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[1] The development of spatially continuous fields from sparse observing networks is an
outstanding problem in the environmental and Earth sciences. Here we explore an approach
to produce spatially continuous fields from discontinuous data that focuses on
reconstructing gaps routinely present in satellite-based Earth observations. To assess the
utility of the approach, we use synthetic imagery derived from a regional climate model of
southeastern Australia. Orbital tracks, scan geometry influences, and atmospheric artifacts
are artificially imposed upon these model simulations to examine the techniques’ capacity
to reproduce realistic and representative retrievals. The imposed discontinuities are
reconstructed using a direct sampling technique and are compared against the original
continuous model data: a synthetic simulation experiment. Results indicate that the
multipoint geostatistical gap-filling approach produces texturally realistic spatially
continuous fields from otherwise discontinuous data sets. Reconstruction results are
assessed through comparison of spatial distributions, as well as through visual assessment of
fine-scale features. Complex spatial patterns and fine-scale structure can be resolved within
the reconstructions, illustrating that the often nonlinear dependencies between variables can
be maintained. The stochastic nature of the methodology makes it possible to expand the
approach within a Monte Carlo framework in order to estimate the uncertainty related to
subsequent reconstructions. From a practical perspective, the reconstruction method is
straightforward and requires minimum user intervention for parameter adjustment. As such,
it can be automated to systematically process real time remote sensing measurements.
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1. Introduction
[2] Earth observation, whether from in situ networks, in-

tensive (but usually sporadic) field campaigns, or from satel-
lite-based remote sensing retrievals, provides an inherently
discontinuous stream of data. Remote sensing based retriev-
als of the terrestrial, ocean, atmosphere and subsurface sys-
tems, have significant potential to inform a variety of Earth
system modeling applications [Brunner et al., 2004; Li
et al., 2009; Milzow et al., 2009]. From a terrestrial hydro-
logical perspective, satellite retrievals have been used to
characterize spatially and temporally varying fields such as
soil moisture [Jeu et al., 2008; Liu et al., 2011], evapotrans-
piration [Kalma et al., 2008; Su et al., 2007], rainfall
[Huffman et al., 1995; Kummerow et al., 2000], radiation
[Diak et al., 1996; Weymouth and Le Marshall, 2001] and

even seek observationally based hydrological closure [Sahoo
et al., 2011; Sheffield et al., 2009]. However, one of the
confounding problems with the use of such observations is
the presence of spatial discontinuities, due to incomplete
coverage of the domain resulting from satellite orbital char-
acteristics or through occlusion by cloud cover and other
atmospheric effects. Such discontinuities often make satel-
lite-based observations difficult to integrate within tradi-
tional modeling frameworks, which prefer spatially and
temporally continuous data fields.

[3] The problem of gap filling in spatially discontinuous
data sets, including those inherent in retrievals from Earth
observing systems, has been the focus of many research
investigations [e.g., Boloorani et al., 2008; Maxwell et al.,
2007; Wang et al., 2012; Yuan et al., 2011; Zhang et al.,
2007]. In general terms, the gap-filling problem can be for-
mulated as determining the value of a pixel with spatial con-
straints (it must be coherent with the surrounding values),
temporal constraints (it must be coherent with the preceding
values), and also constraints related to any dependence with
covariates (which may not necessarily be linear dependen-
cies). For example, topography is a covariate which is
known to be influential on the spatial distribution of rainfall
and air temperature [Goovaerts, 2000]. In many gap-filling
studies, the reconstruction problem is often relatively well
defined due to one or more of the following reasons: (1) the
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variable of interest is available at a time step that is close,
relative to the temporal variability of the studied phenom-
enon, (2) the spatial extent of the gaps is small relative to the
size of the features being reconstructed, (3) some strongly in-
formative or linearly correlated covariates are available, and
(4) there is only a single unknown variable to reconstruct,
therefore the problem of preserving relationships between
different uninformed variables does not exist. These types of
problems can be described as strongly constrained gap fill-
ing, because the amount of information available to guide
the interpolation is considerable. In such cases, some rela-
tively simple methods such as image compositing can suc-
cessfully address the problem [Cihlar, 2000; Du et al.,
2001]. While cokriging generally gives better results than
image compositing, the highly constrained nature of the
problem is similar [Pringle et al., 2009].

[4] In this paper, we address a more challenging class of
problems, referred to herein as weakly constrained gap-filling
problems. Weakly constrained problems would include phe-
nomena that change at subdaily time scales, where exhaustive
measurements during preceding days may not be available or
informative enough to fill gaps on some other day, and where
filling cannot be inferred from linear correlation with a cova-
riate. Another characteristic of weakly constrained gap filling
is the significant size of the gaps compared to the size of the
structures present in the image.

[5] As a result of the weak constraints imposed on the
interpolation problem, the solution is necessarily nonunique,
stressing the need to quantify uncertainty. In previous stud-
ies, the high determinism of so-called strongly constrained
gap-filling problems did not generally confront the question
of uncertainty in the interpolation results. We adopt the
framework of geostatistics, which offers the means of evalu-
ating interpolation uncertainty, either through an estimation
variance in the case of kriging, or through Monte Carlo
analysis.

[6] A popular approach to gap filling is cokriging [Zhang
et al., 2012]. Zhang et al. [2009] applied the technique to
multispectral images to impose correlation with the same
gap free image taken four months earlier. However, kriging
and its variations have two major limitations: they are
smoothing interpolators and can only account for linear rela-
tions with covariates [Chilès and Delfiner, 1999; Goovaerts,
1997]. Using kriging can result in the interpolated areas
being visibly distinct from the rest of the image, presenting
unrealistic continuous textures and, if point measurements
are available, artifacts near these locations. Other geostatisti-
cal techniques such as stochastic simulation allow for better
representing the textures present in the data. However, the
underlying models are based on two-point statistics and may
therefore not reproduce the complex spatial patterns present
in known parts of the domain [Journel and Zhang, 2006].
Moreover, when dealing with multiple variables, these meth-
ods often consider linear relationships, which are oversimpli-
fications in many environmental modeling applications
[Rivoirard, 2001].

[7] In this paper we investigate the use of multiple-point
geostatistics for gap-filling applications. The method
employed here is the direct sampling approach [Mariethoz
and Renard, 2010; Mariethoz et al., 2010]. The technique
exploits intrinsic relationships between linked observations
and offers the capacity to provide more realistic spatially

continuous fields from remote sensing based platforms and
broaden their effective use and integration within the Earth
sciences. Multiple-point geostatistics methods use training
images to describe a time varying data set for periods other
than the missing time, which then allows for the identifica-
tion of specific spatial patterns that might be expected to
recur in subsequent scenes. The spatial patterning and
image structure can then be used to improve the gap-filling
procedure. The supplementary use of multiple covariates,
which are themselves incomplete, is at the foundation of
the approach presented in this paper.

[8] In this preliminary assessment of the technique to
Earth system data, we apply the reconstruction method to
regional climate model (RCM) simulations over southeast-
ern Australia [Evans and McCabe, 2010] and use this as a
synthetic surrogate for remote sensing based retrievals. The
advantage of using synthetic model output as opposed to
actual satellite data is the capacity (1) to artificially impose
distributions of gaps that can reflect both expected orbital
features and atmospheric condition and (2) to assess subse-
quent image reconstructions against a spatially continuous
modeled ‘‘truth.’’ An especially important aspect of using
synthetic imagery is that it ensures we address a weakly
constrained problem, by imposing gaps typically larger
than the spatial structures present. It also allows the produc-
tion of data sets where gaps occult simultaneously across
multiple nonlinearly related variables, and to then validate
the results against the known nonlinear relationship. Such a
validation would be extremely difficult with real data.

[9] In the sections 2 and 3 we detail the structure and
logic behind the direct sampling approach and then develop
realistic scenarios based on these synthetic data to describe
and assess the potential application of the technique to
remote sensing retrievals.

2. Methodology
[10] The direct sampling algorithm [Mariethoz et al.,

2010] generates stochastic fields that can present complex
statistical and spatial properties. These properties are usu-
ally inferred from a fully informed training image, but it
has been shown that the method can also be used without
training images if a large portion of the domain is already
known. In the latter case, the incomplete image is recon-
structed by using patterns borrowed from the known parts
of the image. In the past, the method has been successfully
applied to reconstruct 3-D geological structures and bore-
hole images [Mariethoz and Renard, 2010]. In this paper
we propose to use a conceptually similar approach to
reconstruct missing regions of multivariate synthetic satel-
lite data, based on values that are known at different loca-
tions and/or different dates. Although we focus on the
multivariate aspect, it should be noted that the entire meth-
odology is equally applicable to univariate images, which
is a simpler case.

[11] As an example of the approach, consider a thermal
infrared image affected by missing data resulting from
cloud cover or other atmospheric contamination. A tempo-
rally coincident retrieval unaffected by clouds (e.g., derived
from a microwave sensor) is likely to be available from a
variety of other satellites, or even from additional sensors
present on the same platform [McCabe et al., 2008a]. The
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information need not even be the same variable, but may
just possess some statistical or physical relationship with
the missing variable of interest. For instance, there will be
locations where soil moisture retrievals will not be
informed due to a scan gap in the orbiting sensor, but where
another satellite might provide information on the surface
temperature, radiation, or even both of these observations.
The additional information that is available to inform upon
the missing value, may then be related to the spatial struc-
ture (or texture) of that variable. For instance, it might be
inferred from past observations that the surface temperature
presents large variations at relatively small spatial scales,
whereas soil moisture values are spatially more continuous.
This level of information can be taken into account to
determine the nature of variability to reproduce, and the
relative influence of data around the gap locations. The
approach proposed here seeks to use this textural relation-
ship and the dependency to coincident and noncoincident
complementary information, by exploiting the different tex-
tural properties and their interrelationships.

[12] To accurately convey the concept of an event that is
situated in both spatial and temporal terms, we use the ter-
minology location/date. Let x be a pixel in the image where
the variable of interest Z(x) is uninformed and needs to be
reconstructed. We denote Nx as the ensemble of the n clos-
est pixels of x that are informed. The basic idea of the
reconstruction algorithm is to find another location/date y
in the image that is informed and that has a set of values in
the neighborhood Ny similar to those in the neighborhood
Nx. When a suitable location/date y is found, its value Z(y)
is assigned to Z(x). The main conceptual caveat in this pro-
cedure is that we are not interested in the location/date of
maximum similarity for two major reasons: (1) it would
result in a deterministic value for Z(x), therefore not allow-
ing one to quantify the uncertainty of the reconstructed val-
ues, and (2) it would involve a history search on the entire
image for each location/date x to be reconstructed, thus
involving a large computational load.

[13] Instead, we want one possible outcome of Z condi-
tioned to Nx, i.e., a sample of the conditional cumulative
distribution function:

FðzÞ ¼ Prob ZðxÞ � zjNxð Þ: (1)

[14] The direct sampling approach accomplishes this by
performing a Shannon-type sampling [Shannon, 1948] by
scanning the training data set and computing, at each loca-
tion, the distance dðNx;NyÞ. It is based on the principle that
the 1st random location/date y encountered in the training
data set, whose neighborhood is sufficiently similar to the
one of x, is necessarily a sample of F(z). The similarity
between neighborhoods Nx and Ny relies on the use of the
distance dðNx;NyÞ. A brief discussion of the most impor-
tant aspects of this method is given below. A detailed
description of the algorithm is provided by Mariethoz et al.
[2010] for further reference.

[15] Since the distances are usually defined such that
they are within the interval [0,1], the threshold t is also
bound to the same interval. Defining a threshold of t ¼ 0
means that the patterns of the training image will be repro-
duced with the highest possible accuracy, and the method
is then essentially data driven. Conversely, when setting

t ¼ 1 the algorithm unconditionally samples values from
the training image, and therefore only reproduces the mar-
ginal distribution of Z without any constraints in terms of
spatial dependence. Between these two extreme cases, the
value of t determines how accurately the patterns of the train-
ing image are reproduced. In general, increasing t relaxes the
constraints on the spatial dependence of the reconstructed
fields and eases the computational burden. The parameter is
usually adjusted by performing a sensitivity study on a small-
scale model.

[16] The distance dðNx;NyÞ can be computed in different
ways, depending on the nature of the variable to reconstruct
(for a discussion of the different possible distances to use,
see Mariethoz et al. [2010] and Mariethoz and Kelly
[2011]). Distances have been proposed to be used with both
categorical and continuous variables. In this paper, we con-
sider synthetic satellite images consisting of continuous
variables and therefore adopt the pair wise Manhattan dis-
tance to quantify the dissimilarity between the values of
any two neighborhoods:

dðNx;NyÞ ¼
1

�
hjNx � Nyji: (2)

where h i denotes the average and � is a normalization fac-
tor ensuring that the distance values remain bounded
between 0 and 1. A usual value for � is the maximum dif-
ference between two values of Z observed in the training
image or training data. While Manhattan and Euclidean
distances both yield very similar results, the Manhattan dis-
tance was chosen here because it is slightly less computa-
tionally demanding.

[17] An important point to consider is that several unique
satellites systems may provide different pieces of informa-
tion for a particular study area. For example, there may be
locations where, at a given date, hydrological variables such
as the rainfall and the soil moisture have been recorded, but
the evaporative flux has not. At other locations, depending
upon the areas covered by each satellite, there may be any
number of variables informed by other independent data
sets. If several variables inform upon areas requiring recon-
struction, the direct sampling method defines neighborhoods
spanning across the different variables, and uses a specific
distance measure. One then needs to consider separately

the neighborhood of x for each of the m variables Zk, k ¼
1. . . m. Then, N0x is the multivariate neighborhood of x, con-
stituted by all subneighborhoods Nk

x taken together:

N0x;N
1
x [ . . . [ Nk

x [ . . . [ Nm
x : (3)

[18] The distance used to compute similarity between
multivariate neighborhoods is a weighted average of the
distances taken individually for each univariate neighbor-
hood:

d
0 ðN0x;N0yÞ ¼

Xm

k¼1

wk

�k

���Nk
x � Nk

y

���;
Xm

k¼1

wk ¼ 1; (4)

where wk are the weights and �k the normalization con-
stants for each variable. Figure 1 presents a graphical

W10507 MARIETHOZ ET AL.: RECONSTRUCTION OF GAPS USING DIRECT SAMPLING W10507

3 of 13



representation of the principle of multivariate neighbor-
hoods and illustrates the computation of the distance
between these.

[19] The two most important parameters of the direct
sampling algorithm are the size of the neighborhoods con-
sidered and the threshold value t. Tests have showed that
larger neighborhoods (at least 20 pixels) allow for genera-
tion of the complex patterns and shapes found in natural
images. However, using too large a search neighborhood
may lead to a dramatic increase in computation cost. Typical
neighborhoods are constituted of between 20 and 40 pixels.

3. Application to Synthetic Data
[20] The reconstruction method is applied to data derived

from a regional climate model of southeastern Australia.
Simulations from the Weather Research and Forecasting
(WRF) model (see Evans and McCabe [2010] for a com-
plete model description) were used as a proxy for satellite-
based retrievals of common land surface variables. WRF is
a widely utilized coupled numerical model used to describe
land-atmosphere interactions. However, its use here is rele-
vant only in that it produces spatially continuous fields that
represent physically consistent descriptions of water and
energy cycle behavior in a hydrologically consistent man-
ner [McCabe et al., 2008a]. An initial focus period of
365 days was identified from the longer-term simulations,
with individual daytime (12 PM) reproductions extracted
from the model, representing a spatial resolution of 10 km
and a domain size of 243 � 186 pixels. Spatial fields of soil
moisture, surface temperature, latent heat flux and short-
wave downward radiation (a surrogate for cloud coverage)
were extracted from the WRF output for further analysis.

[21] Apart from geostationary satellites, which sense
whole Earth disk images at regular time intervals, most com-
monly used Earth Observing Systems (EOS) form part of a
constellation of polar orbiting platforms. An inherent feature
of these systems is the progressive development of scan
tracks in response to the orbital geometry of the satellite and

sensor characteristics, which routinely result in regions on
the curved Earth surface that are not measured during the
satellite overpass. For optical and infrared-based sensors,
atmospheric effects manifested by cloud cover and other
meteorological phenomena present a recurring problem, par-
ticularly when the orbital characteristics limit coverage to
subdaily overpasses (i.e., most polar orbiting sensors).
Developing a semiphysical basis from which missing data
might be reconstructed would provide considerable advant-
age for extending the utility of satellite-based retrievals.

[22] Two scenarios are considered. In the first, artificial
gaps corresponding to exaggerated satellites scan tracks are
imposed upon the images, masking an area of up to 40% of
the domain. These artificial gaps are then reconstructed
with direct sampling and compared with the original model
output. It is assumed that each variable has different gaps,
as in practice they might be informed by a different satel-
lite. In the second scenario, gaps are positioned to corre-
spond with the highest density of clouds (as simulated by
the WRF model) to reflect the influence of atmospheric fea-
tures on the satellite observation. For both scenarios, gaps
occur in all variables except for the downward shortwave
radiation, which is known everywhere in the image: a rea-
sonable assumption based on its retrieval from geostation-
ary platforms.

[23] Climate variables generally present temporal non-
stationarity, i.e., the statistics and patterns of values found
in summer and winter differ and should be treated sepa-
rately. For this reason, we reconstruct the values separately
for each month, using only the known values in January to
reconstruct the gaps in January, and likewise for other
months. In this case the informed parts of the domain are
large enough to ensure proper temporal correlation across
the different months. If it was not the case, one could
devise a moving window scheme whereby the values of the
15 days before and after the present date are used as train-
ing data set. For the direct sampling, we use neighborhoods
consisting of the n ¼ 20 locations/dates that are the closest
to x, for each of the 4 variables considered, thus producing

Figure 1. Multivariate neighborhoods and multivariate distances for a case with three variables. (left)
The uninformed location/date x to reconstruct is contained within the second variable. Informed loca-
tions/dates are colored, and uninformed locations/dates are in gray. (right) An informed part of the do-
main. The distance between both is computed using the locations/dates marked in red, which correspond
to the informed locations in the neighborhood of x.
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a total of 80 pixels. The distance function in equation (4) is
used with a threshold of 0.01. Each of the 4 variables is
given an equal weight in the distance calculation.

4. Results
4.1. Imposing Satellite Scan Tracks on Synthetic Data

[24] One of the most predictable outcomes of Earth
observing systems is the development of scan tracks as the
satellite overpass progresses through its orbit. These discon-
tinuities, a result of compromises between a satellites field
of view, repeat rate, and orbital characteristics, are more pro-
nounced along the equatorial region: at least for polar orbit-
ing systems, where the spatial separation between orbits is
often the greatest. In order to reproduce the effect of these
gaps for subsequent reconstruction, an exaggerated response
is imposed upon the synthetic fields, with diagonal scan lines
enforced upon each of the variables of interest. While the
gaps are wider and cover significantly more area than would
actually occur in practice, a key motivation of this paper is
to rigorously examine the utility of the direct sampling
approach to remote sensing data reconstruction. The use of
such large gaps allows for testing of the method under
adverse conditions, exploring the limits of its application.

[25] As noted previously, the direct sampling technique
is not a deterministic approach, but rather allows for the
assessment of inherent uncertainties in reconstructing pos-
sible spatial fields. To address this, 10 stochastic recon-
structions (or realizations) have been computed, providing
10 possible values at each unknown pixel for all the indi-
vidual WRF model simulations. In this case, using a larger
number of realizations was compromised against the com-
putational constraints due to the high temporal resolution
of model reproductions. Each time step is reconstructed
based on an entire month of data, resulting in a large train-
ing set. For simplicity we display detailed results for single
representative images taken at different periods in the year,
along with monthly statistics.

[26] Figure 2 presents a sample realization for 15 Janu-
ary 2006. For the three variables that are partially informed,
describing surface latent heat (LH), surface temperature
(TSK), and soil moisture (SMOIS), we display the incom-
plete data, a direct sampling realization, and the reference
truth. Shortwave downward radiation (SWDOWN) is con-
sidered spatially continuous (i.e., it has no gaps) and is
shown separately.

[27] The patterns in the reconstructed variables seem re-
alistic, especially given the significant amount of gaps pres-
ent in the images. The large-scale structures are maintained
and qualitative agreement is satisfactory: although discon-
tinuities appear for surface temperature reconstructions.
Figure 3 plots the statistics of all reconstructions for the
entire month of January versus the reference WRF data sets.
Figure 3 (top) shows that the direct sampling reconstruc-
tions are well correlated with the real values. In Figure 3
(bottom), the histograms of errors are displayed (i.e., the
reconstructed values minus the real ones). These errors are
centered on zero and mostly unbiased, apart from the soil
moisture results, where anomalies are caused by the highly
irregular distribution of the values. For latent heat flux and
soil moisture, the errors fall within expected ranges for sat-
ellite retrievals. In terms of root mean square error, these

have been estimated previously as anywhere between
20–100 W m�2 for LH [Kalma et al., 2008; Kustas and
Norman, 2000] and 3–7% for SMOIS [Drusch et al., 2004;
Liu et al., 2011; McCabe et al., 2005] for instantaneous
retrievals. For surface temperature (TSK), errors are broadly
similar to typical measurement errors of between 1 and 8 K
[Ferguson and Wood, 2010; McCabe et al., 2008b; Wan
et al., 2002]. These results compare favorably to the gap-
filling errors shown in [Chen et al., 2011], especially when
one considers that in our case, three interdependent varia-
bles are dealt with simultaneously instead of just one. The
spatial distribution of interpolation errors are more clearly
observed in Figure 4, which displays the ensemble statistics
of all 10 realizations, with the mean value and standard
deviation at each reconstructed pixel, along with the aver-
age absolute error.

[28] Figures 5–7 show similar results for a midwinter
analysis. Figures 5 and 7 correspond to the reconstruction
results for 15 July, while Figure 6 shows reconstruction
errors for the entire month of July. A significant difference
with the results of January is a smoother error distribution
for soil moisture. This can be explained by the presence of
persistent features along drainage systems during the
summer (January), which are larger than the size of gaps.
This involves nonstationarity within gaps, which can lead to
decreased pattern reproduction. In the wetter winter months
(July), the soil moisture is more affected by rainfall and
hence the patterns tend to have shorter correlation scales,
making the stationarity assumption more likely to be valid.

[29] The four variables (LH, TSK, SMOIS, and
SWDOWN) present nonlinear relationships with each other,
as shown in the scatterplots in Figure 8 (first and second
rows) that corresponds to the entire month of January. Note
that while the data could have been displayed as joint distribu-
tions, scatterplots are used because the large amount of data
allows for good visual representation. Only the pixels simu-
lated at the gap locations have been considered in Figure 8.
Reproducing such joint distribution is typically difficult to
achieve and only a few methods currently allow approxi-
mating them [Leuangthong and Deutsch, 2003; Mariethoz
et al., 2009; Yeh et al., 1996]. Figure 8 (third and fourth
rows) displays the same series of scatterplots, but using
locations from the reconstructed images. The reconstructed
distributions are in excellent agreement with the reference,
providing confidence that the complex dependencies observed
in the reference can be satisfactorily reproduced: a conse-
quence of the direct sampling method considering entire mul-
tivariate patterns.

[30] However, the price to pay for this accurate multivari-
ate dependency may come at the cost of a loss in the spatial
continuity of the reconstructed variables. Indeed, some
reconstructions can present artifacts at the boundaries of the
reconstructed domain for surface temperature (Figure 5).
These discrepancies can occur when relatively small distan-
ces are obtained because of a good match to some of the vari-
ables, despite having a poor match to the actual variable
being simulated. In other words, with the distance in equation
(4), it may be possible to find a neighborhood Ny having a
sufficiently small distance with Nx, but where all the similar-
ity is due to three of the four variables (e.g., LH, SMOIS,
SWDOWN), with the fourth variable (e.g., TSK) presenting
significant discrepancies. In such cases, the spatial correlation
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of the fourth variable (TSK in this example) has insufficient
weight in the computation of the distance, leading to the
observed spatial discontinuities. These issues, and potential
ways to resolve them, are examined further in section 5.

4.2. Gaps Caused by Cloud Coverage

[31] One important requirement for the direct sampling is
for variables to be reasonably spatially stationary. In other
words, the known locations/dates sampled for reconstruction
should be statistically representative of the unknown areas.
Spatial stationarity is reasonably honored in the case of gaps
caused by satellite orbital characteristics because the loca-
tions and dates of the missing data are independent of the
observed values. Gaps are equally likely to occur for high or

low values of the variable being reconstructed, as the satel-
lite does not selectively erase data. However, the situation is
potentially different with gaps caused by cloud coverage, as
a direct physical response is introduced into the already non-
linear system. In this case, gaps that are located under
cloudy areas are likely to have lower latent heat fluxes and
lower temperatures than those locations not obscured by
clouds as a result of energy balance considerations. Like-
wise, while the soil moisture will not be as affected by
clouds of short duration, if these are precipitating, there is
the expectation that near surface moisture will increase rela-
tive to the noncloudy regions. As a result, if reconstruction
of one variable is based on another that has undergone a
physical response during the sampling procedure, it is likely

Figure 2. Gaps caused by orbital characteristics in a sample reconstruction for 15 January 2006. Three
columns representing WRF simulated data fields are (from left to right) latent heat flux (LH), surface
temperature (TSK), and soil moisture (SMOIS). The rows detail (from top to bottom) the artificially gap
enforced simulation, the reconstructed image, and the original continuous WRF simulation. Downward
shortwave radiation is included at the bottom, with the influence of cloud evident throughout the bottom
left portion of the image.
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Figure 3. Gaps resulting from imposition of orbital characteristics. (top) Scatterplots and (bottom)
errors in the three reconstructed variables of (from left to right) latent heat (LH), surface temperature
(TSK), and soil moisture (SMOIS) for all reconstructed values in the month of January 2006.

Figure 4. Statistics on the reconstruction ensembles for 15 January 2006. The three columns represent
WRF simulated data fields of (from left to right) latent heat flux (LH), surface temperature (TSK), and
soil moisture (SMOIS). The rows (from top to bottom) describe the ensemble mean of the reconstructed
fields, the standard deviation of ensembles of the reconstructed images, and the ensemble mean minus
the original WRF simulation.
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that additional errors will be introduced into the reconstruc-
tion process.

[32] This bias has been observed in numerical experi-
ments similar to those undertaken in section 4.1, but with ar-
tificial gaps made by removing all values where the
shortwave downward radiation is less than 250 W m�2 (an
arbitrary threshold representing likely cloud cover during
summer). Figure 9 shows the reconstruction results with the
cloud coverage gaps from 1 January 2006. It should be noted
that there is a combination of gap sizes, with small gaps scat-
tered throughout the domain and a large missing portion in
the southwest of the domain. In the small gaps, the recon-
struction accurately reproduces the reference patterns. This

successful reconstruction is possible because nearby informed
values constitute strong constraints on the type of patterns to
use in the gaps. In the large missing area however, the recon-
structed values are systematically biased, as expected, result-
ing in higher surface temperatures and lower soil moistures
than the reference (which models the inherent land-atmos-
phere feedback relationship through WRF). This is also visi-
ble in the histograms of errors (Figure 10), where the errors
are not centered on zero for temperature and soil moisture. At
least in this example, it seems that our method is subject to
the above described bias when filling large gaps caused by
cloud cover (weakly constrained problem). When the gaps
are small compared to the size of the spatial structures, it

Figure 5. Gaps caused by orbital characteristics in a sample reconstruction for 15 July 2006. As in
Figure 3, the three columns representing WRF simulated data fields are (from left to right) latent heat
flux (LH), surface temperature (TSK), and soil moisture (SMOIS). The rows detail (from top to bottom)
the artificially gap enforced simulation, the reconstructed image, and the original continuous WRF simu-
lation. Downward shortwave radiation is included at the bottom of the figure.
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Figure 7. Statistics on reconstruction ensemble for 15 July 2006. As in Figure 5, the three columns
represent WRF simulated data fields of (from left to right) latent heat flux (LH), surface temperature
(TSK), and soil moisture (SMOIS). The rows (from top to bottom) describe the ensemble mean of the
reconstructed fields, the standard deviation of ensembles of reconstructed image, and the ensemble mean
minus the original WRF simulation.

Figure 6. Gaps resulting from imposition of orbital characteristics. (top) Scatterplots and (bottom)
errors in the three reconstructed variables of (from left to right) latent heat (LH), surface temperature
(TSK), and soil moisture (SMOIS) for all reconstructed values in the month of July 2006.
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seems that the gap-filling problem is constrained enough to
overcome this bias, resulting in visually satisfying results.

5. Discussion and Conclusion
[33] Realistic reconstruction of missing data in remote

sensing retrievals is a challenging problem that goes far

beyond simple interpolation. Here we present a newly
developed geostatistical approach that accounts for the
complex spatial, structural and textural properties of the
variables considered and the inherent nonlinear relation-
ships in Earth surface variables. The method is based on a
conditional stochastic resampling of the known areas of the
domain, at different locations and dates. We assess the

Figure 8. Validation of the multivariate joint distributions. The first and second rows are sample scat-
terplots of the WRF reference variables for all dates in January, illustrating varying degrees of nonlinear
relationships between variables in the simulations. The third and fourth rows are scatterplots of the
reconstructed variables for all dates in January, exhibiting good visual agreement of the nonlinear rela-
tionships exhibited in the WRF reference data.
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potential of the method in reconstructing gaps that would
occur operationally in satellite observations by using syn-
thetic data from a regional climate model of southeastern
Australia, with both atmospheric and exaggerated scan
gaps covering large parts of the domain.

[34] A question that is not addressed in most reconstruc-
tion studies is the uncertainty related to the interpolation
results. It should be emphasized here that any interpolation
entails uncertainty at the reconstructed locations, and this
uncertainty is dependent of the level of spatiotemporal vari-
ability of the phenomenon considered. Variables that respond
slowly in time, such as soil moisture or vegetation cover, can
be very accurately recovered from measurements because
the historic data contain high localized information content.
From year to year, the same areas tend to have similar soil
moisture or leaf area index [Fang et al., 2008; Yuan et al.,
2011]. For example, Wang et al. [2012] accurately fill gaps

in daily soil moisture remote sensing measurements based on
known soil moisture taken one or a few days before. This is
made possible because at the scale considered (0.5 degree re-
solution) daily variations of soil moisture are relatively
small. Hence the data of the previous day strongly conditions
the gap-filling problem and the uncertainty in the results is
minimal. Similarly, Boloorani et al. [2008] fill gaps in multi-
spectral satellite images given an image of the same location
a year earlier. The process considered presents very small
temporal variability and therefore the available data are
strongly informative, resulting in low uncertainty.

[35] Just as the temporal stability (or not) of a recon-
structed variable is important, so is the degree of spatial
heterogeneity inherent in the retrieval. Small gaps in a
smooth image can be filled with realistic values because
some structures will be present on either side of the gap
and relatively simple deterministic interpolation methods

Figure 9. A sample reconstruction for 1 January 2006 using the SWDOWN image and a threshold of
250 W m�2 to identify cloud cover. Three columns representing WRF simulated data fields are (from
left to right) latent heat flux (LH), surface temperature (TSK), and soil moisture (SMOIS). The rows
detail (from top to bottom) the artificially gap enforced simulation, the reconstructed image, and the orig-
inal continuous WRF simulation. Downward shortwave radiation is included at the bottom.
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will give good results. For example, Maxwell et al. [2007]
infills Landsat images where the gaps considered were
small and the continuity of structures clearly visible
between the gaps. Similarly, Zhang et al. [2007] use geo-
statistics for gap filling of remote sensing images with rela-
tively small gaps. In that example, the kriging technique is
used, which is known to be a smooth interpolator that can-
not reproduce specific complex spatial features [Journel
and Zhang, 2006; Olea, 1996]. An additional issue that is
generally not addressed is the filling of gaps that simultane-
ously occult several interrelated variables. The additional
constraint in this case is that the different synthetically gen-
erated values must present the correct (nonlinear) depend-
encies with each other.

[36] Results from this analysis show that our direct sam-
pling based gap-filling method is able to realistically recon-
struct the missing elements of the synthetic satellite images.
Complex spatial patterns can be resolved that also repro-
duce the often nonlinear dependencies observed between
the variables considered. Furthermore, the stochastic nature
of the methodology makes it possible to ascertain the uncer-
tainty related to the reconstruction. The governing principle
is to use past occurrences of observed multivariate multiple-
point relationships and then apply these to the present. This
approach however assumes that the realm of possible out-
comes is contained in the past observations, an assumption
that may not always hold, explaining artifacts such as dis-
continuities or departure from the reference values (e.g.,
soil moisture for the January example in Figure 2 or temper-
ature for the July example in Figure 5).

[37] The definition of a distance measure between pat-
terns is necessary in the resampling procedure. Because
multivariate patterns are considered, weights associated
with the different variables need to be defined. Although in
this study we assigned identical values to all weights (i.e.,
all weights ¼ 1/m), one could consider modifying these to

give more importance to the variable being simulated, rela-
tive to the other variables. This could potentially be used in
contexts where certain variables are acquired with higher
confidence than others. One aspect is that reducing the rela-
tive weight of the other variables could potentially result in
a decreased reproduction of the multivariate relationships.
When the information added by ancillary variables is not in
perfect agreement with the observed spatial continuity,
choices have to be made to honor either one or the other of
the variables being used. The assigned weights would then
express a necessary trade-off between these constraints.
Weights might also be varied locally, or their computation
could be based on the relative information content of each
variable. Investigating the use of importance weights to
individual variables is an area that requires further investi-
gation and refinement for different applications.

[38] The best results are obtained with gaps caused by sat-
ellite orbital characteristics, because the locations of the miss-
ing data are independent of the observed values. In the case of
gaps caused by cloud coverage, the gaps preferentially occur
at locations of higher than average soil moistures and lower
than average temperatures. The consequence is that the statis-
tics of the known portions of the domain do not correspond to
the statistics of the target locations to reconstruct, resulting in
a statistical bias that is especially pronounced for large gaps.
A way of overcoming this bias would be to infer the multivar-
iate high-order statistics not from the known portions of the
domain, which are preferentially sampled, but from regional
climatic models (RCMs) that provide exhaustive coverage,
including the areas covered by clouds. The methodology
would not change, but the fundamental challenge would then
be to obtain a RCM that reproduces the spatial patterns
observed in real remote sensing images, including structural
and measurement noise. If fully informed training images
were available, another application could also be the stochas-
tic generation of spatially distributed weather variables.

Figure 10. Gaps caused by cloud coverage with (top) scatterplots and (bottom) errors in the three
reconstructed variables of (from left to right) latent heat (LH), surface temperature (TSK), and soil mois-
ture (SMOIS) for all reconstructed values in the month of January 2006.
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