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Abstract Characterizing the complex geometries and the heterogeneity of the deposits in meandering
river systems is a long-standing issue for the 3-D modeling of alluvial formations. Such deposits are
important sources of accessible groundwater in alluvial aquifers throughout the world and also play a major
role as hydrocarbons reservoirs. In this paper, we present a method to generate meandering river
centerlines that are stochastic, geologically realistic, connected, and conditioned to local observations or
global geomorphological characteristics. The method is based on fast 1-D multiple-point statistics in a
transformed curvilinear domain: the succession in directions observed in a real-world meandering river (the
analog) is considered as statistical model for multiple-point statistics simulation. The integration of local
data is accomplished by an inverse procedure ensuring that the channels pass through a given set of
locations while conserving the high-order spatial characteristics of an analog. The methodology is applied
on seven real-world case studies. This work demonstrates the flexibility and the applicability of multiple-
point statistics outside the standard paradigm that considers the simulation of a 2-D or 3-D variable with
spatial coordinates.

1. Introduction

The scientific community has been interested in meandering rivers for a long time, including Leonardo Da
Vinci [Gyr, 2010; Einstein, 1926]. The disciplines involved in their study are wide and include, among others,
fluid mechanics, mathematics, hydrogeology, ecology, engineering, and geomorphology. In this paper, we
focus on the generation of meandering rivers for applications in reservoir modeling. Meandering rivers are
“the most common river planform style in populated areas” [Crosato, 2008], therefore, besides attracting
purely scientific interests, such environments play a key role in water resources management. Their sedi-
mentary deposits contain sand-filled channels that have high porosity and high hydraulic conductivity,
therefore being often considered as productive aquifers [Castilla-Rho et al., 2014]. Moreover, similar environ-
ments are also studied since reservoirs of fluvial origin host a considerable amount of the current reserves
of hydrocarbons [Deutsch and Wang, 1996; Keogh et al., 2007].

A critical aspect of groundwater resources management is to quantify the uncertainty in flow and transport
forecasts in an aquifer. To this, the classical Monte-Carlo approach consists in first obtaining several plausi-
ble geological models. In a second step, fluid flow simulation is applied to all these models, resulting in as
many forecasts. The multiple forecasts are then used to formulate a probability distribution of the predic-
tions that is the basis for aquifer management decisions. Because the geological model is at the origin of
the prediction uncertainty, it is important that the multiple geological models appropriately cover the space
of uncertainty of the geological structures. This requires that the models present realistic geological
heterogeneity.

Alluvial reservoir is commonly conceptualized as meandering channels bodies of higher hydraulic conduc-
tivity in a matrix of lower hydraulic conductivity material [Deutsch and Tran, 2002; Pyrcz et al., 2009]. From a
reservoir engineering point of view, the single most critical and uncertain feature in this type of aquifer is
the geometry and the connectivity of the sand bodies or channelized structures. An important challenge in
hydrogeology is therefore to characterize the complex geometries, the heterogeneity and the connectivity
of these reservoirs [Renard et al.,, 2011; Renard and Allard, 2013]. Very often the sand-filled channels lie in a
background of less permeable rock type, and the information about their geometry is restricted by what
can be grasped from the surface, some borehole logs and geophysical surveys. In addition, a large body of
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work has been developed on the conceptualization of alluvial aquifers, based on the observation of
present-day meandering river systems. According to the classification of Koltermann and Gorelick [1996],
approaches for the simulation of heterogeneous subsurface structures can be classified in two main catego-
ries: process-imitating approaches (physics-based) and structure-imitating approaches (statistics-based). For
the particular case of deposits related to meandering rivers, the existing literature contains a number of
approaches falling in these two categories.

A large body of work addresses the physics-based description of meandering rivers. One of the seminal
works in this direction was to model the evolution of the meander taking into account the near-bank excess
velocity and the planform curvature [Ikeda et al., 1981]. The model proposed by lkeda et al. [1981] has been
used as reference in many subsequent works [i.e.,, Camporeale et al., 2005; Darby et al., 2002; Howard and
Knutson, 1984; Stalum, 1996; Sun et al., 1996]. It has been extended to include different sources of instability,
for example, related to bank erosion processes [Seminara, 2006]. Some of the more recent approaches try
to overcome other limitations of the model of lkeda et al. [1981], such as the simplified relationship between
the eroding and the deposit banks that entails a constant bankfull width [Parker et al., 2011]. These models
can reproduce many features of real channels, but they require calibration of empirical parameters, which
can be difficult [Darby et al., 2002]. Other approaches include the physics of sedimentary processes in a
genetic or pseudo genetic stochastic model [Gross and Small, 1998; Lancaster and Bras, 2002]. In addition,
process-based and event-based methods have been recently developed to incorporate the physical evolu-
tion of the channel in a stochastic framework [Lopez, 2003; Lopez et al., 2008; Pyrcz et al., 2009]. Although
such methods generate very realistic models, they often require a high level of parameterization and pres-
ent limitations in their conditioning capabilities [Bertoncello et al., 2013; Michael et al., 2010].

Some models have, however, been proposed that incorporate a random component with the physical rules.
For example, Posner and Duan [2012] extend the model of lkeda et al. [1981] with a stochastic bank erosion
coefficient. Other process-imitating approaches approximate the physics involved in the modeling of mean-
ders with a set of rules (“holistic” approaches according to Seminara and Pittaluga [2012]). These approaches
are often based on the cellular automata paradigm [Frisch et al., 1986]. Several studies have investigated the
use of cellular automata for the simulation of rivers [Coulthard and Van De Wiel, 2006; Coulthard et al., 2007;
Murray and Paola, 1994, 1997]. One of the main difficulties for the application of these models is the selec-
tion of the criteria and the interaction rules used to replace the physics of the phenomena [Seminara and
Pittaluga, 2012].

The second set of approaches to meander simulation corresponds to structure-imitating methods which
are purely stochastic and therefore do not include any physics or geological rules. Such approaches focus
on mimicking the statistical properties of known channels, and belong to the broad category of geostatis-
tics. These are mostly used in data-poor cases where the physical parameters of the meandering system are
not quantitatively known, but there is a geological interpretation available and a qualitative knowledge of
the type of deposition environment. The method proposed in this paper belongs to this category.

A first family of structure-imitating methods is Boolean models which define the location of a channel cent-
roid by random parameters describing characteristics such as the channel centerline, the deviation of the
channel from this centerline, the channel sinuosity, etc. Examples of this approach can be found, for exam-
ple, in Deutsch and Wang [1996], Georgsen and Omre [1993], Haldorsen and Chang [1986], and Langbein and
Leopold [1966]. Object-based models, however, can lack flexibility because they are limited to a given set of
fixed geometries, not fully representative of the variability found in subsurface structures. Moreover, they
can be difficult to condition to dense data sets. Variogram-based models have also been used to model
channelized structures [Schliter and Vogel, 2011; Zinn and Harvey, 2003], although their application is diffi-
cult due to inherent assumptions of maximum entropy and Gaussianity. Another geostatistical approach is
multiple-point statistics (MPS) [Hu and Chugunova, 2008; Strebelle, 2002], which was originally developed to
address the issue of geological realism and connectivity of stochastic structures. MPS uses training images
as a model of spatial variability. Training images are explicit representations, or examples that are consid-
ered as analogs for the studied phenomenon, and are used as a source of spatial patterns for the structures
to represent. A main motivation for the use of training image is to inject expert knowledge in cases where
the data alone is too sparse to infer what type of spatial variability is present in the subsurface. However, a
paradox of MPS is that currently it typically fails to reproduce some highly connected patterns. Some fixes
have been proposed, mostly consisting of postprocessing algorithms [Stien et al., 2007; Strebelle and Remy,
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Figure 1. Example of a simulation of highly sinuous meanders using MPS. (left) Training image. (right) One realization with disconnected
structures [realization obtained with the direct sampling algorithm, Mariethoz et al., 2010b], parameters: n =60, t =0, f=1).

2005; Suzuki and Strebelle, 2007]. The problem, however, remains acute when representing thin, sinuous
structures, such as typically found in meandering systems or karstic aquifers. Figure 1 shows an example of
a simulation produced using MPS, based on a training image that presents such thin connected meander-
ing channels. The connectivity of the structures is in this case not correctly preserved, which can drastically
affect, for example, flow and transport processes [Klise et al., 2009; Le Coz et al., 2011].

In the same domain of structure-imitating approaches, Surkan and Van Kan [1969] propose to simulate the
channel centerline as a random walk, where the direction of the path is a statistical function of a directional
property. Oliver [2002] developed a similar approach that allows obtaining conditional simulation. This line
of research is very interesting because it allows building complex objects which themselves present sto-
chasticity and are conditioned to data. However, the random functions used in those approaches do not
allow reproducing features such as the geometric nonlinearity that characterizes many of the real-world
meanders [Bashore et al., 1994; Perucca et al., 2005; Seminara et al., 2001], yielding simulated channels that
lack realism and present conditioning artifacts.

In this paper, we propose a new methodology for stochastic meanders simulation that combines promising
aspects of the random walk-based approaches [Oliver, 2002; Surkan and Van Kan, 1969] with training image-
based methods (MPS) for imposing structures similar to known present-day meanders. It addresses the
major limitations of previous methods, which are:

1. realism of the structures modeled;
2. inference of the properties for a given geomorphological setting through an analog-based approach;

3. conditioning to the occurrence of a channel at specific locations (hard conditioning) or to a general direc-
tion of the system (soft conditioning).

Realism is achieved by using direct sampling (DS) simulation to generate the succession of directions
[Mariethoz et al., 2010b]. DS is a multiple-point simulation method that allows dealing with continuous
variables, such as the successive directions taken by the meandering channel. The training image consists
of a digitized image of a meandering channel, obtained from field mapping or remote sensing (i.e., aerial
photographs, Google Earth). Such a training image approach naturally solves the inference problem since it
is possible to obtain analog images for a multitude of different depositional environments.

The problem of conditioning to hard and soft data is solved by devising an inverse procedure that itera-
tively perturbs stochastic models while preserving their high-order statistical properties, based on the itera-
tive spatial resampling (ISR) scheme [Mariethoz et al., 2010a]. It is formulated as the minimization of an
objective function which provides increased flexibility to integrate different data types and is
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computationally feasible thanks to the very small CPU cost of simulating a meandering channel. The
method is applied to the simulation of meandering channels for seven case studies located in a variety of
environments. For reasons of space, only two case studies are presented in the body of the paper (Birch
Creek and Preacher Creek), and exhaustive results on the rest of the case studies are presented in the sup-
porting information (Figures S1-522, available online).

2. Methodology

Our approach consists of modeling meandering channels centerlines by simulating, with continuous vari-
able multiple-point statistics, a succession of directions as a one-dimensional random process. The center-
line of a present-day meandering channel is digitized from a satellite image and interpolated at regularly
spaced steps. Note that in the following for simplicity, we use the term “channel” to denote a meandering
channel centerline. The succession of directions in the channel from one step to the subsequent are ana-
lyzed and used as a statistical model. This statistical model, or 1-D training image in the terminology of
multiple-point statistics (training channel), is used in the DS for the simulation of another sequence of direc-
tions. This simulated sequence presents the same statistical properties as the training image, and can be
used to draw a channel with the same morphological characteristics but with a different centerline. The sim-
ulation being a stochastic process, a number of different channels can be obtained from the same training
image for characterizing uncertainty.

2.1. Digitizing the Training Image

The first step of the methodology is to digitize an existing meandering channel that is considered an analog
of the structures to be modeled. One can identify locations with similar sediment load, slope, and geomor-
phological setting. An important requirement when choosing an analog channel is that it must be large
enough to contain a statistically significant number of spatial patterns to inform the meandering channels
generation model. Moreover, the analog channel should also ideally be stationary, meaning that it com-
prises a river reach where similar processes are taking place. It should therefore be representative of similar
areas immediately upstream or downstream or considered at different periods where similar conditions
take place. In addition, although we do not investigate nonstationarity in this paper, we note that methods
have been developed to use nonstationary training images [Chugunova and Hu, 2008; de Vries et al., 2009],
and there is no technical limitation to use them with our approach.

All example cases considered in this paper use analogs taken from the Google Earth platform, which is ideal
for this task. The analog channel is initially manually digitized (Figure 2, blue dots). However, the simulation
procedure (described further) requires the channel to be represented as points at fixed intervals. Therefore,
the digitized points are interpolated at equidistant locations along the channel using a spline (Figure 2, red
crosses). The length of the discretization step is denoted as s. Here we consider that the manually digitized
points are close enough not to incur significant uncertainty, and that they are error-free. An alternative to
the manual digitization would be to use databases of discretized rivers or to develop a tool to automate the
digitization process.

Once a series of equidistant locations is available, the analog meandering channel (training channel) can be
represented using three equivalent representations:

An array of N equidistant points of coordinates (x;,y;) with i=1, ..., N.

An array containing the N — 1 directions 0; of each segment, given the starting point (x1,y;) and the discre-
tization step s.

An array containing the N — 2 direction-changes A0;=(0;+1—0;), given the starting point, the initial direc-
tion 0y and the discretization steps.

In the following, we use the second notation: the training channel is represented as a series of directions 0,.

2.2. Morphometric Attributes

Howard and Hemberger [1991] conducted a detailed study on the characterization of meandering channels,
and identified a number of morphometric attributes of interest. Those attributes enclose important informa-
tion about the channel geometry and have been used to discriminate between synthetic and natural
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Figure 2. Digitization procedure. Blue dots: original digitized points. Red crosses: spline interpolated points (Source: “Secure river”
15°53'52S and 65°52'23W. Google Earth, 16 October 2013).

channels. Here we evaluate the results of our simulations using some of the attributes considered by
Howard and Hemberger [1991] together with additional ones, all described hereinafter.

A first group of attributes describe the sinuosity of the channel. The straight-line distance D (Figure 3) can
be used to compute the total sinuosity pr. If the total length of a channel is defined as A=sN, then the total
sinuosity is i, =4/D. The concept of total sinuosity can be extended by computing it as a moving average
on portions of the main channel having different lengths. In this case, the total sinuosity depends on the
size of the moving window w and is therefore denoted i (w) With a window of size 1, the channel is
unchanged and pir (1) is equal to the total sinuosity of the original channel. Moving average on larger win-
dows tend to straighten the channel by reducing the large deviations from the average channel orientation,
until the point where very large windows result in a completely straight channel (total sinuosity of 1). The
rate of decrease in the sinuosity (which we denote sinuosity plot) yields more information than only meas-
uring the sinuosity as a single value.

At locations in the channel where there is a change in sign of the direction-change, one can define inflec-
tion points which are useful to define other parameters. The length of the channel between two successive
inflection points is defined as the half-meander length 4,, while the straight-line distance is Y (Figure 3).
The straight-line distance between the inflection points that define a full meander is X; (Figure 3). Based on
these concepts, [Howard and Hemberger, 1991] introduce the full-meander sinuosity, 1, the half-meander
sinuosity, 1y, and the residual sinuosity, iz, defined as

Figure 3. Parameters useful to define attributes of sinuosity and the half-meander quantities (modified from Howard and Hemberger
[1991]).
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Often, the logarithm of these attributes offers a better representation. In the following, the superscript * is
added to the notation when a logarithmic transformation is used.

Ferguson [1976] and Howard and Hemberger [1991] suggest the spectral analysis of the direction-change as
another useful tool to characterize meandering channels. Here we compute the peak wavelength of the mean-
dering 4p and the average wavelength of meandering 4, as described in Howard and Hemberger [1991]. In
addition to the spectral analysis, a number of standard statistical measures can be computed on the direction-
change A0, like the average value A0, the standard deviation Af,, the skewness Al and the kurtosis A0y,

Once half-meanders have been identified, a coefficient of asymmetry can be defined within the two inflection
points at the location where the direction-change is maximum [see Howard and Hemberger, 1991, for details].
The point where the direction-change is maximum splits the half meander into two segments of length 7, and
Ja respectively, which can be used to define the asymmetry coefficient as Ay = (1, —4) / An. Here we compute
the mean and the median value of the asymmetry coefficient and the mean value of the half-meander length A,

These attributes will be used to evaluate our proposed meandering channels simulation method and com-
pare its results with seven real-world channels. The same 12 attributes are used to validate the results in all
seven cases. While only a summary of the results is displayed in the body of this paper, an extensive sum-
mary of the outcomes is available as supporting information.

2.3. Unconditional Meandering Channel Simulation With Sequential Gaussian Simulation

Once the training channel is discretized as a series of directions, classical geostatistical simulation methods can
be applied in 1-D to obtain alternative realizations of directions that correspond to realizations of meandering
channels. A classical geostatistical approach would call for modeling the spatial structure of these directions
with a variogram [Gumiaux et al., 2003], then using simulations methods such as Sequential Gaussian Simulation
(SGS) [Goovaerts, 1997] to generate new models having similar properties. This is the approach adopted by
Oliver [2002]. Since we are working in 1-D, simulation methods that are traditionally used in time series analysis
such as the autoregressive family of models, could also be used to generate realizations of directions and,
hence, realizations of channels. However, such approaches result in channels that do not present realistic mean-
ders bends [Georgsen and Omre, 1993; Oliver, 2002]. This is caused by the use of Gaussian-based simulation
methods that account mostly for lower-order statistics (i.e., pdf and variogram), and are hence unable to repre-
sent the complex successions of directions needed to obtain similar features than the ones occurring in natural
systems. This is illustrated by one realization of a channel based on the directions statistics observed at Birch
Creek, Alaska (Figure 4a). The use of SGS entails that low-order properties such as the histogram (Figures 4c and
4d) and the variogram of directions (Figure 4e) are reproduced. However, it is enough to look at the resulting
channel (Figure 4b) to realize that the result is not satisfying, with a jaggy channel and a general aspect that
does not conform to what is observed in Birch creek. Moreover, SGS requires that the data are Gaussian, which
is not strictly the case here (Figure 4c). Histogram anamorphosis often needs to be applied, but it can lead to
intractable artifacts when the data are back-transformed [Kolbjernsen and Abrahamsen, 2004]. The detailed
comparison of the individual attributes is available in the supporting information.

Another quantitative evaluation of the results obtained on this example is provided by plotting the total
sinuosity computed on a moving window pir (w),which is poorly reproduced by the SGS-based simulation
(Figure 4f). This example demonstrates that honoring low-order statistics at short distances does not guar-
antee adequate reproduction of the succession of directions in meandering channels.
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Figure 4. Channels simulated with unconditional SGS. (a) Birch Creek river training channel (Source: “Birch Creek, Alaska” 66°02' 10N and 144°33'46W. Google Earth, 16 October 2013).

(b) SGS-based simulation. (c and d) Histograms of original and SGS-simulated channels. (e) variograms (h is in unit of discretization steps). (f) Sinuosity plots (window size is in unit of dis-
cretization steps). x and y units are in km.

2.4. Unconditional Meandering Channel Simulation With DS

The idea pursued in this paper is that by using multiple-point statistics instead of variograms, one should
be able to better reproduce the characteristics of meandering channels observed in the nature. The first
implementations of MPS were limited to the simulation of categorical variables [e.g., Strebelle, 2002], making
it difficult to represent directions, which are a continuous variable in the interval [0, 27]. However, more
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recent algorithms do accommodate continuous variables. In this study, we use the direct sampling (DS) to
simulate successions of directions that present similar high-order patterns as the training image (in this
case training channel). We refer the reader to [Mariethoz et al., 2010b] and subsequent applications [e.g.,
Jha et al., 2013; Meerschman et al., 2013] for a complete description of the algorithm, a pseudocode and
parameterization guidelines. We only give a brief summary below.

The principle of DS is to sequentially simulate the values of an array of directions, given the statistical
information provided by the directions of the training channel. It should be noted that since the
approach is nonparametric, no normalization or variable transformation is necessary. Consider first the
array of the training directions 0”={07.07,...,05_,} and the one to be simulated

05’M={Of’M oM. 5”"'1} The numbers M and N of segments of the same length s that compose the
simulated channel and the training channel can be different, as we can simulate a channel with the
same statistical properties as the training one but with a different curvilinear length. The values of 6°™
are obtained by sequentially drawing samples of the training channel 0" such that they are compatible
with the previously drawn samples. Let 07" be an unknown value of direction, and suppose some direc-
tion values of 0" are known. We define OS’,’("’ as the set containing the indexes of the K locations nearest
to i where a value of direction is known. The basic idea is to find, in the training channel, a location j
where the directions at the locations defined by the translated neighborhood OT’ are close enough to
the ones at the locations Oi’,’é”. To define the concept of “close enough” we adopt two possible distance
functions d(.), and a threshold value t that defines when a distance is low enough for two patterns to
be considered similar. The training channel is sampled at random locations until a location j that satisfies
d(Ols’,’% 07) < tis found. In that case, the value of 0]” is assigned to 07", and the simulation proceeds
sequentlally from another unknown value of direction. If no such location is found, the location with the
smallest distance is used.

The important point is that using the first sample with a distance lower than t is equivalent to sampling
from the underlying high-dimensional conditional distribution. The distance function d(.) can be defined
as any valid distance function between the arrays of direction values with indexes OS’M and OT’ Some
examples of distance are Euclidean, Manhattan, mean-invariant or transform- |nvar|ant Con51der|ng alter-
native distances allows a high degree of flexibility, as demonstrated by the use of transform-invariant dis-
tances for geological modeling [Mariethoz and Kelly, 2011]. Here we adopt two possible distance
definitions:

1. An Euclidean distance, for which two pieces of channels are close when they have similar geometry and
similar direction. It has the following form

2
(ot )= |+ > o0 @

icOSM jcoT!
'eo}’.K JEO].K

2. A mean-invariant Euclidean distance [Mariethoz et al., 2010b], which is a modified version of equation
(4) where the terms to compare are centered on zero. The result is that onlsy dewatlons from the mean
are con5|dered and therefore patterns having different average value of 07 and 9 « can still be similar
(here 0 ik ¢ and 0 « are the mean values of the directions with indexes contained in the sets O} and OT’
respectively). In thls case, two successions of directions are close when they correspond to two pieces of
channels having similar geometry, but possibly different overall direction. This mean-invariant distance
has the form

d(OS'M On) 1 EK: [(9,—0{&4)—(9f—o{;)]2 (5)

ik n
i M i
’EO}S.K JEOJ..K

Figure 5 illustrates the workflow for the simulation of one channel with either distance (4) or (5). Figure 5a
shows the digitized Preacher Creek river, used as training channel. The channel is converted to an array of
directions (Figure 5b), which constitutes the training channel.
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a) Training channel Preacher Creek, Alaska, USA

Digitized centerline
b) Training directions 5km
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Curvilinear distance along channel

¢) Directions simulated using Euclidean distance
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& Curvilinear distance along channel

f) Channel simulation using mean-invariant distance

2 4 6 8§ 10 12 14 16 18
Curvilinear distance along channel l

d) Channel simulation using Euclidean distance
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Figure 5. Workflow for unconditional channel simulation illustrated. (a) Preacher Creek river training channel (Source: “Preacher Creek, Alaska” 65°47'84N and 145°32"13W. Google Earth,
16 October 2013). (b) Training directions derived from training channel. (c and d) Channel simulation using Euclidean distance. (e and f) Channel simulation using mean-invariant Euclid-
ean distance. x and y units are in km.

In a first case, this training channel is used to generate one realization of directions with the DS algorithm

(Figure 5c¢) with the Euclidean distance (equation (4)). The simulated channel is presented in Figure 5d. At

this stage, it should be noted that given the origin of the channel, the succession of directions in Figure 5¢
entirely characterizes the channel of Figure 5d. Since the simulated directions are distributed around zero,
the general direction of the simulated channel is horizontal.

In a second case, a channel is generated with the same methodology, except that the mean-invariant Euclidean
distance is used (equation (5)). The mean of the resulting simulated directions (Figure 5e) is not constrained any
more around zero. Although the patterns are locally similar to the ones derived from the training channel (Figure
5b), their average can vary, resulting in an additional degree of freedom in the global direction of the simulated
channel (Figure 5f).

There are thus two possible approaches to the simulation of unconditional meandering channels. The first
one, using a Euclidean distance, allows obtaining stochastic channels having the same global direction as
the training channel. The second approach, using a mean-invariant Euclidean distance, generates channels
with no specified direction. In the following sections, we will show how the overall channel direction can be
guided using conditioning data.
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Table 1. Summary of the Morphometric Attributes Considered
in the PCA

Wy Logarithm of the total sinuosity

Wy Logarithm of the full-meander sinuosity

Wy Logarithm of the half-meander sinuosity

TR Logarithm of the residual sinuosity

Ap Peak wavelength of the meandering

Aavy Average meandering wavelength

|AO)avy Absolute value of the direction-change, average

|AO) sy Absolute value of the direction-change,
standard deviation

[AOgsky Absolute value of the direction-change, skewness

|AO)n Absolute value of the direction-change, kurtosis

Ahtavt Average half-meander length

Anfavy Average asymmetry coefficient

It is also noted that the computational cost of the
method is minimal since a simulation of a hundred
channels takes few seconds on a standard CPU (2.3
GHz Intel Core i7), and can therefore be included in
Monte-Carlo simulation frameworks for uncertainty
quantification.

In order to compare the results of our method with
the SGS-based approach of Oliver [2002] we per-
formed a principal component analysis (PCA) for
the Birch Creek case shown in Figure 4 [Pedregosa
et al., 2011]. This PCA, performed using 12 of the
aforementioned morphometric attributes summar-
ized in Table 1, is a general way of evaluating syn-
thetic channels and to compare them with natural
ones [Howard and Hemberger, 1991]. The results

(Figure 6) confirm the poor performance of the SGS over the DS, with in particular the SGS-based channels
clustered together far from the reference, whereas DS provides a larger ensemble of models that encom-
passes the reference. The increased spread of the ensembile is of particular interest to correctly represent
the geological uncertainty in application of alluvial reservoir modeling.

A more detailed analysis of the results of the PCA shows that the first component accounts for the 93% of
the variance, and for this component the variable with the largest influence is the average half-meander
length (see supporting information Table S1, for the detailed results of the PCA). For two of the cases con-
sidered (Bubye River and Mamore River), the most important variable is the half-meander length, while for
the remaining five test cases the peak wavelength of meandering dominates.

2.5. Conditional Meandering Channel Simulation

It is useful in practice that realistic-looking meandering channels trajectory can be controlled to pass
through locations where the occurrence of a channel is known. For example, there may be boreholes where
sand and gravel intervals have been identified, and it is desirable to condition the simulated channels to

pass there.
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Figure 6. Principal component analysis comparing 100 unconditional simulation with SGS, 100 unconditional simulations with DS and the
reference values of the training channel (Birch Creek, Alaska). Note that the axes do not represent physical units because in a PCA the data

are normalized then represented in a transformed space.
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Figure 7. Trend-based conditioning. Dotted line: unconditional channel simulated based on the Birch Creek training channel. Solid line: conditional channel. Red crosses: conditioning
data. Blue line: meander shut close because of the conditioning process. Arrow shows the channel displacement caused by the trend. x and y units are in km.

However, the nature of the method makes any local conditioning a challenge. The position of each point
depends on the integral of all preceding directions along the channel. Therefore, the final channel can be
largely affected by a single direction value that can for example bend the subsequent parts of the channel
away from conditioning data.

2.5.1. Trend-Based Conditioning

One possible conditioning method was proposed by Oliver [2002] in the context of Gaussian-based chan-
nels. It consists in adding a trend on an unconditional channel, such that the trend cancels the errors to the
conditioning points, as illustrated in Figure 7. The points of the unconditional channel closest to the
observed ones are selected, and the trend is applied to adjust the channel to pass through the observed
locations. However, in cases where the channel displays complex structures, nothing ensures the physical
consistency of such an additive trend. Therefore, the results may present artifacts, such as meanders that
are stretched open or collapsed shut, creating self-intersections in the channel (shown in blue in Figure 7).
Another drawback is that the morphological properties (i.e., the aforementioned measures of sinuosity) of
the channel can be modified. Moreover, in cases where the conditioning data are relatively far from the
unconditional channel, the resulting important trend values can incur extreme distortions in the channel.

The trend method can be appropriate in cases where the conditioning data are already very close to the
unconditional channel, i.e., where a slight trend is sufficient. In the general case, however, the trend method
is not viable and an alternative conditioning strategy constrained by realistic patterns is sought.

2.5.2. Conditioning by ISR

The principle of the conditioning methodology adopted here is to iteratively perturb a channel until it hon-
ors the conditioning locations. However, the perturbations have to be incurred in such a way that the chan-
nel remains realistic. In our context, a simulation is considered realistic when it respects the statistics of the

direction patterns found in the training image. These statistics are represented by the aforementioned mor-
phometric attributes.

One method that has been successful to accomplish such perturbations is the iterative spatial resampling
scheme (ISR), which has been applied in the context of hydrogeological inverse problems [Mariethoz et al.,
2010a]. Its principle is to start with an unconditional realization, then randomly select a number of points in
it that are imposed as conditioning data for a new simulation—using identical training image or spatial
model. The resulting model can be again resampled. The resampling and simulation steps are iterated,
yielding a chain of models that all have similar characteristics as the training channel, but vary locally from
one iteration to the next. It has been shown by Mariethoz et al. [2010a] that the patterns obtained at each
ISR iteration are coherent, in a Bayesian sense, with the prior information given by the training image/train-
ing channel.

Figure 8 illustrates ISR perturbation applied to the simulation of a meandering channel. The algorithm starts
with an initial channel (Figure 8a), which is converted to directions as discussed in section 2.1.. A fraction ¢
of these directions is then randomly chosen (Figure 8b). These samples are used as conditioning data in the
DS algorithm for a new simulation of directions (Figure 8c). The samples are represented as red circles and
are identical in Figure 8b and in Figure 8c. These correspond to locations that are “frozen” between iteration
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Figure 8. lllustration of the ISR applied to meandering channels. (a) Initial channel simulated based on the Preacher Creek training chan-
nel. (b) Corresponding directions, resampled to obtain a new realization (c). (d) Perturbed channel.

i and iteration i + 1. The remainder of the new realization is resimulated and hence can change from one
iteration to the next. The channel corresponding to iteration i + 1 (Figure 8d) is similar to the channel if iter-
ation i with respect to the types of structures and the location of these structures, but can present local dif-
ferences, as highlighted by dotted boxes on Figure 8d.

Using this method, channels can be conditioned to local data by using an acceptation/rejection criterion
that preferentially accepts channels improving the match to the data. This results in a chain of channel
models with progressively increasing match to the data, which ends when the error is under a given error
tolerance e;.

However, if resampling occurs on the entire channel length, as in Figure 8, directions may be modified at
the beginning of the channel, resulting in the entire remaining part of the channel to be rotated. This modi-
fies the location of certain locations that have been conditioned in previous iterations of ISR, causing the
optimization to never reach convergence. Hence, the strategy adopted here is to process a limited channel
section at a time, each time conditioning to a single conditioning location.

For each channel section, a chain of models is generated, each corresponding to one iteration j and having
an associated error to the data e(i). This error is calculated as the smallest distance between the simulated
channel section and the conditioning point considered:

e(i)= min \/(xi—xq)>+(yi—ya)? (6)
section
x4 and y4 being the coordinates of the conditioning point and x; and y; being the coordinates of the point
of the channel section simulated at iteration i and closest to (x4, y4). Each new model is accepted only if it is
the best matching in the chain, i.e,, if the error e(i) is lower than the error of all previous models 1, ...,i— 1.
This ensures that the chain of channel sections gets closer and closer to the data point, until an error under
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e; is reached, which is the stopping criterion. Note that here we use a strategy that seeks to systematically
minimize the error, but a Metropolis-based approach could have been used instead [Mosegaard and Taran-
tola, 1995].

The corresponding channel section is then accepted and the algorithm moves on to the next section. In
order to accelerate the convergence of the conditioning, the resampled fraction ¢ is progressively
increased, such as to incur large perturbations in case of a large misfit, and smaller perturbations when fine-
tuning the segment to closely improve the match to a given data point. The resampled fraction ¢ changes
at each iteration and is calculated as

N €
(p(l)—mln (%7(/)max>' (7)

Pmax COrresponds to the maximum resampling fraction to be used, defined here as 0.1 which corresponds
to resampling 10% of all values in a channel section. Such a resampling fraction (illustrated in Figure 8)
ensures that significant changes in the channel are always possible. It was found that larges values, such as
0.5 or 0.75, result in very little change from one iteration to the next, and therefore very slow convergence.
In the initial iterations, e(i) is much larger than e,, resulting in the first term in equation (7) to be small, there-
fore yielding low ¢(i) and ensuring that large changes are possible in the channel section. As the data
match improves, ¢ progressively increases up to the value ¢ qy-

The curvilinear channel length between one conditioning point and the next is initially unknown because it
will depend on the number of meanders bends present in the section after conditioning. Hence, during the
conditioning process, the total channel length is progressively incremented by an amount larger than the lin-
ear distance to the next conditioning point times the channel total sinuosity observed in the training channel.
This ensures that the algorithm does not overshoot by producing an unnecessarily large section to reach a
nearby data point. In certain cases, it is possible that the ISR does not converge and fails to condition to a loca-
tion. This happens in cases where the direction of the previous section makes it very difficult for the channel
to reach the next data point, for example because the location of the conditioning points are aligned in a way
that is not compatible with the training channel. In such cases, the previous section is unsimulated after a
maximum allowed number of iterations and the process starts again from the beginning of this previous sec-
tion. In our tests, we found that a maximum number of 50 iterations generally gives good results.

The MPS simulation of channel directions is one-dimensional and therefore computationally very light. In
general, a single iteration takes a fraction of a second. Hence, although this inverse-based conditioning
method is iterative, it is still faster than traditional applications of MPS (such as in the example of Figure 1).

Figure 9 shows the result of a conditional channel using the Preacher Creek River as training channel. Two
scenarios of conditioning locations are considered, corresponding to two different usages of the conditional
simulation approach. In the first case (Figure 9a), the data represent hypothetical measurements, and are
disposed such that the channel cannot at the same time strictly honor these locations (e; = 0.1 km) and con-
serve the overall straight direction observed in the training channel. This is, however, achieved by using the
mean-invariant Euclidean distance (equation (5)), which is able to produce a channel that honors all data
and reproduces the training channel features.

In the second case (Figure 9b), the data do not correspond to measurements, but to anchoring locations
that are designed to provide guidance on the general channel direction. Here again a mean-invariant
Euclidean distance is used, but the conditioning is not strict (e, = 2 km), rather designed to delineate, for
example, the general direction of a paleovalley.

Statistics about morphometric attributes are computed in the unconditional case and on realizations condi-
tioned to 10 locations. It is found that the conditioning procedure does not significantly affect the patterns
reproduction, which is fairly similar to what is observed in the training channel. Variograms, sinuosity plots,
and PCA based on morphometric attributes are displayed in Figure 10 for 100 realizations based on the
Birch Creek case, along with a comparison with the Gaussian case of Figure 4.

Additional examples of the conditional simulation procedure can be found in the supporting information
videos S1 and S2. Variograms, sinuosity plots, box plots of six important morphometric attributes and PCA
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Figure 9. (a) Digitized training channel (Preacher Creek case study). (b and c) Two conditional simulations performed with different values of the error tolerance e;.

allow verifying that, overall, the statistical properties of the training channel are respected and that the con-
ditioning process does not introduce any significant bias in the simulations. Note that the variables that
have an important weight in determining the first three components of the PCA are the same if the PCA is
performed on the 100 unconditional or on the 100 conditional simulations (see supporting information
table and figures).

For a more detailed and systematic analysis, six morphometric attributes, considered by Howard and Hem-
berger [1991] as important to discern natural occurring meandering channels from simulated ones, have
been computed for 100 unconditional and conditional DS simulations, for all seven case studies. The
detailed results are presented in the supporting information Figures S3-S22. It results that the statistics of
the direction patterns are not significantly affected by the conditioning procedure, and that our method is
generally able to reproduce well the characteristics of the training channel.

In the case of the total sinuosity, the conditional simulation performs better than the unconditional one.
This is due to the choice of the conditioning points along the same direction as the training channel, while
for the unconditional simulation the channel can evolve freely an potentially result in a total sinuosity that
differs from the one of the training channel. Nevertheless, from the point of view of all the other sinuosity
measures (full, half-meander, and residual), the results of conditional and unconditional simulations are
comparable (only the half-meander sinuosity is shown here). In terms of peak wavelength, both conditional
and unconditional simulations have median values that are within 5 m or less from the reference values.
This discrepancy increases in the case of the average wavelength: conditional and unconditional simula-
tions are always comparable, but the deviation of the median values from the reference is then over 10 m.
A satisfactory result is obtained for the average half-meander length, where both conditional and uncondi-
tional simulations have a median value within a 10% error margin around the reference value. Another
interesting result is obtained for the average value of the asymmetry index: overall, other simulation techni-
ques rarely reproduce the sign of this variable observed on natural channels [Howard and Hemberger, 1991],
while with the DS simulations capture the correct sign of this variable in six out of seven case studies.

An important result is that in the PCA performed using the aforementioned morphometric attributes, condi-
tional and unconditional simulations are well mixed and the reference training channel is correctly included
in the ensemble of simulations. This is true for all seven case studies, indicating that our method performs
well across the range of indicators considered.
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Figure 10. The effect of conditioning on patterns reproduction. Comparison of 100 unconditional realizations with 100 realizations conditioned to 10 points, for the Birch Creek data.
The four subplots in the top of the figure compare the variograms and sinuosity plots. The bottom subplot shows a PCA performed on the same 100 conditional and unconditional real-
izations of the Birch Creek river, using the morphometric attributes introduced in the text.

It should be noted here that the approach adopted, i.e., consisting in conditioning one data point at a time,
implies that the points are in a given order. For cases where the conditioning points represent measure-
ments (Figure 9a), wells data often inform the presence or absence of a channel at a given location, but do
not provide information regarding the order of the data along a channel. It is our opinion that in the
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absence of other information, the order of the data along the channel is mostly an interpretative decision.
For example in Figure 9, one may decide that there is a single channel with an overall sinusoid shape, or
several relatively straight channels parallel to each other. The data alone do not allow deciding between
these possibilities, and several scenarios could be investigated, which should be essentially driven by a
geologist’s decision. Additionally, one may not know whether different channels measurement belong to
the same channel or not. In the instances where geochronological data are available, it may be possible to
group channel points by similarity in age. In most practical cases however, the point data have to be ran-
domly attributed to individual channels at each realization.

3. Conclusion

This work presents a new perspective on the application of multiple-point statistics, made possible by the
flexibility provided by the Direct Sampling method. It is applied outside the standard context of spatially
localized patterns and categorical variables. Instead, the principle is to simulate meandering channel center-
lines by a 1-D succession of continuous direction that are nonlocalized.

The stochastic simulation framework presented for meandering channels simulation overcomes some of
the difficulties inborn in commonly used models. Contrarily to physically based or cellular automata models,
there is no need to define parameters and rules for the model, since the statistical properties are inferred
directly from the properties of real-world channels, from which all the statistical features are extracted. The
added value of our approach is that it allows integrating expert knowledge in the modeling process though
the choice of a training channel, which it otherwise very difficult to express quantitatively. Additional input
can be given by conditioning data to guide the overall channel geometry. Moreover, our approach allows
quantifying geological uncertainty through the use of Monte-Carlo simulations.

The simulated channels present a high degree or realism and include nonlinear features typical of real-
world channels. The model is not based on physical equations representing the evolution of a meandering
channel, but instead mimics the spatial characteristics observed on present-day rivers, which is a rich and
widely available source of information.

The methodology has been illustrated using examples coming from digitized rivers taken in different envi-
ronments. It performed well in all cases considered, with simulations of stochastic channels that preserve
the observed features as well as statistical characteristics, and allow conditioning to locations with known
channel occurrence. Conditioning is accomplished with an inverse procedure based on the Iterative Spatial
Resampling method. It was shown that such conditioning is also possible in cases where the direction of
the channel differs from the direction of the training channel, through the use of mean-invariant Euclidean
distances. Conditioning can be used either to constrain channels to measured data, or to guide the overall
direction of the simulated channels, where the data are then used as anchoring locations rather than hard
data. The resulting simulations could be used, for example, to generate geological structures for input to
hydrogeological models, to design synthetic hydrologic networks for catchment studies or as elementary
pieces to build 3-D training images for classical MPS applications. For example, the method of Comunian
et al. [2012] allows obtaining 3-D models from orthogonal 2-D cross sections. It is however difficult to apply
because while it is relatively straightforward to obtain vertical sections perpendicular to the channels, it is
more difficult to obtain horizontal sections. Our method can fill this gap.

Another example is object-based methods, where a current challenge is to create objects that are condi-
tioned to dense data sets. Our method is ideal to create channelized objects that are conditional by con-
struction. Using the classical Boolean framework [Lantuejoul, 2002], it is possible to stochastically stack
these channels in order to obtain 3-D models of alluvial reservoirs.

Alternatively, our model could be used as starting point for physically based models such as the one of lkeda
etal.[1981] or as a first channel skeleton required for cellular models [Coulthard and Van De Wiel, 2006; Coulth-
ard et al., 2007], for genetic models [Gross and Small, 1998] or object-based models [Comunian et al., 2011].

The limited computational requirements of the methodology allows to easily integrate it in inverse simula-
tion procedures, and future research will focus on the application of these techniques to account for differ-
ent types of data such as, for example, geophysical measurements that indicate the general direction and
location of channel belts.
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One limitation of the model is that the channel centerline does not evolve during time, such as, for example,
when one considers the evolution of a meandering channel on geological time scales [Seminara, 2006; Van De
Wiel et al., 2011]. However, by providing training channels at different stages of their evolution (or correspond-
ing to different climatological conditions) one can potentially simulate different depositional stages. Similarly,
questions of nonstationarity may complicate the application of the approach. In this regard the solutions classi-
cally implemented in MPS to deal with nonstationarity can be used [Hu and Chugunova, 2008]. When the train-
ing channel is nonstationary and one wants stationary simulations, the approach of Chugunova and Hu [2008]
using an auxiliary variable would be appropriate. When nonstationary simulations are sought based on several
stationary training channels, the simulated domain could be partitioned in subdomains that each use a differ-
ent training channel [de Vries et al., 2009]. For example, if a delta is to be modeled accounting for the prograda-
tion of the sediments, a training channel to use for the deep parts of the reservoir would correspond to the
downstream part of a river system, whereas for the shallow part of the reservoir one should use training chan-
nels coming from the upper parts of a catchment. Another limitation related to the conditioning approach is
that the order of the data along the channel have to be known, and should be inferred by geological interpre-
tation. This limitation, however, does not apply when the conditioning data are used as anchoring locations.

Future work will look at using our method to build 3-D volumes of deltaic reservoirs in a real setting and
compare the results with the architectures obtained from process-based models. Our method could then
prove a faster method for modeling such reservoirs, which would moreover allow for conditioning. Another
avenue is the use of the generate channels as flexible object in 3-D Boolean simulation methods.
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