionality, and (c) the iterative update of the ensemble of 
models using ESMDA.

2.1. Generation of Prior ArchPy Models

We generate the prior ensemble of models using the open source stochastic hierarchical code, ArchPy, (http://
www.github.com/randlab/ArchPy) (Schorpp et  al.,  2022). This Python-based tool allows for a detailed and 
hierarchical depiction of the geological environment, starting from the simulation of the contacts of large 
syndepositional layers, using 2D geostatistical methods, to the distribution of categorical lithofacies within these 
layers, and ultimately the petrophysical properties associated to the lithologies. ArchPy relies on the concept 
of stratigraphic pile, which is a formal description of the known regional stratigraphy of a given area. A large 
ensemble of plausible geological models compatible with regional knowledge and borehole data can be easily 
generated. For an in-depth description of the ArchPy methodology and examples of its capabilities, the reader is 
referred to Schorpp et al. (2022).

In addition to the existing ArchPy approach, to address possible nonstationarity in the petrophysical parameter 
simulations, we added the possibility to employ petrophysical pilot points. The underlying assumption is that 
large areas of the same aquifer can be significantly more (or less) hydraulically permeable than others. The 
conductive clay content can also change and cause variations in terms of electrical resistivity within the same 
unit. Consequently, the local average used for the simulation cannot be assumed to be uniform in space in the 
whole domain. To account for this, pilot points are randomly placed in each layer using a stratified sampling 
strategy. This ensures that the points are drawn randomly through the entire domain. The values of the pilot 
point are then drawn in a distribution of plausible range. Then, a linear variogram is used to krigge between 
the pilot points within each unit. This smooth map is then used as the local mean for the 3D petrophysical 

Figure 1. General sketch of the proposed data integration workflow.
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geostatistical simulation. The petrophysical parameters will vary following the variogram model provided 
around a spatially variable mean. A set of pilot points is defined for each layer and for each petrophysical 
parameter.

2.2. Forward Simulations in Reduced Dimensionality

As pointed out, for example by Linde and Doetsch (2016), the inversion of high-dimensional models leads to a 
large number of iterations and a large number of forward model calls for solving the physical, possibly nonlin-
ear, spatial and/or time-dependent equations. Forward calculations are therefore often the most computation-
ally expensive part of an inversion. Consequently, it is common to reduce the number of parameters (Linde & 
Doetsch, 2016), or to use surrogate modeling (Asher et al., 2015), for example.

In this study, we propose applying the inverse procedure by correcting the 3D geological and parameter models, 
but before running the forward flow and geophysical calculations, we reduce the dimensionality of the model to 
accelerate the forward simulations. Computing time is drastically reduced with a marginal loss of information. 
Figure 2 illustrates the principle of this approach. The idea is to exploit the fact that different physical processes 
are sensitive to different subsets of the 3D parameter fields. For example, the propagation of the EM signal 
requires us to solve the Maxwell equations to simulate the secondary magnetic field decay. For a horizontal 
coil, the main sensitivity is oriented downward. For most applications, solving the complete 3D equations will 
only slightly affect the final results but will result in a high increase in computational complexity (Engebretsen 
et al., 2022). For this reason, the EM geophysical forward is only computed using multiple 1D models extracted 
along the Z axis. Each geophysical sounding is then computed in parallel using a fraction of the original model. 
The simulation time is greatly reduced, from several orders of magnitude. In this first example, the dimension is 
reduced by omitting some part of the model that is expected to have a limited effect on the predicted data.

However, flow within an aquifer is an example of horizontally dominated sensitivity. Instead of extracting some 
parts of the model, we use another approach here. Dimensional reduction is achieved by integrating spatial prop-
erties along the vertical direction. Because the overall thickness is small compared to the lateral extension and 
because we only have one hydraulic head measurement per piezometer, it is reasonable to solve the groundwater 
flow only in 2D. The complete 3D hydraulic conductivity model is then vertically integrated, and the horizontal 
transmissivity of the total aquifer is estimated at any location. The equation is the following:

𝑇𝑇𝑥𝑥𝑥𝑥𝑥 =

𝑛𝑛𝑛𝑛
∑

𝑖𝑖𝑛𝑛=1

𝐾𝐾𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑛𝑛 ⋅ 𝑑𝑑𝑖𝑖𝑛𝑛 (1)

Figure 2. General sketch of the Forward in reduced dimensionality principle.
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where Tx,y is the transmissivity in a cell x, y, nz is the number of cells in the model along the vertical axis, K is 
the hydraulic conductivity and d is the thickness of the cell. The equivalent transmissivity is used to solve the 2D 
equivalent flow.

Of course, the simplified 1D and 2D forward simulations will not completely represent the actual 3D processes. 
The gain in terms of computing resources overcomes the marginal loss of information. For example, for the 
regional steady-state hydraulic heads simulation, the average gain in computing time between a full 3D and a 2D 
model is about 98% (51 s per model compared to 1 s per model), for a difference in response of a few centimeters 
(see Figure 6 and discussion in Section 3.3).

2.3. Data Assimilation With ESMDA

ArchPy allows us to rapidly generate a large number of plausible models. This ensemble represents our prior 
knowledge; it includes the regional geological concept expressed through the stratigraphic pile and all the bore-
hole data. However, the compatibility of each model with indirect field data (geophysical or hydrogeological) is 
not guaranteed. To adjust the models based on all available data, we implemented the ESMDA algorithm intro-
duced by Emerick and Reynolds (2013). In this section only a brief introduction to ESMDA is provided; readers 
are directed to the reference paper (Emerick & Reynolds, 2013) for more details on the method.

This stochastic data assimilation algorithm performs iterative corrections of a finite ensemble of N models 
𝐴𝐴

{

𝑚𝑚
𝑝𝑝𝑝𝑝

𝑖𝑖
, . . . , 𝑚𝑚

𝑝𝑝𝑝𝑝

𝑁𝑁

}

 . At iteration 0, the models are conditioned solely by the boreholes. In the next iterations, the 
members of the ensemble are the corrected models of the previous iteration. At iteration k, the correction requires 
computing the Kalman gain matrix K from the experimental covariance matrix between the data and the model 
parameters 𝐴𝐴 𝐴𝐴𝐾𝐾

𝑀𝑀𝑀𝑀
 combined with the data auto-covariance matrix 𝐴𝐴 𝐴𝐴𝑘𝑘

𝐷𝐷𝐷𝐷
 and the expected uncertainty of the data 

Cerr. Cerr can be estimated using multiple stacking of the data in the field.

𝐾𝐾 =

(

𝐶𝐶𝑘𝑘

𝑀𝑀𝑀𝑀

(

𝐶𝐶𝑘𝑘

𝑀𝑀𝑀𝑀
+ 𝛼𝛼𝑘𝑘+1𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒

)−1
)

 (2)

The parameter α is the noise inflation ratio. This parameter is added to address one common issue with Ensemble 
Smoothers and Ensemble Methods in general: inbreeding (Houtekamer & Mitchell, 1998). This term is used 
to describe the underestimation of uncertainty due to the fact that the ensemble used for the calculation of the 
Kalman Gain K is the same as the one used to estimate the error. The individual models within the set are becom-
ing more and more coupled after each iteration. Emerick and Reynolds (2013) showed that this inbreeding tends 
to be reduced with an increased number of members, and proposed the use of an inflation factor α. This factor 
must respect the following relationship:

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
∑

𝑘𝑘=1

1

𝛼𝛼𝑘𝑘
= 1 (3)

with Niter being the number of iterations. Changing α through iterations does not significantly increase the quality 
of assimilation (Emerick, 2016). Consequently, we kept it unchanged at α = Niter for all iterations. The correction 
for each member at iteration k is determined as follows:

𝑚𝑚𝑘𝑘+1

𝑖𝑖
= 𝑚𝑚𝑘𝑘

𝑖𝑖 +𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 ⋅

(

𝑑𝑑𝑘𝑘

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖
− 𝑔𝑔

(

𝑚𝑚𝑘𝑘
𝑖𝑖

))

 (4)

𝑑𝑑𝑘𝑘

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
= 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 +

√

𝛼𝛼𝑘𝑘+1𝐶𝐶
1∕2

𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑑𝑑𝑜𝑜𝑜with 𝑧𝑧𝑑𝑑𝑜𝑜𝑜 ∼ 𝑁𝑁(0𝑜 1) (5)

where 𝐴𝐴 𝐴𝐴𝑘𝑘

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
− 𝑔𝑔

(

𝑚𝑚𝑘𝑘
𝑜𝑜

)

 is the Euclidean distance between the observed measurements and the predictions 
computed by the forward operator g using the current model parameters. To account for the imprecision 
in the measurement of the observed data, dobs are perturbed with random Gaussian noise drawn from 

𝐴𝐴 𝐴𝐴
(

0,
√

𝛼𝛼𝑘𝑘+1𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒

)

 . The noise realizations are resampled for each iteration and ensemble member. As shown 
in Evensen  (2018), each iteration of ES-MDA implicitly minimizes a different cost function. It combines 
on the one hand the difference between the parameters before and after the given iteration weighted by the 
inverse of the prior parameters covariance; and on the other hand, the misfit between the observations and 
the predictions. To reduce the risk of spurious correlations, a localization matrix LM is introduced. The 
localization matrix multiplies the Kalman gain elementwise. Spurious correlations occur mainly because 
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ESMDA approximates the covariance matrix based on a finite number of 
models (Anderson, 2001; Evensen, 2009; Wen & Chen, 2005). Therefore, 
zero entries are difficult to reproduce in the covariance matrix, and spuri-
ous correlation can occur. One way to address this is either to increase 
indefinitely the number of members or to infuse prior knowledge in order 
to exclude correlations that are physically impossible. For example, we 
can expect no correlation between an EM sounding (data) and the resis-
tivity value several kilometers away (parameter). The localization matrix 
varies between 0 and 1, and is inversely proportional to the spatial distance 
between a parameter and a data point. The Kalman Gain K will become 
negligible for a distant set of parameter-data. Several functions exist 
to scale the localization matrix with distance. In this study, we imple-
mented the widely used correlation function introduced by Gaspari and 
Cohn  (1999). They propose the following piecewise rational covariance 
function RGC for data assimilation:

𝑅𝑅𝐺𝐺𝐺𝐺 (𝑟𝑟) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 −
5

3

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)2

+
5

8

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)3

+
1

2

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)4

−
1

4

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)5

0 ≤
𝑟𝑟

𝑟𝑟𝑐𝑐
< 1

4 −
2

3

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)−1

− 5

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)

−
5

3

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)2

+
5

8

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)3

+
1

2

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)4

+
1

12

(

𝑟𝑟

𝑟𝑟𝑐𝑐

)5

1 ≤
𝑟𝑟

𝑟𝑟𝑐𝑐
< 2

0
𝑟𝑟

𝑟𝑟𝑐𝑐
≥ 2

 (6)

where r is the distance matrix of the Euclidean distance between the data observation points and the parame-
ters, and rc is the critical distance beyond which the effect of a parameter on an observation is assumed to be 
negligible. Figure 3 represents RGC in 1D as a function of the ratio between r and rc. The critical distance of the 
localization matrix should be chosen according to the expected correlation length. An analysis of the evolution 
of the correlation with distance for both observation types is available in Supporting Information S1 (Figure S1). 
In our case, we set the critical distance of geophysical data to 150 m, since a stabilization of correlation is visible 
around this range. No significant evolution in correlation with the parameters was observed for the hydraulic head 
measurements as a function of the distance. Therefore, the LM was not implemented for these observations and 
is set to 1 for all hydraulic heads measurements. The summary of the LM parameters is available in Supporting 
Information S1 (Table S2).

3. Application to the Aare Valley
To illustrate the applicability of the proposed methodology on a real site, we used a test area in central Switzer-
land. The upper Aare valley is filled with Quaternary deposits, with a thickness ranging from a few meters on the 
sides of the valley to a few hundred in the center (Bandou et al., 2022). The investigation zone is located north 
of the upper Aare valley, just upstream of the city of Bern. It is a 12 km 2 area where a large amount of drinkable 
water is exploited. Several glacial cycles occurred, causing a complex interwinding of glacial and interglacial 
deposits (Bandou et al., 2022; Graf & Burkhalter, 2016; Schorpp et al., 2022). At least two different levels of 
aquifer have been identified in interglacial fluvial deposits (Schorpp et al., 2022). A shallow aquifer at the surface 
and a deeper one that has not been extensively studied. Despite this lack of knowledge, the upper Aare valley is 
widely used. In 60 km 2, we denote 4 quarries and more than 6,000 wells (shallow geothermic or water produc-
tion). Despite its importance, the exact dynamics of the aquifer and its extent on the regional scale are not well 
known. Due to its importance, this site has been extensively studied with different data types (see Figure 5). It 
illustrates well how the abundance of data does not necessarily lead to an improved underground model due to the 
lack of an easy and applicable integration algorithm in hydrogeology. In the area, we denote the presence of 130 
lithologically described boreholes, 35 hydraulic head measurements, and about 6,500 tTEM soundings. While the 
hydraulic heads measurements are more or less homogeneously distributed in the domain, there is a clear spatial 
division for the other two data sets. The boreholes are drilled most of the time within the cities or around existing 
buildings (within a few hundreds of meters) in areas where the electromagnetic coupling prohibits the use of 
inductive methods such as EM. The two data sets then cover different areas and are, by nature, complementary.

Figure 3. Gaspari Cohn correlation function (Gaspari & Cohn, 1999) value 
versus the ratio between the distance r and the critical distance rc.
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3.1. ArchPy Model

To define the conceptual model of the area, we rely on expert 
knowledge, existing boreholes, and previous publications 
(Graf & Burkhalter,  2016; Schorpp et  al.,  2022; Volken 
et al., 2016). Our zone of interest is the first 100 m of the 
valley filling. The conceptual model of the area includes a 
very shallow aquifer followed by impermeable clay. Below 
the clay, a second aquifer can be present. Finally, a deeper 
clay layer is present everywhere. When the second aquifer 
is absent, the two clay layers become one, even if they are 
still considered two distinct units. The top surface of the 
first layer is the topography. Therefore, there are only three 
surfaces delimiting the four units. For each surface, a vari-
ogram model was derived from the analysis of the borehole 
data and expert knowledge. All details of the parameters 
are shown in Table  1. The surfaces are simulated as 2D 
Gaussian Random Fields (GRF) with inequalities using the 
Sequential Gaussian Simulations (SGS) method (Chilès & 
Delfiner,  2009; Deutsch & Journel,  1992; Freulon & de 
Fouquet,  1993). In each layer, we also define the vario-
gram for the simulations of petrophysical parameters. Once 
the units are generated, the lithologies are assumed to be 
uniform within each unit: the aquifer units are assumed to 
be made of gravel to sandy-gravel, and the other units are 
assumed to be made of clay. We expect spatial variations 
in terms of petrophysical properties within each lithology 
as a result of sedimentological changes, while we do not 
expect major spatial variations of lithologies within each 
unit. The two petrophysical parameters of interest are elec-
trical resistivity (ρ) and hydraulic conductivity (K). They 
are modeled within the units using 3D GRF (e.g., Chilès 
& Delfiner, 2009) simulated with the circulant embedding 
spectral method (Lang & Potthoff,  2011). This method 
is faster for large 3D models compared to SGS when 
inequalities are not needed. In addition, as mentioned 
before, pilot points are implemented to represent a possible 
non-stationarity within the domain. They are used to param-
eterize the local spatial mean for the 3D GRF simulation 
during the data assimilation. Figure 4 shows a cross-section 
through one realization of an ArchPy petrophysical model. 
The three simulated surfaces and the topographic surface 
define the four units. Two are considered to be mainly clay 
and 2 are considered aquifer. Thanks to the ArchPy hierar-
chical approach, we can simulate different parametric fields 
for each of the units, according to the prior range of values.

The borehole logs were digitized by the Swiss Geological 
Survey during the GeoQuat project (Volken et al., 2016). 
As discussed above, we distinguish only aquifer formations 
from aquicludes. Note that most of the boreholes were 
drilled for the exploitation of the shallow aquifer. Therefore, 
most of them stop before or when they reach the bottom 
of the upper aquifer. The vertical depths are then usually 
between 3 and 12 m. Only 3 wells reach the lower aquifer St
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at more than 40 m depth. All of these wells were incorporated into ArchPy and used to constrain the  geostatis-
tical simulations. An important feature of ArchPy is the integration of inequalities (Schorpp et al., 2022) during 
geostatistical simulations. A well that does not reach the top of a certain unit may still have an effect on the 
local uncertainty since it indicates that this surface must be absent at that location, or deeper than the bottom of 
the well. The complete ArchPy model used for the prior generation can be found in the Zenodo repository, as 
a Python object (Neven & Renard, 2023). A summary of the parameters subject to assimilation and their prior 
distribution is available in Supporting Information S1 (Table S1).

3.2. Geophysical Data

The tTEM data come from a large-scale acquisition carried out in 2020. Data are publicly available. All char-
acteristics of the system, data processing, cleaning, and validation, were documented in Neven et  al.  (2021). 
Data are used in raw electromagnetic decay sounding form (dB/dt), and therefore are not affected by any inver-
sion choice. The forward code used to simulate the models is a 1D Time-Domain EM implemented in Fortran 
in AarhusInv (Auken et  al.,  2015). The use of a 1D forward simulation code is common when dealing with 

Figure 4. Cross section through one realization of a borehole-only ArchPy petrophysical model of electrical resistivity and 
hydraulic conductivity. In addition, the surfaces bounding the units are outlined. Note that there is a vertical exaggeration.

Figure 5. Extent of the simulation with the available data illustrated besides. The base map is published open access by the 
Swiss Topographic Office.
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EM technology (e.g., Auken et al., 2015; Farquharson & Oldenburg, 1993; 
Scholl et  al.,  2009). The relying assumption is that locally the subsurface 
can be considered in his vertical dimension only. The full system geome-
try is used for the calculation of the synthetic responses. These responses 
can then be compared with the raw electromagnetic decay measured on the 
field. As mentioned in the data descriptor, the uncertainty associated with the 
observations in the data is derived from the multiple stacking of soundings 
during the acquisition, directly in the instrument. As mentioned in Auken 
et al. (2019), the tTEM instrument calculate the uncertainty by stacking few 
hundreds measurement. In the area of Belp, 6,400 soundings of 29 gates each 
are integrated (see Figure 5).

3.3. Hydrogeological Data

Hydraulic head measurements are from a large-scale piezometric campaign 
(Kellerhals et  al.,  1981). At the same time, the heads were measured at 
hundreds of points in the valley, 35 of which are in our area of interest. The 
levels of the two rivers were also measured. Recent but less dense measure-
ments acquired in 2020–2022 showed that those previous measurements are 
still representative of current aquifer conditions. Due to the lack of sufficient 
time series to compare with, we decided to use only a steady-state model in 
this paper. The forward groundwater model is two-dimensional and is based 
on ModFlow6 (Hughes et al., 2017). Figure 6 shows the comparison between 
the heads simulated using a 2D transmissivity model and a complete 3D 

model for an ArchPy realization. We denote only a marginal loss of information with an average difference in 
heads of less than 12 cm. We can denote that the heads further away from the boundary conditions, which also 
present an intermediate head value on Figure 6, are also those that present more variations between the 3D and 
the equivalent transmissivity simulation.

Recharge was estimated using precipitation measured at the site and was set spatially uniform to 652 mm of rain 
per year. River boundary conditions were imposed along the two stream paths (see Figure 5) using the altitude 
profile of the streams and the hydraulic heads measured during a piezometric campaign in the river (Kellerhals 
et  al., 1981). A head is imposed with a stream conductance damping (Hughes et  al.,  2017). In addition, two 
constant head boundary conditions were assigned: one along the southeast boundary of our model and one along 
the north boundary. Their value was set to, respectively, 506 and 516 m, following the iso-head of multiple meas-
urements. All known water pumping wells present in the area were added as flow boundary conditions, and their 
estimated flow is provided in Kellerhals et al. (1981). A conceptual representation of the groundwater flow model 
is available as (Figure S2 in Supporting Information S1). All Modflow 6 files are also available in the Zenodo 
repository Neven and Renard  (2023). During data assimilation, only the hydraulic conductivity field and the 
geometry of the aquifers, and consequently the resulting transmissivity, are corrected. The other parameters are 
kept constant. They could be included in the data assimilation procedure in the future to improve the performance 
of the model.

3.4. Validation and Indicators

In applying data assimilation methodology to real data, unlike a synthetic test, the true geology, parameter fields, 
and uncertainty are unknown. To quantitatively measure the validity of our results, we implemented serveral 
indicators.

The first indicator used to benchmark the quality of the models is the data misfit. It benchmarks the agreement 
between the predicted data and the observations. This indicator is not used during the inversion since ES-MDA 
does not need an objective function. But, as mentioned before, ES-MDA will try to minimize a combination of 
terms that includes the misfit. It is used here to assess the posterior compatibility of the data. The residual at a 
given iteration is:

Figure 6. Comparison of the hydraulic heads in the 35 measuring 
stations computed using a complete 3D flow model and the 2D equivalent 
transmissivity model.
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =

√

√

√

√
1

𝑁𝑁

𝑁𝑁
∑

𝐷𝐷=1

(𝑑𝑑𝑜𝑜𝑜𝑜𝐷𝐷𝑜𝐷𝐷 − 𝑑𝑑𝐷𝐷𝑓𝑓𝑓𝑓𝑜𝐷𝐷)
2

𝜎𝜎2

𝑑𝑑𝑜𝐷𝐷

 (7)

where dobs is the observed data, dfwr is the simulated data, σd is the uncertainty of the observed data and N is the 
total number of data point. The indicator is dimensionless and allows us to analyze different types of data on a 
comparable basis.

To have a better representation of the performance of the parameters prediction, the next indicators rely on a 
cross-validation algorithm based on the borehole data. This involves selectively withholding a portion of the condi-
tioning data set from the simulation to create a basis for comparison and evaluate the prediction quality against these 
intentionally unaccounted-for boreholes. However, the spatial correlation inherent in the data means that a random 
selection of boreholes could lead to an overestimation of algorithm performance if the omitted boreholes are close 
to each other from a different fold. To counteract this, we employ the K-Means clustering algorithm (Hartigan & 
Wong, 1979) to the spatial coordinates of the boreholes, segregating them into 20 groups. This ensures boreholes in 
close proximity fall into the same group, providing a more accurate representation of the algorithm's performance.

From these 20 groups, we randomly assemble five similar-sized folds. For each fold, we generate a unique 
ArchPy prior ensemble, each time excluding the data of one fold, accounting for approximately 20% of the 
total data. Following this, we apply the data aggregation algorithm independently to all five sets, allowing for a 
comprehensive evaluation of its performance. The results of each set are then compared against their correspond-
ing excluded boreholes to assess the prediction quality. These models are created only for the purpose of quality 
assessment and function independently from the complete models, which incorporate all available borehole data. 
This separation guarantees an unbiased evaluation of performance while ensuring that the final models yield the 
most accurate representation possible, given the available data.

Since our main objective is to illustrate and test the application of multiple data types assimilation to hydrogeology, 
we will also benchmark the performance of our models to outline the boundary of the aquifer. Therefore, we define 
three quality indicators for each borehole: the mean error, the mean normalized error, the Continuous Rank Proba-
bility Score (CRPS). The three indicators are applied on the prediction of the thickness of the upper aquifer, which 
corresponds to the altitude of the surface that defines the limit between the Unit 1 and the Unit 2. This limit is also the 
one the most frequently defined in the boreholes. The mean error allows controlling that there is no constant positive 
or negative bias in the prediction and that the correct value is predicted on average. The mean error is defined as:

𝜖𝜖𝑘𝑘𝑥𝑥𝑥𝑥𝑥 =
1

𝑁𝑁

𝑛𝑛
∑

𝑖𝑖=1

(

𝑧𝑧𝑘𝑘𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑥

)

 (8)

where 𝐴𝐴 𝐴𝐴𝑘𝑘𝑥𝑥𝑥𝑥𝑥 is the mean error in iteration k at position x and y. N is the number of members, 𝐴𝐴 𝐴𝐴𝑘𝑘
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 is the prediction of 
the thickness at the position x, y in the model i and 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑥  is the true thickness of the aquifer from the description 
of the well. Therefore, the error is defined at each borehole position and should converge to zero on average. The 
second indicator is the normalized error. It is defined as the mean error divided point-to-point by the experimental 
variance of the simulation results. It shows if the predicted magnitude of the uncertainty is comparable with the 
actual ensemble errors, assuming a Gaussian distribution of errors. Normalized error is then defined as:

𝐸𝐸𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 =

(

𝜖𝜖𝑘𝑘𝑥𝑥𝑥𝑥𝑥
)2

(

𝜎𝜎𝑘𝑘
𝑥𝑥𝑥𝑥𝑥

)2
 (9)

where 𝐴𝐴 𝐴𝐴𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 is the normalized error in iteration k at position x and y, and 𝐴𝐴 𝐴𝐴𝑘𝑘

𝑥𝑥𝑥𝑥𝑥 is the experimental standard deviation 
calculated over the simulation results of the n members at position x and y. The normalized error should converge on 
average to 1, meaning that the uncertainty is in the same order of magnitude as the ensemble error. Finally, we used 
the Continuous Rank Probability Score (CRPS) (Gneiting et al., 2007). The CRPS is sensitive to both bias and uncer-
tainty. It is defined as being the integral between the Cumulative Distribution Function (CDF) of the ensemble of the 
predictions at a given point and the step-function CDF of the discrete true value at the same point. It is expressed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘
𝑥𝑥𝑥𝑥𝑥

(

𝐹𝐹 𝑥 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑥

)

=
∫

+∞

−∞

(

𝐹𝐹 (𝑥𝑥) − 𝟙𝟙
(

𝑥𝑥 𝑦 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑥

))2

𝑑𝑑𝑥𝑥 (10)
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where 𝐴𝐴 𝟙𝟙 is the Heaviside function, so that 𝐴𝐴 𝟙𝟙
(

𝑦𝑦 𝑦 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑦𝑦

)

= 1 if 𝐴𝐴
(

𝑦𝑦 𝑦 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑦𝑦

)

 and 0 otherwise, and F is the Cumu-
lative Density function of the ensemble of predictions at a given point. The minimum CRPS score is zero, and is 
reached if the prediction is correct with no uncertainty. If the prediction has a small uncertainty and is not biased, 
the score will be relatively small. On the contrary, as soon as the prediction is biased or the uncertainty large, the 
CRPS increase. Unlike normalized error, CRPS has the advantage of not assuming a normal distribution of errors. 
All these indicators are point indicators, and will be calculated on all excluded boreholes positions for all five folds.

4. Results
Five hundred initial members were generated using ArchPy. This set reflects the prior knowledge and will be 
referred to later as the prior. Figure 8 shows the evolution of the observation misfit thought the iterations. Ten 
ESMDA iterations were carried out. Iteration 0 corresponds to the prior observations. We denote a global decrease 
of the residual, with a mean total joint residual of the data (geophysical and hydrogeological) decreasing from 
15.1 to 4.1. Of course, since the number of geophysical data points is much higher than the number of hydrolog-
ical measurements, the total misfit closely follows the geophysical misfit. However, the hydrological misfit also 
shows a decrease in terms of variability and average value. We can see that the residual tends to greatly reduced 
in the first iterations, meaning that good results could probably be achieved in less than 10 iterations.

The computing time per iteration is about 4h20, for about 3 million active cells. On this total time, about 75% is 
dedicated to the forward calculation and the rest to the update of the model. The ensemble of models after data 
assimilation will be referred to as posterior. Figure 7 compares the heads measured in the valley with the heads 
predicted from the 500 models at the same position, both prior and posterior. A decrease in terms of variability of 
the heads can be denoted, and the final ensemble of prediction is closer to the perfect prediction line. It suggests 
that the posterior ensemble is capable of predicting heads in the domain fairly well.

Figure 9 shows a cross-section through the model with all the boreholes taken into account. Seventy-five members 
drawn out of the 500 of the prior and the posterior are compared in terms of the depth of the upper aquifer. The 
reduced uncertainty at the 4,600 m position is due to the presence of a conditioning borehole and is therefore 
consistently present in both prior and posterior sets. The locations of the geophysical EM data are outlined in yellow 
in the posterior cross-section. Only the points that are collocated are shown, but the effect of neighboring points can 

occur. We denote a clear reduction in uncertainty in the posterior compared to 
the prior, where geophysical data have been acquired. The confidence interval 
is significantly reduced. Where no geophysical data is present, the uncertainty 
logically tends to be equivalent to the one in the prior. When applying ESMDA, 
one common risk is the collapse of the posterior, where all members converge 
to a similar model, potentially leading to an underestimation of uncertainty. 
In the present case, despite 11 iterations, each model in the posterior ensem-
ble exhibits notable differences, suggesting that the uncertainty estimation is 
reasonably accurate. However, it is important to acknowledge that validating 
the correctness of uncertainty estimates can be challenging.

One clear advantage of the presented methodology is that the final models are 
hierarchical. For example, for most applications in hydrology, the thickness 

Figure 7. Simulated Heads vs. Measured Heads in the 35 groundwater monitoring stations for the (a) 500 Prior models and 
(b) 500 posterior models. The dashed line is the perfect prediction.

Figure 8. Evolution of misfit between the simulated observations and the 
measured observations. Iteration 0 corresponds to the prior models simulation.
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and extent of the aquifer are of key interest. Unlike the 3D electrical resistivity field, in this workflow, the thick-
ness of the aquifer is part of the model and can be easily extracted. Figure 10 shows the mean depth of transition 
between the shallow aquifer and the aquiclude over the 500 members. The estimated uncertainty is also outlined. 
We can denote the zero uncertainty points in both the posterior and the prior, which correspond to the borehole 
positions where the depth is considered certain. The results appear to be spatially consistent. First, the variations 
in terms of aquifer depth show continuity over the range of a data point update in the Localization Matrix, and 
therefore beyond the effect of a geophysical point. The critical distance was set to 150 m, which means that above 
twice this distance, for example, a geophysical measurement cannot have an effect during the update. Large areas 
with lower or higher depth are due to information that is actually brought by the data. It suggests that distant 
geophysical data are consistent and are successfully incorporated during the ESMDA inversion. Second, the 
continuous lower or higher depths are elongated in a SE-NW orientation, which is consistent with the deposition 
phases estimated at this site, despite the fact that the variograms used for the generation of the prior are isotropic. 
Third, we note that the uncertainty is reduced where and only where geophysical data are present and kept 
unchanged far from them. Finally, the small artifacts that we can see mainly in the Prior are due to neighboring 
wells that carry a significant difference in terms of aquifer depth, probably unrealistic due to their close position 
from each other, and cause an abrupt change.

Cross-validation was performed using 5 distinct folds, 500 members, and 10 iterations each. The variable 
cross-validated here is the thickness of the first aquifer. The aggregated results are shown in Figure 11. Each fold 
is amputated of 20% of the borehole data set. The purpose is not only to benchmark the results of the data inte-
gration algorithm, but also to compare them with the borehole-only approach. For this reason, cross-validation 
was also performed using only prior knowledge before data integration. Several results can be highlighted. First, 
compared to the prior models, the error range is smaller and is centered on zero (see Figure 11a). This unbi-
ased error is a critical point and suggests that, unlike the prior, we tend to equally over- and underestimate the 
thickness of the aquifer. This proves that this methodology can perform well even if the prior is uncertain or not 
totally correct. Figure 11b shows that a global reduction in uncertainty is clearly visible almost everywhere in the 
domain, especially in places that are surrounded or covered by tTEM points. No negative change in uncertainty 
was denoted between the prior and the posterior. Despite this global decrease in uncertainty, the normalized error 
is improved (Figure 11c). The combination of these two indicators shows that the uncertainty in the posterior is 
smaller and is better scaled to the ensemble error. Furthermore, some remaining outliers points are in fact far from 
any measurements and consequently will only be slightly changed between prior and posterior. The distribution 
is asymmetric; with most of the values being lower than one; it suggests that in some locations the data assimila-
tion  algorithm still tends to slightly overestimate the uncertainty.

Unlike the normalized error, the CRPS shown in Figure 11d has a target value that is also the arithmetic minimum: 
0. CRPS is used to compare a probabilistic prediction with a deterministic truth by integrating their cumulative 

Figure 9. Example of a cross-section through the prior and posterior models showing the depth of the aquifer along a 2.5 km 
line. The ensemble of simulations is shown in gray, and the arithmetic mean is shown in red with the 95% confidence interval 
envelope (2.5% and 97.5% quantile of the ensemble). The decreasing uncertainty at 4,600 m is due to a conditioning borehole.
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density function. The CRPS has the advantage of not assuming a Gaussian distribution of the error and considers 
the probabilistic forecast as a whole. In our case, we denote that the CRPS is distinctly better in the posterior 
than in the prior, both in terms of global distribution or in terms of arithmetic mean. We can then assume that the 
posterior models give a better forecast in terms of aquifer thickness than a borehole-only-based model, without 
any manual integration of geophysical data.

In the above results, the thickness of the upper aquifer was used since it is the information that is the most present 
in the boreholes and can therefore be used for cross-validation and comparison. However, our data integration 
in the discrete geological model approach can also provide various other information. First, the distribution of 
the petrophysical parameters can be retrieved. Figure 13 shows an E-W cross section through one posterior real-
ization (Figures 13a and 13c) and the mean petrophysical fields (Figures 13b and 13d). Since the petrophysical 
models are generated from the discrete unit model, where each cell is assigned a specific layer, we denote sharp 
transitions between the different facies. On the other hand, the mean realization is much smoother, since it is 
averaged over the members. For the resistivity mean cross section (Figure 13d), we can see that averaged smooth 
petrophysical properties are closer to what can be achieved with classic deterministic inversion, compared to a 
single model (Figure 13c). Figure 13e compares the smooth inversion of the same tTEM data published by Neven 

Figure 10. Mean depth of transition between the shallow aquifer and the aquiclude over the 500 posterior simulations (after data integration) and prior simulations 
(boreholes only), and associated uncertainty. The uncertainty at the location of the boreholes. The coordinates are in UTM32 (epsg: 32632). Basemap freely obtained 
from the Swiss Federal Office of Topography.
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et al. (2021). To facilitate the comparison of the structures, the mean resistivity field over the realizations is added 
in grayscale. The agreement between the mean resistivity field and the 1D resistivity models is satisfactory.

Figure  12a shows the joint distribution of resistivity versus hydraulic conductivity in the upper aquifer after 
inversion. As a reminder, in the prior both proprieties were assumed to be normally distributed around uniformly 
distributed random means drawn at the pilot points position. Recall that the uniform range for the pilot points was 
for resistivity and hydraulic conductivity, respectively, 100 − 500 (10 2 − 10 2.7) Ω · m and 10 −5 − 10 −1.5 m·s −1. 
The resulting prior petrophysical distributions for the upper aquifer are shown in orange in Figure 12a. Logically, 
the maximum of the prior distribution of parameters corresponds roughly to the average of the initial pilot point 
values. The predicted value range in the posterior is smaller compared to the large prior range. Interestingly, the 
results of the data integration show two distinct populations not present in the prior (see Figure 12a). We can 
denote that the two populations are clear in terms of hydraulic conductivity but overlap in terms of resistivity. The 
values for both resistivity and hydraulic conductivity are within the expected range in the area. Finally, Figure 12b 
shows the probability of encountering the second aquifer above a certain depth. Since only 4 boreholes reach this 
second aquifer, the probability in the prior is almost uniform at 50%. The data aggregation algorithm has provided 
a significant amount of information, reducing the probability in some areas of the valley and predicting with high 
confidence the presence of the aquifer in other places.

Another interesting result is the possibility to assess the vulnerability of the second aquifer. Shallow aquifers in 
quaternary settings are generally more affected by pesticides, fertilizers, or permanent contaminants (PFAS e.g.,) 
than the deeper ones. In Switzerland, these problems lead some water authorities to start targeting deeper aquifers 
to produce drinking water. Quantifying the potential connection between the shallow and deeper aquifers is there-
fore an important practical issue. The modeling framework proposed in this paper allows estimating this thickness 
in every simulation and post-processing them to obtain some statistical estimates. Figure 14, summarizes such 
results. The thinner the aquiclude, the higher the risk of communication between the upper and lower aquifer, and 

Figure 11. Results of the Cross-Validation: (a) Error distribution for prior and posterior models (b) Evolution of the 
uncertainty (2σ) between the posterior and the prior. A Positive value means a reduced uncertainty in the posterior, where 
a null value means that so significant changes has occurred. (c) Distribution of the Normalized error (d) Cumulative 
distribution of the Continuous Ranked Probability Score (CRPS).
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consequently the vulnerability of the second aquifer to surface pollutants. Figure 14 shows that the uncertainty is 
relatively high in the set of prior simulations. It is low only around the seven borehole locations. Note that among 
these boreholes only three are touching the deeper aquifer and are used as conditioning points, while the others 
have not reached the second aquifer and are used as inequalities in the conditioning of the geostatistical simula-
tions. The use of the EM data allows to constrain better the thickness map and reduce significantly the uncertainty 
(Posterior results in Figure 14). But we observe that the posterior uncertainty still remains much higher than the 
uncertainty of the thickness of the shallow aquifer. The uncertainty reduction is lower, this is certainly due to the 
higher depth and the presence of a thick clay layer because the EM method is only poorly sensitive to structures 
at a large depth.

Finally, we show the effect of the data assimilation on different particle tracking scenarios to illustrate the impact 
of the method on possible solute transport predictions. The prior and posterior models are compared. Using the 
simulated heads of the groundwater model, the advective path is calculated for each of the members. We used 
the same hydrogeological forward model as the one used for inversion. As shown earlier (Figure 7), the hydraulic 
heads are much less dispersed in the posterior simulations. Figure 15 shows four situations with a different initial 
location for the contamination source and shows their respective prior and posterior advective paths. In all the 
cases, the uncertainty has been reduced by integrating the geophysical and groundwater data. We observe that all 
the posterior paths are contained within the prior. This suggests that a model based only on boreholes could be 
used to estimate the travel path uncertainty, but the uncertainty would likely be much too broad. For example, in 
the case of scenarios A and B (Figures 15a and 15b), the river in which the pollutant may appear is not identified 
with confidence in the prior since it could reach either the Aare river on the east or the Grube in the middle of the 
domain when the posterior distribution has clearly identified the most probable case. Figures 15c and 15d illus-
trates how the thicker and more permeable aquifer areas identified through the assimilation of the data affect the 
path. The thicker aquifer northwest of the area (see Figure 10) drains most of the particles along an impermeable 
boundary of the valley.

5. Discussion
The methodology and results presented in this study have proven the feasibility of integrating geological, 
geophysical, and hydrogeological field data to obtain consistent models at the scale of a part of a regional aqui-
fer. The use of two different data types through joint inversion has proven to be a valuable approach. The two 
distinct hydraulic conductivity populations (Figure 12a) probably correspond to two distinct sub-aquifer regional 
granulometry changes, which is typical of highly heterogeneous Quaternary environments. The two populations 
cannot be distinguished from resistivity only, since their respective ranges overlap, despite an order-of-magnitude 

Figure 12. (a) Joint Posterior Distribution of the two petrophysical parameters of interest in the aquifer: Electrical Resistivity 
(Rho) and Hydraulic Conductivity (K). (b) Probability of the presence of the second aquifer at a depth less than 50 m with the 
position of the boreholes reaching the second aquifer.
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difference in hydraulic conductivity. However, geophysical measurements constrain the thickness of the aquifer. 
Consequently, the space of uncertainty of the transmissivity is reduced, and the space of uncertainty for the 
hydraulic conductivity is limited. Without joint inversion, it is probable that these areas would have been consid-
ered to be a shallower aquifer section, instead of a less permeable one.

To accelerate the forward computations, we used a simplified 2D groundwater model. This is not a requirement 
for the proposed methodology, but it constitutes a reasonable simplification in the aquifer that we studied and 
with the available integrated head data. In a thicker aquifer with precise head measurements collected at different 
depths, this 2D approach would not be adequate to represent the system since the vertical flow components across 
the geological formations may have an important impact. In these situations, a complete 3D groundwater model 
would be required. Similarly, the use of 1D EM forward for inversion is widespread but significant differences 
can occur between 2D or 3D modeling in the case of complex geology such as seawater intrusion for example, (S. 
Kang et al., 2015). However, our method lies in between since even if a 1D forward code is used, the underlying 
model is still 3D and has some constrains.

Figure 13. E-W Cross-Section (y = 5,194,568 m UTM32N) comparing the hydraulic conductivity field of one posterior model (a), the mean hydraulic conductivity 
over the posterior members (b), the resistivity field of one posterior model (c), the mean resistivity over the posterior members (d), and the 1D resistivity models from a 
deterministic smooth inversion of the tTEM data (e) from Neven et al. (2021). The dashed black line is the standard depth of investigation, retrieved from the inversion. 
The gray scale base map of (e) is the mean resistivity over the posterior members (d).
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The proposed workflow has the advantage of being flexible and could easily be extended to account for more 
physical processes and parameters. The data assimilation method could include other types of geophysical or 
groundwater measurements and allow identifying additional model parameters such as storativity, porosity, or 
river conductance, as well as boundary conditions or source terms. Combining more information would require 
developing appropriate prior distributions for all these additional unknowns but could help to better quantify 
the overall uncertainty in groundwater models. The downside could be that adding more parameters, especially 
global ones, could lead to more spurious correlations in the ESMDA procedure and could also increase signifi-
cantly the computing time required for the assimilation algorithm.

Compared to a classical geophysical inversion, the data residual of the proposed approach is much higher (4.1 
vs. less than 1 in the previous inversion by Neven et al. (2021)). Indeed, the classical deterministic inversion is 
only constrained by the regularization applied to the inversion algorithm. These fairly loose constraints allow the 

Figure 14. Thickness of the aquiclude, acting as the separation of the surface and shallow aquifers. Low thicknesses are correlated with a higher risk of pollutant 
contamination from the shallow aquifer to the lower protected aquifer. Zero-incertitude points are boreholes. The coordinates are in UTM32 (epsg: 32632). Basemap 
freely obtained from the Swiss Federal Office of Topography.
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minimization scheme to fit the data almost perfectly. In contrast, our inversion scheme involves much more prior 
knowledge, such as the number of layers, the distribution of the parameters, and their spatial continuity. The final 
models are therefore the best models that fit both all the data and the conceptual knowledge of the area. For exam-
ple, some local areas may show a thin additional layer of clay within the upper aquifer; this is not considered by 
the conceptual model and will result in a higher residual close to the point. Additionally, as shown in Figure 13, 
the mean of the realizations is very similar to the deterministic inversion. It is a good indicator that the space of 
uncertainty around this mean optimum is correctly represented by the ensemble of posterior models. It is also 
possible that the variogram models chosen for the parameter fields simulation are not suited, or that the number 
of pilot point should be increased. The balance between the representation of the detailed complexity and the 

Figure 15. Advective particle path computed using the Prior and Posterior models for 4 different starting sites. For readability, only 100 members are represented.
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large-scale structures always depends on the purpose of the final model, and one should be aware that the prior 
model will need to reflect the level of expected details. For hydrological observations, we denote only a marginal 
decrease of the residual. The fact that only a steady state model was used limits the amount of information which 
can be gathered from the hydrological data. The use of dynamic data such as tracer test or piezometric time series 
could probably increase the contribution of the hydraulic data.

We do not assume a specific petrophysical relationship a priori. The geostatistical simulations for each petrophys-
ical parameter are independent. The only prior knowledge that links resistivity and hydraulic conductivity comes 
from the prior distribution of the mean values for each layer (and rock types) drawn at the pilot point locations. 
This means that a permeable layer will always be associated with high resistivities; however, extremely high 
values within the high aquifer resistivity range will not necessarily be associated with high permeability within 
the aquifer values range.

The cross-validation performed on the prior models has revealed a bias of about −4 m on average. Even if this 
error might seem negligible, for an aquifer that has a mean thickness of about 5–6 m, it represents an important 
bias in terms of available resources. We interpret this result as a classical example of sampling bias and should be 
carefully considered when making geological models. The prior mean depth used for the geostatistical simulation 
is calculated by averaging the available thickness data from the boreholes. However, when the aquifer is deep, 
most drilled wells for geothermal heat pumps or irrigation do not reach the bottom of the aquifer. Therefore, 
the exact thickness of the aquifer is unknown at these locations. This leads to a sampling bias toward smaller 
thicknesses and consequently to a bias in the prior model. We note that the ESMDA approach successfully 
identified the bias and recenter the distribution. Choosing a correct prior when bias exists in the available data 
is a general issue when dealing with Bayesian approaches, and was previously noted in the review by Linde 
et al. (2015). Properly capturing the heterogeneity and statistical parameters from the wells is straightforward 
with variogram-based methods and the simplicity of the approach makes the transcription of prior conceptual 
knowledge into statistics easier than with other more advanced object-based or multiple-point statistics mode-
ling methods. Combining variogram-based geostatistical methods with inversion offers a good balance between 
simplicity and realism. If the prior is not totally statistically correct (such as the bias in the mean altitude of a 
geological interface in this study), data assimilation may correct it. The variogram of the posterior distribution of 
the base surface of the upper aquifer was compared to the original variogram model from the prior simulation in 
Figure 16. It reveals that data aggregation has significantly changed the variogram, its sill has been reduced by a 
factor of almost two. This posterior variogram could help to scale accordingly similar areas that are not covered 
by geophysical measurement by assuming that the statistics are similar. Getting reliable and data-based variogram 
models in geology is always difficult, and applying this methodology to other environments could create potential 
databases of analogs.

As mentioned above, the total computing time was about 4h20 per iteration. The complete workflow was paral-
lelized on 30 CPUs. Despite the reduced-dimensionality strategy, the forward simulations still represent 75% of 
the computing time. To accelerate even further the algorithm, one possible future research direction could be to 
employ non-physical surrogate modeling, such as, for example, machine learning (Bording et al., 2021; Juda & 
Renard, 2021). Using a less computationally expensive approach for the first iterations, or the complete inversion, 
could significantly speed up the computation.

6. Conclusion
This paper has shown the feasibility of integrating geological observations, an explicit geological concept, hydro-
geological, and geophysical data on a shallow quaternary aquifer. Using the ESMDA algorithm, the methodology 
is able to effectively integrate all these data and provide robust uncertainty estimation.

The approach consists in generating and updating a consistent ensemble of 3D geological models that are obtained 
using the ArchPy hierarchical approach. To accelerate the ESMDA computation, we propose to run the forward 
physical simulations in a reduced dimension that is different for the geophysical and hydrogeological problems. 
In addition, the nature of the ESMDA algorithm allows for benefiting heavily from parallel computing. The 
application of the methodology to the upper Aare Valley in Switzerland, with actual field data, demonstrates the 
applicability of the proposed workflow in real situations. The stochastic nature of the method and the existence 
of the underlying complete 3D geological model allows for estimating uncertainty, with the advantage of being 
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able to retrieve not only petrophysical fields but also some underlying quantities derived from the model, such as 
the thickness of the aquifer, or the probability of occurrence of a protection layer above an aquifer. This feature 
can be used to deliver specific critical information for decision-makers which would not be simple to derive at the 
aquifer scale from geophysical data only.

To conclude, the results presented in this paper demonstrate that coupling the ArchPy methodology with ESMDA 
is a promising approach that could be applied to a wide variety of problems. All the components of this method-
ology are available as open-source Python-based software that can easily be modified. For example, any other 
forward simulator could be coupled with the existing code to extend it to a wide variety of situations to constrain 
the geological models with other types of geophysical observations or other hydrological processes such as heat 
or solute transport.

Data Availability Statement
All the data and codes used in this study are previously published and can be accessed. The tTEM and the heads 
data used for inversion in the study are available respectively at Neven et al. (2021) and Kellerhals et al. (1981). 
The heads data, gathered from Kellerhals et al. (1981), are also available in Supporting Information S1 (Table 
S3). The ArchPy modeling software is available at Schorpp et al. (2022). Finally, the two forward simulations 
codes can be obtained, respectively, in Auken et al. (2009) and Hughes et al. (2017). To facilitate reproducibility, 
the ArchPy models (prior and posterior) and the flow model used for the flow simulation can be found in the 
zenodo repository (https://zenodo.org/record/8047723, Neven and Renard (2023)).
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