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a b s t r a c t 

Uncertainties related to permeability heterogeneity can be estimated using geostatistical simulation methods. 

Usually, these methods are applied on regular grids with cells of constant size, whereas unstructured grids are 

more flexible to honor geological structures and offer local refinements for fluid-flow simulations. However, cells 

of different sizes require to account for the support dependency of permeability statistics (support effect). 

This paper presents a novel workflow based on the power averaging technique. The averaging exponent 𝜔 is es- 

timated using a response surface calibrated from numerical upscaling experiments. Using spectral turning bands, 

permeability is simulated on points in each unstructured cell, and later averaged with a local value of 𝜔 that 

depends on the cell size and shape. 

The method is illustrated on a synthetic case. The simulation of a tracer experiment is used to compare this 

novel geostatistical simulation method with a conventional approach based on a fine scale Cartesian grid. The 

results show the consistency of both the simulated permeability fields and the tracer breakthrough curves. The 

computational cost is much lower than the conventional approach based on a pressure-solver upscaling. 
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. Introduction 

Subsurface phenomena cannot be observed directly due to scale is-

ues and inaccessibility. In hydrogeology, the high spatial variability of

ock types and the associated permeability field as well as the high spa-

ial and temporal variability of fluid types and displacements is a main

ource of uncertainties. Estimating these uncertainties is particularly im-

ortant in a context of engineering design and decision making. Exam-

les of applications include the management of over-exploited aquifers

r the propagation of dangerous contaminants ( De Marsily et al., 1998 ).

imilar uncertainty issues coupled with decision-making are encoun-

ered in other applied geoscience engineering, such as oil and gas indus-

ry ( Preux, 2016 ), CO 2 storage in aquifers ( Michael et al., 2010; Akhurst

t al., 2015 ), or geothermal energy production ( Vogt et al., 2010; Quin-

ivan et al., 2015; Witter et al., 2019 ). 

This paper focuses on the spatial modeling of permeability fields.

ue to rock heterogeneity, a measurement at point-support is not suffi-

ient to determine accurately the value at another point. To assess the
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ncertainty related to this problem, one can employ geostatistical sim-

lation methods ( Deutsch and Journel, 1992; Goovaerts, 1997; Chilès

nd Delfiner, 2012 ). 

To represent the spatial variability and to solve numerically the flow

nd transport equations, a mesh is used and its cells are populated

ith petrophysical properties. Classical meshes, widely known as reg-

lar structured (or Cartesian) grids, are composed of hexahedral cells

n three dimensions. The interesting aspect of regular structured grids

s that their cells all share the same size. Depending on the type of nu-

erical methods employed to solve the flow problem, other types of

rids exist. Some tools use irregular structured grids, also called corner-

oint (or stratigraphic) grids, obtained by distorting hexahedra to follow

ore faithfully geological layers. Regular and irregular structured grids

re practical for the rapidity of calculation but they present some draw-

acks: some cells can be degenerated for high thickness variations, the

eometry of the intersections between faults or wells and the geological

tructure are approximated, and corner-point regular grids lack spatial

daptivity to honor local complex features of the parameter field. To

ddress these issues, unstructured grids can be used: each vertex can
e.biver@total.com (P. Biver), philippe.renard@unine.ch (P. Renard), 

020 

ticle under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.advwatres.2020.103665
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2020.103665&domain=pdf
mailto:pauline.mourlanette@orange.fr
mailto:pierre.biver@total.com
mailto:philippe.renard@unine.ch
mailto:benoit.noetinger@ifpen.fr
mailto:guillaume.caumon@ensg.fr
https://doi.org/10.1016/j.advwatres.2020.103665
http://creativecommons.org/licenses/by/4.0/


P. Mourlanette, P. Biver and P. Renard et al. Advances in Water Resources 143 (2020) 103665 

h  

d  

a  

(  

i  

fl  

i  

fl  

M

 

s  

t  

s  

c  

c  

W  

i  

l  

d  

v  

t  

s  

a  

t  

i  

s  

s  

c  

t  

t  

c

 

t  

a  

u  

b  

C  

o  

p  

t  

s  

a  

d  

i  

t  

m  

a

 

o  

l  

a  

m  

b  

Z  

S  

v  

n  

s  

a  

a

 

a  

c  

fi  

e  

g  

i  

T  

(  

p  

a  

t

2

 

F  

i  

s  

s  

e  

t  

a  

n  

a  

m  

a  

p  

s  

p  

t  

p

 

𝜔  

d  

r  

t

2

 

2  

t

𝐾  

w  

i  

l  

𝜔  

𝑒  

i  

m  

r  

d  

o

 

t  

t  

m  

s  

t  

t  

𝜔  

i  

d  

c  

(  

D  

i  

v

ave a different number of neighbors, and the cell’s sizes can vary. In-

eed, the areas of the grid that present more interest or stronger vari-

tions for flow estimations can be refined and other parts coarsened

 Prévost et al., 1996 ). Usually, to minimize numerical errors, the grid

s refined around wells or faults but it can also be optimized based on

ow patterns ( Mlacnik et al., 2003 ). In addition, the cells can have var-

ous shapes such as tetrahedron or Voronoï polyhedron, offering more

exibility to adapt to geological heterogeneity ( Blessent et al., 2011;

erland et al., 2014 ). 

However, unstructured grids brings an additional difficulty for geo-

tatistical simulations. Indeed, the statistics of the permeability (and of

he other variables) are support dependent (i.e., in stationary settings,

maller cells tend to have a smaller internal variability and larger inter-

ell variability). This support effect is well documented both theoreti-

ally and experimentally ( Matheron, 1967; Dagan, 1993; Tidwell and

ilson, 1997 ): the probability distribution function of the permeability

s different for cells of different volumes, as well as the spatial corre-

ation. Intuitively, small cells will follow the geostatistical properties

efined at the point-support scale, keeping their local average and co-

ariance. In opposition, for very large blocks having a size greater than

he underlying integral scale, the associated permeability value may be

hown to stabilize to the so-called effective permeability, that is the self-

veraging property ( Boschan and Noetinger, 2012; N œ tinger and Gau-

ier, 1998; Noetinger and Zargar, 2004 ). It highlights the role of the

nteraction between the geometry and size of the block and the integral

cale that may characterize the internal structure of the aquifer. If these

upport effects are not accounted for, the simulation of the petrophysi-

al variables can result in distorted and possibly wrong fluid paths. It is

herefore crucial to use appropriate geostatistical methods for unstruc-

ured grids (and, incidently, for structured corner point grids in which

ell volumes vary significantly, see ( Bertoncello et al., 2008 )). 

The simplest approach to account for the support effect is to simulate

he properties on a fine-scale grid using a geostatistical model defined

t measurement-support. In a second step, this grid is overlaid by the

nstructured grid of interest. The values on the large cells are computed

y averaging the values contained in this cell on the fine scale grid (e.g.,

aumon et al., 2005; Durlofsky, 2005 ). However, modeling the domain

f interest at measurement-support (typically a few cubic centimeter for

etrophysical core measurements) is particularly challenging. To bypass

his problem, a solution is to simulate directly the property on the un-

tructured grid accounting for support effect. But a second challenge

rises because permeability is not additive. A property is said to be ad-

itive (porosity for example) when the averaging can be carried out us-

ng a (weighted) arithmetic mean. This is possible because quantities of

he underlying physical property can be added together in a meaningful

anner. For example, volumes of pores in two parts of a sample can be

dded together to produce the total volume of pores in the sample. 

For additive properties, some direct geostatistical simulation meth-

ds accounting for support effect exist. They are based on the ana-

ytical or numerical estimation of the covariance between data points

nd cells of different support and geometries. Among the existing

ethods, the Discrete Gaussian Model or DGM ( Matheron, 1976 ) has

een investigated and implemented by Emery and Ortiz (2011) and

aytsev et al. (2015) . Another possible method is the Direct Sequential

imulation or DSS ( Deutsch et al., 2002 ). In all cases, the covariance

alues vary depending on the cell’s volumes. However, permeability is

ot additive: one cannot simply average it using simple summations. In-

tead, a pressure solver or some approximations must be used ( Renard

nd De Marsily, 1997; Manchuk et al., 2012; Khan and Dawson, 2004 )

nd the geostatistical methods cited above cannot be directly applied. 

The aim of this paper is, therefore, to introduce a new approach

llowing to simulate permeability directly on any unstructured grid, ac-

ounting for the support effect and avoiding the use of an underlying

ne grid. The method transforms the permeability into an additive prop-

rty using power averaging with local exponents which depend on the

eometry and size of the cells. The exponents are estimated using a lim-
ted set of numerical experiments and an experimental design approach.

he simulation process then relies on a Spectral Turning Bands approach

 Mantoglou and Wilson, 1982; Emery et al., 2016 ). This overall strategy

ermits to generate efficiently a set of realizations. In Section 3 , the

pplicability of the method is illustrated on a synthetic case including

racer test simulations. 

. Methodology 

The general workflow of the proposed approach is illustrated in

ig. 1 . The details are provided in the following sections. Let us first

ntroduce the overall approach. The first step is the computation of the

ize and aspect ratio of each cell of the unstructured grid ( Fig. 1 a.). The

econd step consists of a series of numerical experiments allowing to

stimate, for any cell geometry, the exponent 𝜔 that would minimize

he error between the equivalent conductivity estimated using a power

verage with the 𝜔 exponent and the equivalent conductivity estimated

umerically. Since it is not possible to run numerical experiments for

ll the cell sizes and geometries, we select some representative cell di-

ensions and construct a response surface ( Fig. 1 b.). This is done once

t the beginning of the procedure. Then, several points are randomly

laced inside each cell and, for every realization, the permeability is

imulated on these points using the Spectral Turning Bands (STB) ap-

roach ( Fig. 1 c.). The power averaging technique is then applied using

he value of 𝜔 derived from the response surface to obtain the equivalent

ermeability of the cell ( Fig. 1 d.). 

The main strength of this workflow is that the averaging exponents

 are estimated once for a given problem constrained by a permeability

istribution, a variogram and an unstructured grid. After that, several

ealizations of permeability fields can be obtained efficiently using spec-

ral turning bands. 

.1. Power averaging 

The proposed method is based on power averaging ( Deutsch et al.,

002; Journel et al., 1986; Ababou, 1996; Desbarats, 1992 ) to estimate

he equivalent permeability K 

eq of a cell: 

 

𝑒𝑞 = 

( 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑘 𝜔 
𝑖 

) 

1 
𝜔 

, (1)

ith n representing the number of points in a block, k i the permeabil-

ty value at point i and 𝜔 the averaging exponent. The exponent 𝜔 be-

ongs to the interval [−1 , 1] , with 𝜔 = 1 representing an arithmetic mean,

 = -1 a harmonic mean and lim 

𝜔 →0 
⋯ is the geometric mean given by

𝑥𝑝 

(
1 
𝑛 

∑𝑛 

𝑖 =1 𝑙𝑜𝑔( 𝑘 𝑖 ) 
)

. The interest of this approach is that the permeabil-

ty raised at the exponent 𝜔 becomes an additive variable. However, the

ain question is then to estimate the value of 𝜔 for a certain configu-

ation of the fine scale permeability. Indeed, it is expected that it may

epend on the type of spatial distributions and on the size and geometry

f the cells. 

Therefore, let us first summarize some theoretical and experimen-

al results from the literature. Several studies have given estimates of

he value of 𝜔 for some specific distributions of permeability. In two di-

ensions, when the permeability k and its inverse ( ℎ = 1∕ 𝑘 ) have the

ame probability distributions, Matheron (1966, 1967, 1968) proves

hat the equivalent permeability is the geometric mean if the statis-

ics of the spatial distributions of k and h are invariant by rotation, i.e.

 = 0 . A case that satisfies the previously mentioned conditions is a 2D

sotropic medium with a log normal permeability distribution. In three

imensions, Noetinger (1994) proposes an approximation for this spe-

ific case: 𝜔 = 1∕3 . The validity of this formula up to the fourth order

small perturbation) has been demonstrated by Dagan (1993) . However,

e Wit (1995) and Abramovich and Indelman (1995) later showed us-

ng a sixth order development that in three dimensions it is not strictly

alid and would necessitate a correction. 
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Fig. 1. General workflow for direct simulation of permeability on unstructured grids. For each unstructured cell, a) we find equivalent dimensions. b) We use these 

dimensions to constrain a response surface of 𝜔 calibrated through upscaling experiments. Then, c) we fill the cells with several integration points and simulated 

permeability on them. Finally, d) we apply power averaging using the 𝜔 estimated in step b). 
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For anisotropic media, Ababou (1996) ; Desbarats (1992) ;

uquerroix et al. (1993) ; Kruel Romeu (1994) ; Noetinger and

aas (1996) suggest a simple analytical form. Let 𝜆 = 𝐿 𝑉 ∕ 𝐿 𝐻 

be

he geometrical anisotropy depending on the ratio of the variogram

anges and 𝜅 = 𝑘 𝑉 ∕ 𝑘 𝐻 

be the permeability anisotropy ratio. Changing

ariables in the Laplace Darcy equation allows to define a global

nisotropy ratio through 𝛼 = 

√
𝜅∕ 𝜆. The proposed value of 𝜔 is: 

 ( 𝛼) = 

𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝛼) 
𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝛼) 

(2)

Massonnat (2009) introduces 𝜔 H for the horizontal permeability and

 V for the vertical permeability: 

 𝐻 

( 𝛼) = 

𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝛼) 
𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝛼) 

(3)

nd 

 𝑉 = −2 𝜔 𝐻 

+ 1 (4)

For isotropic random media, horizontal permeability is approxi-

ately equal to vertical permeability with 𝜔 = 1/3 as discussed above.

urthermore, to account for the finite size of the cells and non-ergodic

ffects (the integral scale is not necessarily much smaller than the cell

ize), Massonnat (2009) introduced two additional coefficients 𝜖 and
H 
V to estimate the global anisotropy ratio: 

= 

𝐿 𝐻 

𝐿 𝑉 

√ 

𝑘 𝑉 

𝑘 𝐻 

𝜖𝐻 

𝜖𝑉 (5) 

The parameter 𝜅 = 𝑘 𝑉 ∕ 𝑘 𝐻 

can be estimated from field measure-

ents, but this is rarely done. A table of values has been proposed for

urbiditic facies ( Wigniolle and Massonnat, 2013 ). However, the main

ifficulty revolves around the dependency of 𝜔 to the coefficients 𝜖H 

nd 𝜖V , that are hardly possible to estimate without empirical curves.

odoy et al. (2018) showed numerically how the exponent is influ-

nced by the block size. The power average was recently revisited by

iao et al. (2020) and references therein. The conclusion from this brief

iterature review is that numerical experiments must be conducted to

stimate 𝜔 , as there is no simple analytical solution. In the following

ection, we will present how the values of 𝜔 are defined for all unstruc-

ured grid cells, but before explaining that aspect we introduce how we

ompute an equivalent geometry for the cells of the unstructured grids.

.2. Characterizing the unstructured cells 

A preliminary step is to estimate the geometries of the unstructured

ells. Indeed, 𝜔 depends on the cell’s sizes. Two separate sets of axes
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Fig. 2. Nomenclature of the two sets of axes used in the method. XYZ axes 

are defined by the grid bounding box orientation. The Mmt axes follow the 

anisotropy axes of the variogram. The unstructured grid will be considered in 

Mmt space through projections of the cells on the axes. 

Fig. 3. Definition of the horizontal aspect ratio H . The distance ΔM u is obtained 

by projecting the cell’s vertices on the M axis and taking the length between the 

two extremal points. The same process is applied for the m axis. 
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re defined ( Fig. 2 ). The XYZ space is characterized by the orientation

f the unstructured grid, i.e. the orientation of the bounding box of the

rid. The Mmt space is defined following the axis M corresponding to

he maximum range of the variogram model in the stratigraphic plane,

he axis m corresponding to the minimum range of the variogram model

n the stratigraphic plane (perpendicular to M ) and the vertical axis t .

n this work, grids are 2.5D, which brings Z ≡ t . It is in this depositional

pace, Mmt , that unstructured cell sizes are defined. 

To define the cell sizes, a horizontal aspect ratio H along the Mm

xes is defined. It is computed for every cell: all vertices are projected

long M and m ( Fig. 3 ). Cell’s lengths along axes, ΔM u and Δm u , are

efined by the distance between the furthest projected vertices on the

onsidered axis. The aspect ratio H is obtained by dividing the projected

ength along M by the one along m : 𝐻 = Δ𝑀 𝑢 ∕Δ𝑚 𝑢 . 

For each unstructured cell, an equivalent regular hexahedral cell is

efined through a simple system of equations, so that the volume of the
egular cell V r is equal to the volume of the unstructured cell V u and

hat both cells have the same aspect ratio H and thicknesses Δt r and

t u , respectively: 

 

 

 

 

 

𝑉 𝑟 = Δ𝑀 𝑟 × Δ𝑚 𝑟 × Δ𝑡 𝑟 = 𝑉 𝑢 

𝐻 = Δ𝑀 𝑢 ∕Δ𝑚 𝑢 = Δ𝑀 𝑟 ∕Δ𝑚 𝑟 

Δ𝑡 𝑢 = Δ𝑡 𝑟 

(6) 

M u , Δm u , Δt u and V u being known, the dimensions of the equivalent

ectangular cell are obtained for every cell of the unstructured grid: 

 

 

 

 

 

 

 

Δ𝑀 𝑟 = 

√ 

𝐻×𝑉 𝑢 
Δ𝑡 𝑢 

Δ𝑚 𝑟 = 

√ 

𝑉 𝑢 

𝐻×Δ𝑡 𝑢 

Δ𝑡 𝑟 = Δ𝑡 𝑢 

(7) 

or a non-extruded unstructured grid, the third equation of the system

hould be replaced by a vertical aspect ratio 𝑉 = ⟨Δ𝑀, Δ𝑚 ⟩∕Δ𝑡 . Describ-

ng the unstructured cells in Mmt space means that the permeability ten-

or will be considered in this space. For the flow simulators, however,

ermeability has to be given in XYZ space. An additional step at the end

f the workflow has to be implemented to rotate the permeability ma-

rix from Mmt space to XYZ . For simplicity, however, the remainder of

his paper considers that Mmt axes are aligned to XYZ axes, coherently

ith the chosen horizontally isotropic grids and variograms used for the

imulations. 

.3. Generating the response surface of omega 

In the method presented hereafter, 𝜔 is estimated for each cell using

 response surface methodology. The explanatory variables of the re-

ponse surface are the different parameters having an influence on the

alue of 𝜔 . They characterize each cell of the unstructured grid. 

Following Noetinger and Haas (1996) and Massonnat (2009) , exper-

ments show that three main parameters influence 𝜔 : variogram ranges,

roportions of facies, and cell geometry. In this paper, the focus is put

n cell sizes and geometry and we neglect for the moment the presence

f multiple facies to keep the response surfaces simple and tractable. 

To obtain the response surface, the first step consists in choosing N

oints in the parameter space where the response has to be evaluated.

he dimension D of the parameter space depends on the type of unstruc-

ured grid ( Fig. 4 a.): 

• 𝐷 = 2 for a 2D unstructured grid: taking into account cell’s sizes

along M and m axes. 
• 𝐷 = 2 for a 3D unstructured grid with constant cell’s size on t axis:

taking into account cell’s sizes along M and m . 
• 𝐷 = 2 for a 3D horizontally isotropic grid: taking into account the

cell’s sizes along t axis and the average of the cell’s sizes along M

and m axes. 
• 𝐷 = 3 for a 3D unstructured grid: taking into account cell’s sizes

along M, m and t axes. 

For each of the D dimensions, the minimum and maximum of the

izes of the equivalent rectangular cells ( ΔM r , Δm r and Δt r ) is computed

o limit the ranges of possible cell sizes. A set of P points is then randomly

nd uniformly placed in the parameter space. Each point corresponds

o a D -dimensional vector of the form ( Δ𝑀 

𝑖 
𝑟 
, Δ𝑚 

𝑗 
𝑟 , Δ𝑡 𝑘 

𝑟 
). The number of

oints P should be large enough to cover the entire space ( Fig. 4 b.).

mong those P points, N are chosen using the Wootton, Sergent, Phan-

an-Luu (WSP) ( Sergent, 1989; Sergent et al., 1997a; 1997b ) space-

lling design technique: from a set of candidate points, well-distributed

xperiments are selected following an iterative process depending on an

xclusion sphere ( Santiago et al., 2012 )( Fig. 4 c.). 

A value of 𝜔 is then estimated for each of the N points of the param-

ter space: for each point having D coordinates representing cell sizes,

.g., Δ𝑀 

exp 
, Δ𝑚 

exp 
and Δ𝑡 

exp 
if 𝐷 = 3 , we use a fine regular grid aligned
𝑟 𝑟 𝑟 



P. Mourlanette, P. Biver and P. Renard et al. Advances in Water Resources 143 (2020) 103665 

Fig. 4. a) Example of parameter space for 𝐷 = 2 and 𝐷 = 3 . b) Placing P random points to cover the entire space. c) Choosing N experiments uniformly placed in 

the space. 

Fig. 5. Definition of the structured grid on which 

we perform the experiments. We take into ac- 

count Δ𝑀 

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 
𝑟 
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𝑟 
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𝑟 
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𝑟 , Δ𝑡 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 , which are the dimensions of the 

smallest and biggest unstructured cells. 

o  

a  

u  

w  

i  

a  

t

 

Δ  

Δ  

c  

c  

l  

b  

t  

o  

𝑐

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n the Mmt axes to simulate several realizations of fine-scale perme-

bility. These fine values are then upscaled with a pressure solver using

pscaling ratio corresponding to the coordinates of the point treated, i.e.

e create upscaled blocks of the size of the equivalent hexahedron of

nterest. It gives a distribution of reference upscaled permeability values

nd we find the 𝜔 for which the power averaging distribution best fits

he reference. The details of this calibration are given bellow. 

The fine grid for the fine-scale simulations is defined once, using

𝑀 

𝑠𝑚𝑎𝑙 𝑙 𝑒𝑠𝑡 
𝑟 

, Δ𝑚 

𝑠𝑚𝑎𝑙 𝑙 𝑒𝑠𝑡 
𝑟 

and Δ𝑡 𝑠𝑚𝑎𝑙 𝑙 𝑒𝑠𝑡 
𝑟 

(respectively Δ𝑀 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 , Δ𝑚 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 and

𝑡 
𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 ) which are the dimensions of the equivalent rectangular cell

orresponding to the smallest (respectively the biggest) unstructured

ell in the grid ( Fig. 5 top). The idea is to create a fine grid covering at

east eight equivalent rectangular cells (2 along each axis): the bounding

ox of this structured grid must have dimensions 𝐺 

𝑠 
𝑀 

, 𝐺 

𝑠 
𝑚 

and 𝐺 

𝑠 
𝑡 

such

hat 𝐺 

𝑠 
𝑀 

≥ 2Δ𝑀 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 , 𝐺 

𝑠 
𝑚 
≥ 2Δ𝑚 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 and 𝐺 

𝑠 
𝑡 
≥ 2Δ𝑡 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 . The voxels

f this grid have dimensions 𝑐 𝑠 
𝑀 

, 𝑐 𝑠 
𝑚 

and 𝑐 𝑠 
𝑡 

such that 𝑐 𝑠 
𝑀 

≤ Δ𝑀 

𝑠𝑚𝑎𝑙 𝑙 𝑒𝑠𝑡 
𝑟 

,

 

𝑠 
𝑚 
≤ Δ𝑚 

𝑠𝑚𝑎𝑙 𝑙 𝑒𝑠𝑡 
𝑟 

and 𝑐 𝑠 
𝑡 
≤ Δ𝑡 𝑠𝑚𝑎𝑙 𝑙 𝑒𝑠𝑡 

𝑟 
( Fig. 5 bottom). 

Then, each experiment is performed as follows: 

• A fine-scale permeability k is simulated on the local grid using Spec-

tral Turning Bands ( Mantoglou and Wilson, 1982; Emery et al.,
2016 ), with a distribution and variogram corresponding to the fine

scale ( Fig. 6 a.). This step is repeated R times with a different seed for

random number generation. The permeability distribution can be of

any type including lognormal and beta. This distribution may char-

acterize the values of permeability or the values of log-permeability.

In the latter case, the fine-scale permeability values are normalized

using a power of 10. The rest of the experiment is then performed

on this normalized property. 
• Upscaling ratios in each direction are set using cell’s sizes cor-

responding to the current experiment: 𝑈 𝑀 

= Δ𝑀 

exp 
𝑟 ∕ 𝑐 𝑠 

𝑀 

, 𝑈 𝑚 =
Δ𝑚 

exp 
𝑟 ∕ 𝑐 𝑠 

𝑚 
and 𝑈 𝑡 = Δ𝑡 

exp 
𝑟 ∕ 𝑐 𝑠 

𝑡 
. 

• R upscaled permeabilities, called reference permeabilities 𝐾 

𝑟𝑒𝑓 

𝑀 

, 𝐾 

𝑟𝑒𝑓 
𝑚 

and 𝐾 

𝑟𝑒𝑓 

𝑡 
, are computed using a pressure solver upscaler with U M 

,

U m 

and U t as upscaling ratios ( Fig. 6 b.). It gives a distribution of K 

ref 

values in each direction. The upscaler ( Jaquet et al., 0000 ) uses a

local scheme and solves the steady state flow equation using a finite

volume technique. It uses a Two Point Flux given by Approxima-

tion (TPFA) scheme. Two options are available: the type of bound-

ary conditions around the domain (it can either be of permeameter-

type or linearly varying heads type, see definition and discussion

in Renard and De Marsily (1997) ); and the formula used to compute
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Fig. 6. a) Simulation of permeability on the fine grid. This step 

is performed R times. b) Numerical upscaling using the experi- 

ment cell sizes to calculate the upscaling ratio. This step is also 

performed R times. c) Optimizing the global error to the reference 

distribution to obtain an 𝜔 value. 

Fig. 7. Examples of 𝜔 calculation: optimization of the 

error through a parabola fitting or golden number al- 

gorithm. 
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the transmissibility between two cells (it can either be an arithmetic,

geometric or harmonic mean). The resulting linear system is solved

using a conjugate gradient solver. 
• The values of 𝜔 M 

, 𝜔 m 

and 𝜔 t for this experiment are determined

by minimizing the global error between K 

ref and the power average

K 

eq , i.e. minimizing the sum of the error for the n upscaled blocks

( Fig. 6 c.): 

𝑛 ∑
𝑏𝑙𝑜𝑐𝑘 =1 

∥ log 
(
𝐾 

𝑟𝑒𝑓 

𝑏𝑙𝑜𝑐𝑘 

)
− log 

(
𝐾 

𝑒𝑞 

𝑏𝑙𝑜𝑐𝑘 

)
∥ (8)

In practice, determining 𝜔 is done using an optimization method that

first tries to fit a parabola equation to the error function and find its

minimum, and, if not successful, uses a golden search method. The

error function can have various shapes, going from a parabola to a

simple monotonous curve ( Fig. 7 ). 

Typically, the number R of fine-scale permeability realizations must

e large enough so that the reference distribution K 

ref has a statisti-

ally sufficient number of values to identify a robust value for 𝜔 . In the

ase of the biggest possible equivalent hexahedron (of size Δ𝑀 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 ,

𝑚 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 and Δ𝑡 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 ), we obtain eight upscaled values for one realiza-

ion: the fine grid has been defined such that eight biggest hexahedra

an be overlaid on it. It means that in this case, 𝜔 will be fitted on

 = 8 𝑅 values, which is the limit to take into account when choosing

he number R . In parallel, in the case of a small equivalent hexahedron,

e will obtain a large number of reference values for each realization,

ecause the fine grid is not adapted to the local problem. This large
umber will also be multiplied by R , which gives too many unnecessary

alues to estimate 𝜔 and brings unnecessary computational cost. To fix

his problem, if the cell size for the treated experiment is smaller than

𝑀 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 × Δ𝑚 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 × Δ𝑡 

𝑏𝑖𝑔 𝑔 𝑒𝑠𝑡 
𝑟 , only the region of the fine grid of size

Δ𝑀 

exp 
𝑟 , 2Δ𝑚 

exp 
𝑟 and 2Δ𝑡 

exp 
𝑟 is simulated and consequently upscaled. By

oing so, K 

ref distribution always has 𝑛 = 8 𝑅 values to fit the 𝜔 value for

ach point in parameter space. 

Once all numerical experiments have been performed, an interpo-

ation between the points of the parameter space is done using kriging

 Fig. 8 a. and b.). The correlation function for kriging is assumed station-

ry and written as follows: 

 ( 𝑥, 𝑦 ) = 𝑒𝑥𝑝 

( 

− 

𝐷 ∑
𝑗=1 

( ∣ 𝑥 𝑗 − 𝑦 𝑗 ∣
𝜃𝑗 

) 𝑝 
) 

(9)

ith 1 < p ≤ 2 and D the number of dimensions of the response sur-

ace. The hyper-parameters 𝜃j , characterizing kriging anisotropy, are

stimated using the maximum likelihood method. However, to avoid

rtifacts on surfaces of response in our work, all 𝜃j have been set to one

n the normalized space. The resulting response surface allows deter-

ining the exponent 𝜔 for each cell of the unstructured grid ( Fig. 8 c.). 

As explained previously, in each experiment the upscaling is done

n two or three directions resulting in different K ref ( M, m or t ). Then,

wo or three values for 𝜔 are obtained per experiment, one for each

irection D . In the end, not one but two or three response surfaces of 𝜔

re interpolated and the same amount of omega properties are painted

n the unstructured grid. 
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Fig. 8. a) All experiment results, i.e. 𝜔 , are put in the parame- 

ter space. b) A simple kriging allows the generation of a surface 

of response of 𝜔 . c) By projecting cell sizes on the response sur- 

face, one 𝜔 is found for every cell of the unstructured grid. 

Fig. 9. a) One by one, each unstructured cell is filled 

with points, the number of points depending of the vol- 

ume of the cell; b) Using the Spectral Turning Bands, 

permeability is interpolated on these points; c) Using 

the 𝜔 of the target cell, the permeability of the cell 

is obtained using power averaging on the points (fol- 

lowed by a back transform from K 𝜔 to K ). 
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.4. Direct simulation of permeability on the unstructured grid 

The next step is to simulate rapidly values on integration points

sing Spectral Turning Bands (STB) and average them using the esti-

ated 𝜔 . The integration points are obtained with a fast generation

f quasi-random Sobol’ sequences using the method of Antonov and

aleev (1979) . 

Turning bands were introduced in Matheron (1973) and further

eveloped by many authors including Mantoglou and Wilson (1982) ,

ompson et al. (1989) , Lantuéjoul (2002) and Emery and Lan-

uéjoul (2006) . The general principle of this technique is to reduce a

 dimensions simulation problem to a one-dimensional simulation. The

rst step is to generate L lines 𝜃i such that their orientation is uniformly

istributed over the unit sphere. A 1D simulation is made along each

ine using the one-dimensional field covariance 𝐶 𝜃𝑖 
resulting from the

-dimensional covariance C . Numerous methods for simulating a one-

imensional random field knowing its covariance 𝐶 𝜃𝑖 
are found in the

iterature, including spectral approaches used in this work. They can

e classified into continuous spectral simulation using cosine functions

 Mantoglou and Wilson, 1982; Shinozuka and Jan, 1972 ); discrete spec-

ral simulation using Fast Fourier Transform ( Tompson et al., 1989 ); and

irculant embedding ( Dietrich, 1995 ). From these simulated lines, the

imulated value at any point can be obtained by projection and sum-

ation. An extension of the Spectral Turning Bands method to non-

tationary models is available in Emery and Arroyo (2017) . 

Once the lines have been simulated and stored, the simulation of

ach unstructured cell can be made independently from the others. For

ach cell, a number of random locations to select is calculated depending

n the cell’s volume ( Fig. 9 a.). The fine permeability values at these

ocations are simulated as explained above ( Fig. 9 b.). The global cell

alue is obtained by averaging the point values using the power law

nd the 𝜔 estimated for that cell ( Fig. 9 c.). Once again, not one but two

r three permeability values are obtained, one for each direction M, m

nd t . 

. Applications 

The methodology has been tested and showed to provide correct re-

ults on simple cases with known analytical solutions (perfectly layered

ase, isotropic log-normal distribution, etc.). We do not discuss these

esults here for the sake of brevity. 
Instead, we will illustrate the method with a synthetic but realistic

xample ( Fig. 10 ). We consider a confined aquifer of 2km by 2km with

egligible ambient flow. The external boundaries are assumed to be im-

ermeable. The thickness of the aquifer is varying linearly from 40 m

n the eastern side to 4 m in the western side. Ten wells are positioned

cross the aquifer. Two of them are injecting water and seven are pump-

ng ( Fig. 15 ). A tracer is injected in the last well and recovered in the

umping wells. This setup was designed to test the proposed geostatisti-

al simulation technique on a realistic unstructured grid and to compare

he results of the tracer simulation with a fine scale simulation (standard

pproach). 

In the following sections, we describe first the simulation of the per-

eability and then the tracer simulations. 

.1. Permeability simulation 

The 3D unstructured grid for this case is composed of 18,250 Voronoï

ells with a volume between 25 m 

3 and 50.10 3 m 

3 ( Fig. 10 a.). The grid

s refined around all ten wells. The variogram for both porosity and per-

eability has two Gaussian structures of equal contribution with ranges

f 25x25x2.5 m and 250x250x25 m for cell sizes varying between 3 and

0 m horizontally and 0.8 to 8 m vertically ( Fig. 10 b.). The porosity has

 beta distribution of mean 0.15 and standard deviation 0.05 ( Fig. 10 c.)

nd the permeability distribution is lognormal with a mean of 100 mD

nd a standard deviation of 300 mD ( Fig. 10 d.). The boundary condi-

ions for the upscaler in the experiments are of permeameter-type, i.e.

o-flow conditions on the sides. 

Due to the horizontal isotropy of the aspect ratio of the unstructured

ells, the Mmt axes presented in Section 2.2 are taken aligned to XYZ

xes. For the same reason, X axis and Y axis being equivalent, only two

esponse surfaces are presented hereafter: one for the horizontal expo-

ent 𝜔 𝐻 

= 𝜔 𝑋 = 𝜔 𝑌 and one for the vertical exponent 𝜔 V ( Fig. 11 ). The

wo axes of the response surfaces represent the horizontal cell sizes ΔXY

taken as the mean of the cell sizes in X and Y ), and the vertical cell sizes

Z . A smooth variation of 𝜔 is observed, from 0 to 1 for 𝜔 H and from -1

o 1 for 𝜔 V . 

The log of permeability is assumed to be correlated to point-support

orosity with a correlation coefficient of 0.8, which is possible using

pectral Turning Bands. Porosity on the unstructured grid is obtained

sing the arithmetic mean ( Fig. 12 ) and two permeability (H and V) are

imulated using the power averaging formula and 𝜔 properties gener-
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Fig. 10. a) grid for the synthetic case with cell vol- 

umes varying with a factor 2.10 3 . b) double structure 

variogram used for the simulation of both petrophys- 

ical variables. c) beta distribution of porosity, with 

m = 0.15 and 𝜎= 0.05. d) lognormal distribution of per- 

meability, with m = 100mD and 𝜎= 300mD. 

Fig. 11. Surfaces of response of horizontal and ver- 

tical omega and the corresponding properties on the 

unstructured grid. 

Fig. 12. Porosity field on the toy example. Log-permeability will be correlated 

to this field with a linear coefficient equal to 0.8. 
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ted previously ( Fig. 13 a.). Although both K H and K V properties look

imilar, the cross-plot on Fig. 13 b. shows that K V is globally inferior to

 H . The similarity between these results will be discussed in the conclu-

ion. 
.2. Tracer tests 

Tracer simulations are performed accounting only for advection

nd neglecting diffusion and physical dispersion. The tracer response

omputed using the unstructured grid presented above is compared to

he response computed using a fine structured grid having the same

xtension. The aim is to test if the permeability field obtained with

he proposed method gives a coherent tracer response. The fine grid

as 600 × 600 × 80 cells of horizontal size 3.3 × 3.3 m and verti-

al size from 0.05m to 0.5m. Using spectral turning bands (STB), it

s possible to obtain the same random field on the points placed in

he structured and unstructured cells. For the structured one, a sin-

le point is taken per cell, while the number of points in each un-

tructured cells depends on its volume. Then, for unstructured cells,

he cell average value is obtained using arithmetic average for poros-

ty and power averaging for permeability (using the 𝜔 value given by

he response surface). Twenty realizations of porosity and correlated
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Fig. 13. a) Vertical and horizontal permeability fields on the toy 

example. b) Cross-plot K H vs. K V , K V being globally inferior to K H . 

Fig. 14. a) Simulation of porosity and permeability on 

the fine structured grid. b) Simulation of porosity and 

permeability on the coarser unstructured grid. Details 

are maintained in the most refined zones. 
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ermeability are generated on both grids, one example is displayed on

ig. 14 . 

For each realization, a passive tracer is injected in a water saturated

eservoir having one well injecting the tracer, two wells injecting water

nd seven production wells ( Fig. 15 ). 

The water production rate per well is 120 m 

3 /day and the water

and tracer) injection rate per well is 280 m 

3 /day. We observe the

oncentration of tracer at the producers for the twenty realizations

 Fig. 16 ). 

For individual realizations, some local deviations are observed be-

ween the tracer curves of the fine structured reservoir ( Fig. 16 a.) and

he ones of the unstructured grid ( Fig. 16 b.). However, in terms of un-

ertainty assessment, the set of tracer curves shows a very consistent

ehavior for both grids. The curves for structured reservoir are slightly

ore scattered, which is coherent with the better precision offered by

his grid. The Q10, Q50 and Q90 quantile curves ( Fig. 16 c.) are almost

dentical, with some minor differences on Q10. A 3D visualization of the

racer’s concentration evolution shows similar results on structured and
 e  
nstructured grids ( Fig. 17 ). This similarity is further demonstrated by

he visualization of the mean of the twenty realizations of the tracer’s

oncentration evolution at time thirteen years, where concentration ten-

encies are well respected ( Fig. 18 ). As expected for a coarser grid, these

esults show that the unstructured grid does not preserve the details of

he propagation visible on the structured grid, horizontally and verti-

ally. This highlights the importance of the choice of unstructured grid:

he errors are localized in areas between wells where the unstructured

rid is too coarse. Overall, this comparison demonstrates the consistency

f the proposed method as compared to the results obtained with a struc-

ured grid. However, the computational times are very different. The

racer test simulations on the structured grid takes 112 minutes in av-

rage, while they only take 4 minutes on the unstructured grid. 

.3. Computation times 

The use of an unstructured grid, while accounting for the support

ffect, usually requires to generate the geostatistical simulations on a
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Fig. 15. Placement of the wells in the unstructured reservoir (painted with a 

realization of porosity upscaled arithmetically from points simulated with STB). 

There are seven producing wells, one injecting tracer and two injecting water. 

The placement of wells is identical on the fine structured reservoir model. 

Table 1 

Computation times for two unstructured grids of different sizes. T 0 is the 

time to generate the response surfaces and 𝜔 properties on the grids, T 3 is 

the time to simulate permeability on points using STB and perform power 

averaging. 

Small grid Large grid 

nb cells 18,250 2,031,995 

T 0 22.4 min 35.4 min 

T 3 11.3 s 7.5 min 

Total (N = 1) 22.4 min 43.0 min 

Total (N = 10) 24.3 min 111.1 min 
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Fig. 16. Concentration of tracer at producers curves for twenty realizations on 

a) the fine structured reservoir and b) the unstructured reservoir. The colours 

of the curves for a) and b) represent the same realizations. c) Quantiles of the 

twenty curves for structured (in blue) and unstructured (in red) reservoirs. (For 

interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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ne structured grid, and to upscale numerically the permeability (e.g.

avatsmark et al., 1998; Prévost et al., 1996 ). For every realization, one

eeds to redo the upscaling. The methodology presented in this paper is

ifferent since it allows direct simulation of the permeability on the un-

tructured grid, but it shows improved efficiency for multi-realizations.

In particular, the computation time for the proposed method is not

roportional to the number of cells in the unstructured grid. Indeed, the

esponse surface computation is generally the most computationally de-

anding step, so the main factor influencing the time is the range of cell

izes covered. A grid presenting a larger range of cell sizes will require a

roader response surface and therefore more experiments. In addition,

he fine structured grid used to perform the experiments is defined from

he minimum and maximum cell sizes. A higher difference between the

wo will require a larger fine grid, and hence longer upscaling times. 

To evaluate the computation time, different tests have been made.

he procedure has been applied on two grids with different characteris-

ics: a small example with 18,250 cells varying from 3 to 90 m horizon-

ally and from 0.8 to 8 m vertically, and a larger example with 2,031,995

ells varying from 6 to 2,653 m horizontally and from 3 to 60 m verti-

ally. 

In the following, T 0 represents the time required to generate the re-

ponse surfaces, 𝑇 3 = 𝑇 1 + 𝑇 2 represents the time required to simulate

he permeability values on points using STB ( T 1 ) and perform power

veraging ( T 2 ). The total simulation time T is: 

 = 𝑇 0 + 𝑁 𝑇 3 (10)

ith N the number of realizations. 

For a response surface with fifty experiments, using twenty Intel

ores on a Linux machine, the computation times for our Java implemen-

ation are provided in Table 1 . This table shows that the time required
o perform one realization on the large grid is only doubled compared

o the time required for the small grid, while the number of cells has

een multiplied by a factor 100, showing the efficiency of the method

or large grids. 

The computation time is also compared with the classical method

fine grid simulation followed by a pressure solver upscaling on a reg-

lar grid). The experiment is conducted as follows. The fine grid is the

ne presented in Section 3.2 , with 600x600x80 cells, the coarse grid has

0x60x5 cells (the upscaling ratios are 10x10x16). This coarse grid has

8,000 regular cells, which is close to the 18,250 cells of the unstruc-

ured grid. 

For one realization, the proposed method takes three minutes more

han the classical one ( Table 2 ). However, as soon as one needs to per-

orm at least two realizations, the proposed methodology is faster. More-

ver, the response surfaces being saved, it is almost immediate to sim-

late permeability fields when parameters have not changed, i.e. when

he distribution, variogram and grid are the same. 
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Fig. 17. Visualization of the concentration of tracer in the structured and unstructured reservoirs at a) seven years of simulation and b) thirty years of simulation. 
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Fig. 18. Visualization of a) the mean and b) 

the standard deviation of the twenty realiza- 

tions of tracer’s concentration evolution at time 

thirteen years in the structured and unstruc- 

tured reservoirs. 

Table 2 

Computation times for the classical method (fine grid simulation and pres- 

sure solver upscaling) and the proposed method. T 0 = time to generate the 

response surfaces, T 1 is the time for STB simulation on points and T 2 is the 

time for either power averaging on the unstructured grid or pressure solver 

upscaling for the structured grid. 

Proposed method Classical method 

T 0 22.4 min 0 

T 1 x 4.6 min 

T 2 x 15.1 min 

𝑇 3 = 𝑇 1 + 𝑇 2 11.3s 19.8 min 

Total (N = 1) 22.4 min 19.8 min 

Total (N = 2) 22.8 min 39.5 min 

Total (N = 10) 24.3 min 394.7 min 
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u  

p  

z  

c  

T  

t  

d  

2

. Discussion and conclusion 

This paper proposes a new workflow allowing to simulate directly

ermeability fields on unstructured grids accounting for support effects.

The main originality of the method is that it allows bypassing the

se of a potentially memory and time consuming fine grid and the re-

eated use of local upscaling on every fine-scale realization. On hori-

ontally isotropic simple cases, the applications are encouraging, with

oarse flow simulations results close to a fine grid taken as reference.

he proposed method can be used as an extension to previous methods

hat allowed to generate geostatistical simulation of additive variables

irectly on an unstructured grid (e.g. Zaytsev et al., 2015; Deutsch et al.,

002; Emery and Arroyo, 2017 ). 
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The methodology raises some questions that are detailed below. The

btained results provide some clues to answer these questions and open

nteresting discussion items. 

The first one relates to the numerical upscaling method used in

he experiments as a reference. Numerical upscaling is more general

han analytical solutions, but it is strongly dependent on a few pa-

ameters such as the type of boundary conditions, or the choice of

he averaging technique used for transmissibility computation. Three

ain boundary conditions are used in general: permeameter-type,

inearly-varying head, and periodic. In this paper, we presented re-

ults that were obtained with permeameter-type conditions. However,

he same cases could be studied with linearly-varying head condi-

ions. To select which method is the most adequate, additional research

hould be conducted. The general methodology would, however, not be

ffected. 

The second one is whether the power averaging formula is sufficient

o capture the details of the spatial complexity of the permeability fields.

revious numerical experiments (e.g. Renard et al., 2000 ) have shown

or example a broad dispersion of the equivalent permeabilities around

ower averages. However, and rather surprisingly, the numerical exper-

ments conducted in this paper show that the method is robust for the

tudied class of random fields. In addition, one can note that during the

ptimization step when the value of 𝜔 is estimated from a set of refer-

nce upscaled permeabilities, we store the remaining error. This means

hat, even if we did not encounter this problem yet, the methodology

ncludes a step to identify situations in which the method could have

ifficulties. In these situations, one could apply a quantile-to-quantile

orrection of permeability, replacing the permeability in cells flagged

s “bad ” by the corresponding reference, numerically upscaled, perme-

bility. 

The global consistency of the approach can be checked by using

he same simulator at the finest and coarse scales. It is well known

rom Romeu and Noetinger (1995) that any discretized model can yield

trongly biased results as soon as the grid block size is on the same or-

er as the underlying correlation scale. This bias is due to the underlying

umerical scheme that weights the conductivity between grid-blocks by

eans of some averaging formula that may lead to underestimated val-

es for the overall effective conductivity. That is observed in the popular

ase of the harmonic averaging formula employed by most popular com-

ercial simulators. In the common practice, the mesh of the working

odel is built by engineers in order to get the best compromise: ensur-

ng a global accuracy at the lowest numerical cost. Close to the wells,

ery fine grid blocks are employed, while coarse blocks are used far from

he wells. The bias issue may thus occur in the transition zone with grid

lock sizes that may be compared to the size of the heterogeneities.

uch a zone may be expected to be of a rather small size compared to

he overall characteristic sizes of the model (distances between wells,

ize of the reservoir). Similar issues were addressed by Preux (2016) in

rder to check the location at which upscaling should be carried out. A

osteriori estimators may be used to postprocess the solutions in order

o indicate zones to be refined, see Gratien, Jean-Marc et al. (2016) and

eferences therein. Regarding the boundary condition issue, it can be

bserved that the effective conductivity of large blocks becomes rather

ndependent on the boundary conditions, see Colecchio et al. (2020) and

eferences therein. 

Finally, we want to note that the comparison of the computing time

or the standard upscaling approach and the proposed one is probably

n favor of the standard one. Indeed, the standard approach used in this

aper assumes that the upscaling is done on a regular grid. Computations

re easier than if they were done for any possible geometry. However

e showed that the proposed method becomes faster when the number

f realizations increases, so we consider that the all cost of designing

he experiment, running them and interpolating the 𝜔 values is rapidly

ompensated. 
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