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[1] We propose a new cosimulation algorithm for simulating a primary attribute using
one or several secondary attributes known exhaustively on the domain. This problem is
frequently encountered in surface and groundwater hydrology when a variable of interest
is measured only at a discrete number of locations and when the secondary variable is
mapped by indirect techniques such as geophysics or remote sensing. In the proposed
approach, the correlation between the two variables is modeled by a joint probability
distribution function. A technique to construct such relation using underlying variables
and physical laws is proposed when field data are insufficient. The simulation algorithm
proceeds sequentially. At each location of the domain, two conditional probability
distribution functions (cpdf) are inferred. The cpdf of the main attribute is inferred in a
classical way from the neighboring data and a model of spatial variability. The second
cpdf is inferred directly from the joint probability distribution function of the two
attributes and the value of the secondary attribute at the location to be simulated. The two
distribution functions are combined by probability aggregation to obtain the local cpdf
from which a value for the primary attribute is randomly drawn. Various examples using
synthetic and remote sensing data demonstrate that the method is more accurate than the
classical collocated cosimulation technique when a complex relation relates the two
attributes.
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1. Introduction

[2] There are numerous situations in surface and ground-
water hydrology in which an attribute of interest is mea-
sured at a discrete number of locations and needs to be
mapped accounting for exhaustive secondary information.
For example, this is encountered (1) when interpolating
ground based measurements of precipitation using a digital
elevation model [Goovaerts, 2000] or radar observations
[Creutin et al., 1988; Haberlandt, 2007] as secondary
information; (2) when estimating soil surface moisture and
surface roughness from satellite images and ground meas-
urements [Makkeasorn et al., 2006]; (3) when characteriz-
ing the heterogeneity of an aquifer from local hydraulic
conductivity data and an exhaustive geophysical survey
[Cassiani et al., 1998]; (4) when mapping groundwater
recharge using local estimates and an exhaustive evapora-
tion map produced from remote sensing data [Brunner et
al., 2004]; or (5) when mapping large scale groundwater
contamination (such as Arsenic) using again local measure-

ments in boreholes and exhaustive maps of geology and
surface soil properties [Winkel et al., 2008].
[3] The most simple way to solve this type of problem is

to model the correlation between the primary and secondary
attributes using a statistical regression (it does not need to
be linear) and to rescale the exhaustive map. This is, for
example, the procedure that was used by Brunner et al.
[2004] for recharge estimate or by Winkel et al. [2008] to
map Arsenic concentration. However, such a method does
not enforce local accuracy (the interpolated value at the
location of a ground based measurement may be different
from the measurement itself) and does not account for the
possibly known covariance structure of the primary vari-
able. More flexible approaches are available in the frame-
work of multivariate geostatistics [Chilès and Delfiner,
1999; Wackernagel, 2003]. Such methods were reviewed
and compared in the field of hydrology, for example, by
Ahmed and De Marsily [1987] or Goovaerts [2000]. They
include a set of estimation techniques (providing the most
likely value at any location) such as cokriging [Matheron,
1971], kriging with external drift [Delhomme et al., 1981],
collocated cokriging (W. Xu et al., Integrating seismic data
in reservoir modeling: The collocated cokriging alternative,
paper SPE 24742 presented at 67th Annual Technical Con-
ference and Exhibition of the Society of Petroleum Engi-
neers, Washington, DC, 4–7 October, 1992), and stochastic
simulation techniques (allowing to generate a set of equally
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probable maps) such as cosimulation [Gomez-Hernandez
and Journel, 1993], collocated cosimulation, cosimulation
with external drift, etc. These techniques are based on two
ingredients: a model of cross covariance that relates the
variability of the first variable at a given location with the
variability of the secondary variable at another location, and
the assumption that the relation between the two variables is
essentially linear and can therefore be modeled in a multi-
Gaussian framework. Furthermore, it is often found in
practice that the secondary data located precisely at the
location that needs to be estimated (or simulated) has a much
stronger impact on the estimation (or simulation) than the
data located aside. This is why when an exhaustive map of
secondary information is available, a common simplification
is to write a cokriging system that accounts only for the
secondary variable at the location to be estimated (or simu-
lated) and not at the neighboring nodes. These are the so-
called collocated cokriging or cosimulation techniques (Xu
et al., presented paper, 1992). It is an approximation that has
the advantage to be much faster than the full cokriging but it
is not optimal for all situations and can even be useless in
certain cases. For example, when solving an inverse prob-
lem in a cokriging framework, the cross-covariance between
heads and transmissivity under the uniform flow assumption
shows that a head measurement has no impact (cross-
covariance equal to zero) on the estimation of the transmis-
sivity at the location of the head measurement [Dagan,
1989].
[4] In this paper, we do not consider the inverse problem.

Our aim is to propose a new method for generating an
ensemble of stochastic simulations of a primary attribute
using a discrete number of local measurements of the
primary attribute and an exhaustive map of the secondary
attribute in a collocated cosimulation framework. The
specificity of our approach is to consider complex relations
between the two variables and to use a probability aggre-
gation technique.
[5] Indeed, most papers presenting applications of geo-

statistical techniques (cokriging or cosimulations) to this

problem assume a multi-Gaussian framework and a linear
relationship (Figures 1a and 1d) between the two attributes.
When the relation is not linear but can be modeled by an
analytical function (e.g., Figure 1b), one can use a trans-
formation of variable to linearize the relation. For example,
this is the case when estimating the log hydraulic conduc-
tivity using geoelectrical surveys [Cassiani et al., 1998; El
Idrisy and De Smedt, 2007; Slater and Lesmes, 2002;
Soupios et al., 2007]. However, the assumptions of multi-
Gaussianity and linear correlation between the variables (or
their transforms) is too restrictive. It is an oversimplified
description of complex physical processes and therefore it
does not hold in many real-case applications. For example,
we observed in a karstic coastal aquifer in Oman [Alcolea et
al., 2009] that karstic conduits had a high hydraulic con-
ductivity and a low electrical resistivity if they were fully
saturated with seawater. However, clayey deposits with very
low hydraulic conductivity (that were also saturated with
seawater) had a low electrical resistivity too. Higher elec-
trical resistivites were associated to intermediate conductiv-
ity. A low electrical resistivity could therefore indicate
either a high or a low hydraulic conductivity, but not an
intermediate conductivity (Figure 1c). Such a relation was
not only nonlinear (see Figure 1b for an example of
nonlinear relation), it was essentially noninjective or multi-
valued (Figure 1c). We think that such situations are more
frequent than usually admitted and that there are many cases
in which there may be several possible and distinct values
(or modes) of the primary parameter for a given value of the
secondary parameter. This type of noninjective relations
cannot be modeled by an analytical function of the second-
ary variable only nor by a simple change of variable. In
addition, the possible variability of the primary variable
knowing the secondary variable can vary as a function of
the value of the secondary variable (heteroscedasticity) as
shown in Figure 1e.
[6] A possibility to model the relation between the two

variables in a completely general and statistical manner is to
use a bivariate probability distribution function (pdf) f(z, s).

Figure 1. Schematical representation of the different types of possible relationships between a primary
and secondary variable. s, secondary variable; z, primary variable. (a) Linear relationship modeled by a
regression line. (b) Nonlinear relationship modeled by an analytical injective function relating z = f(s). (c)
Noninjective (or multivalued) relationship between s and z, which cannot be modeled by a function z =
f(s). (d) Linear relationship modeled by a bi-Gaussian probability distribution function. (e) Linear
relationship showing a variation of the uncertainty around the regression line and which cannot be
modeled by a bi-Gaussian pdf. (f) Noninjective relation modeled by a joint probability distribution.
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This joint pdf can either be expressed analytically and
parameterized by a type of distribution and its means,
variances, correlation coefficient, etc., or it can be expressed
as a fully nonparametric joint distribution (i.e. provided as a
numerical matrix of probability values such as a bivariate
histogram).
[7] To our knowledge, only a few techniques allow the

use of complex bivariate models. The bilinear coregional-
ization model [Wackernagel, 2003] is a step toward inte-
grating more complex relationships as it allows for non even
covariance functions in the multi-Gaussian framework. The
Successive Linear Estimator [Yeh et al., 1996] is a modifi-
cation of cokriging allowing to generate mean Gaussian
parameters fields considering nonlinear parametric relation-
ships. The so-called cloud transform technique [Bashore et
al., 1994; Kolbjørnsen and Abrahamsen, 2004] and the
stepwise conditional transformation technique [Leuangthong
and Deutsch, 2003], are closely related in the sense that they
both impose a given bivariate correlation by performing
appropriate normal score transformations of the variables.
These methods rely also on a nonparametric description of
the bivariate distribution between the main and secondary
attributes thus allowing to accommodate situations in which
the marginal distributions are multimodal and the relation-
ship between the attributes is nonlinear. Simulated anneal-
ing [Deutsch, 1992] is another technique that could be used
to impose various kinds of constraints, including nonpara-
metric correlations [Caers, 2001]. Thanks to its flexibility, it
has been applied to various practical cases [Dafflon et al.,
2008], even if it presents shortcomings such as a high CPU
cost and a high parameterization of the cooling schedule.
[8] In all the methods cited above, a single conditional

distribution function of the main attribute is estimated
directly for each simulated grid node. Here we split the
problem and estimate two separate probability distribution
functions. The first one is estimated considering the primary
variable only and a model of its spatial variability. In order to
respect the nature of the first variable, that may or may not be
multi-Gaussian, any suitable technique can be used (e.g.,
multi-Gaussian kriging [Emery, 2005;Goovaerts et al., 2005;
Verly, 1993], direct sequential simulation [Soares, 2001],
indicator kriging [Journel and Alabert, 1990; Journel and
Isaaks, 1984], multiple points statistics [Hu and Chugunova,
2008], etc.). The second one is the conditional distribution
of the primary attribute computed from the bivariate distri-
bution knowing the value of the secondary attribute. These
two distributions are then combined into a single one using
the concept of probability conjunction [Tarantola, 2005],
which is a particular case of the theory of Bordley [1982]
used in management science for aggregating expert’s opin-
ions. A similar approach was used by Ortiz and Deutsch
[2004] to update the indicator kriging probability with
multiple-points statistics.
[9] To apply the technique proposed in this paper, one

needs first to model the bivariate distribution describing the
relation between the two attributes. This is a prerequisite of
the method. Because there are many statistical techniques
available to do so, we will not focus on that aspect within
the paper but just give some directions to help the user.
Assuming that enough couples of values relating the
primary and the secondary variable are available, one can
statistically infer the parameters of any analytical joint

distribution, or use techniques such as kernel smoothing
to build a nonparametric distribution [Epanechnikov, 1969;
Kolbjørnsen and Abrahamsen, 2004]. A thorough review
of the techniques for estimating nonparametric density
functions can be found in Izenman [1991]. Even if colo-
cated data are available, the problem of estimating a
statistical relationship between geophysical and hydrologic
properties is not trivial. Several caveats remain, such as of
scale issues [Moysey and Knight, 2004], local variations in
the relationships and artifacts caused by inversion techni-
ques [Day-Lewis and Lane, 2004]. Some authors have
addressed these issues and proposed sophisticated and
efficient techniques for estimating such relationships based
on rock physics relationships and Monte Carlo simulations
[Moysey et al., 2005; Mukerji et al., 2001]. When there is
not enough data, we propose an alternative approach that
consists in building the bivariate distribution from known
physical laws and latent variables that indirectly relate the
attributes of interest.
[10] The paper is structured as follows. The first part

proposes a method for building a physically based joint
probability distribution function when there is a lack of
direct data. The second part describes the proposed simu-
lation algorithm. The third part illustrates its application on
a fully synthetic example. The fourth part presents an
application of the method on a more realistic example based
on satellite images. That case is used because, even if it has
no direct application, it is analogous to real problems such
as those described above and, more importantly, it is one of
the rare situations that allows to test the accuracy of the
method with real data showing a complex bivariate relation.
This example is also used to show how to determine the
optimal parameters of the simulation algorithm. Last comes
a discussion of the overall method.

2. Inferring the Joint Distribution From Physical
Laws and Latent Variables

[11] Denote: Note that upper cases S and Z represents
random functions, while lower cases s and z represents
actual values of these random functions.

x vector describing a location.
Z(x) the attribute of main interest.
S(x) the colocated attribute.

z(xi), i = [1 . . . N] available conditioning data for the
main attribute at location xi.

f(z, s) bivariate joint probability density
function.

[12] When there is not enough data available to statisti-
cally infer the joint distribution f(z, s), one can build a
realistic distribution from physical laws and latent variables.
Often the variables of interest (z and s) are indirectly related
to one (or several) underlying attribute t through physical
laws: z = a(t) and s = b(t). The underlying attribute t is the
latent variable [Bollen, 1989]. Often there is sufficient data
to estimate or assume the univariate pdf. To build the joint
pdf f(z, s), one can randomly sample a large number of
values of t in f(t), compute the corresponding values of z and
s for each value of t and obtain a large number of couples
[z(t), s(t)] for estimating the joint pdf.
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[13] The following example illustrates this method. The
primary attribute is the hydraulic conductivity and the
secondary attribute is the electrical resistivity. To build a
relation between these two attributes, we use porosity as the
latent variable. The data used in this example originates
from core samples of USM (Untere Süsswasser Molasse)
level of the Swiss Molasse formation, in which four main
facies have been identified. The overall composition of the
USM is mainly marl and sandstone. Field data are described
by Mariethoz et al. [2009].
[14] The first physical law is the Hagen-Poiseuille

equation (1) relating hydraulic conductivity K [m/s] to
porosity f [�]:

K ¼ f3 r g

b A2
s m

; ð1Þ

where b is the formation factor (usually between 10 and 20),
As the specific contact surface between grains and water
[m2/m3], m the water viscosity fixed at 0.0027 [kg/m s], r
the water density fixed at 999.7 [kg/m3] (for freshwater at
10�C) and g the gravity acceleration, 9.81 [m2/s]. This
relationship has been investigated for the USM formation
and available statistical data are shown in Table 1.

[15] The second physical law isArchie’s law (equation (2)),
relating the electrical resistivity of the fluid saturated rock
Rt [Wm] to the porosity [Archie, 1942]:

Rt ¼ Rwf�m; ð2Þ

where Rw is the fluid electric resistivity that is estimated to
be around 5 [Wm] in this formation [Hug, 2005] and m is
traditionally defined as a constant usually varying between
1.5 and 2.5, depending on the geometry of the pores.
[16] The joint law is estimated by drawing samples of f

in the distributions presented in Table 1. For each f sample,
the couple [K(f), Rt(f)] is computed. As m is unknown, it is
randomly sampled for each porosity value in a uniform
distribution whose bounds are 1.5 and 2.5. A large number
of samples are drawn until their number is sufficient to
obtain a stable joint distribution by kernel smoothing
[Epanechnikov, 1969]. Figure 2a shows the resulting joint
pdf, using 1,000,000 porosity samples. The specific char-
acteristics of the different facies listed in Table 1 are visible
in the different modes of the marginal pdf of hydraulic
conductivity (Figure 2b). The marginal distribution of Rt

(Figure 2c) corresponds to resistivity values measured in

Table 1. Summary of the Parameters Used to Build the Joint pdf Displayed in Figure 2 for the Kölliken Site

[Mariethoz et al., 2009]

Facies Proportion bAs Mean log10 K s log10 K Mean f Variance f

RG 0.25 44,000 �5.95 1.46 0.209 0.003
DFR 0.36 166,100 �7.68 1.70 0.154 0.005
UW 0.10 700,000 �9.10 1.21 0.135 0.003
UPS 0.29 1,200,000 �9.56 0.38 0.112 0.003

Figure 2. Inference of the joint distribution. (a) The joint pdf resulting of porosity sampling. (b) The
marginal distribution of K. (c) The marginal distribution of Rt.
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this part of the Molasse formation [Jin et al., 1995;Mächler,
1994].
[17] This example shows that even if we assume very

simple physical laws and statistical distributions for the
porosity and basic parameters of these laws, we obtain a
statistical relation between the two variables of interest
which is complex and characterized by certain couples of
values of log resistivity and hydraulic conductivity that are
impossible while others are acceptable or even highly
probable. For a given value of the resistivity such as 2,
the bivariate distribution shows that a log hydraulic con-
ductivity of �9 or �5.5 is acceptable but not a value of
�7.5. It shows that it is possible to build the joint pdf with
the proposed technique, but more important it shows also
that multivalued relations can occur from simple physical
relations and from a mixture of different rock types at a
small scale. We would like also to emphasize that when
considering only a single rock type, the joint relation which
is obtained using that approach is very often extremely
different from a multi-Gaussian distribution. There are, for
example, very sharp boundaries between zones where some
values are impossible and zones where the values have a
certain probability of occurrence. We can expect that this
type of relations are certainly very difficult to identify from
a small number of samples that include measurement errors
and this is why most often a multi-Gaussian model is used
while it is most probably inadequate.

3. Simulation by Probability Aggregation

3.1. Outline of the Method

[18] Before discussing the details of the method, let us
outline its main characteristics. First, it is a sequential
simulation algorithm, and as such it is performed on a
regular grid. The grid nodes are successively visited in a
random order. For each successive node x, two local
cumulative conditional distribution functions (ccdf) are
estimated. One, F1(x, z), is the distribution function of the
main attribute Z(x) conditional to the neighboring data and
the spatial correlation model:

F1 x; zð Þ ¼ Prob ZðxÞ � zjzðx1Þ; . . . ; zðxN Þf g: ð3Þ

This ccdf can be estimated using any suitable geostatistical
method. In our examples, multi-Gaussian kriging is used.
[19] At the same location x, the second distribution

function, F2(x; zjs), of Z(x) conditional to the colocated
attribute s(x) can be obtained in a straightforward manner
because s(x) is informed at all locations of the grid. One just
needs to extract it from the two-dimensional bivariate joint
probability density function f(z, s):

F2 x; zjsð Þ ¼ Prob Z xð Þ � zjS xð Þ ¼ sf g ¼

RV¼z

V¼�1
f V; s xð Þð Þ dV

RV¼þ1

V¼�1
f V; s xð Þð Þ dV

ð4Þ

F1(x; z) and F2(x; zjs) provide two distinct pieces of
information on the value that should be finally assigned to
Z(x). The issue is therefore to combine (aggregate) F1(x; z)

and F2(x; zjs) into a single ccdf F(x; zjs) which would be an
approximation of:

Prob Z xð Þ � zjz x1ð Þ; . . . ; z xNð Þ; S xð Þ ¼ sf g: ð5Þ

Once this ccdf is available for the location x, a value is
drawn from it and assigned to Z(x). As usual in sequential
simulation, Z(x) is thereafter treated as conditional data for
simulating the remaining unknown values of Z.

3.2. Estimating F1(x; z) Using Multi-Gaussian Kriging

[20] Estimating a local ccdf F1(x; z) given a set of
conditioning data z(xi), i = [1 . . . N] can be achieved by a
variety of geostatistical techniques. Multi-Gaussian kriging
[Emery, 2005; Goovaerts et al., 2005; Verly, 1993] is
probably the most widely used and well suited in the case
of high entropy phenomena (as opposed to more structured,
low entropy phenomena, that could better be described with
methods such as multiple-point statistics). The main advan-
tage of multi-Gaussian kriging is that it allows estimating
for each location the complete pdf of the variable of interest
even if its univariate distribution is not Gaussian. The
approach consists of:
[21] 1. Performing a normal score transform of the

conditioning data: y(x) = G[z(x)] � N
0

1

�
.

[22] 2. Assuming that this transformation is sufficient to
ensure multi-Gaussianity.
[23] 3. Estimate the covariance function of the trans-

formed data.
[24] 4. Estimating at node x, by simple kriging, the mean

and variance of the local conditioning Gaussian distribution
m, s2.
[25] 5. Back-transformation of the entire local Gaussian

distribution in order to obtain a distribution function that is
not necessarily Gaussian. This is done numerically by
applying the back-transformation G�1[y(x)] on equally
spaced quantiles of the distribution found by simple kriging.
The non-Gaussian local distribution is then reconstructed
from its quantiles.

3.3. Probability Aggregation

[26] The problem of aggregating F1(x; z) and F2(x; zjs) is
not trivial. Bayesian updating [e.g., Woodbury and Ulrych,
2000] could be used in this context, but it assumes condi-
tional independence. Therefore it would require some
knowledge of the relationship between the secondary var-
iable at the current location S(x) and the primary variable at
all known locations, including all previously simulated
nodes. According to Journel [2002], conditional indepen-
dence is generally too strong an assumption in the context
of sequential simulation. Indeed, the ccdfs defined in
equations (3) and (4) are not conditionally independent
because F1(x; z) is based on previously simulated nodes
that already integrated information on the joint distribution
f(z, s).
[27] Management science provides methods for aggregat-

ing expert’s opinions while dealing with data interaction and
without assuming conditional independence. Bordley [1982]
proposed a formula for computing an aggregated probability
density function f a(z) from n individual pdfs f k(z), k = [1 . . .
n] (representing the various expert opinions) that satisfies
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the basic probability properties and a series of axioms,
including the weak likelihood ratio axiom:

f a zð Þ ¼ 1

h
f 0 zð Þ

Yn
k¼1

f k zð Þ
f 0 zð Þ

� �wk

; ð6Þ

where h is a normalizing factor. Each probability density
function has a weight, wk 2 < which can be seen as a way of
quantifying redundancy or as a confidence factor. f 0 is the
prior density function which is, in our case, the marginal pdf

f(z) =
Rs¼�1

s¼�1
f(z, s)ds (i.e. the only information available on z

when s is unknown). By construction, Bordley’s formula
has a certain number of important mathematical properties
[see Clemen and Winkler, 2007, for a discussion], but
nevertheless it is only an approximation allowing to
combine several probabilities of the same event to occur
(estimated from different sources of information) when the
complete probability model including all the sources of
information, and all the data interaction, is lacking.
Equation (6) is closely related to the tau and nu models
[Journel, 2002; Krishnan, 2005; Polyakova and Journel,
2007]. In the same spirit, Tarantola [2005] defines the
conjunction of probability densities as the simplest way to
aggregate probabilities in that manner:

f x; zjsð Þ ¼ f1 x; zð Þ ^ f2 x; zjsð Þ ¼ 1

h
f1 x; zð Þ f2 x; zjsð Þ

f zð Þ : ð7Þ

[28] Equation (7) is a particular case of equation (6) with
two probabilities being aggregated with identical weights
equal to 1. Nevertheless, such restrictions are not necessary.
Using equation (6), it is possible to apply the method on any
number of attributes and to adjust wk in order to assign the
relative weights to an expert-provided bivariate distribution
model or to account for a spatially variable model of
uncertainty by setting different weights values at different
locations. Setting a weight to 0 at a certain location would
result in the corresponding source of information having no
influence.
[29] Our purpose is to aggregate f1(x; z) and f2(x; zjs) and

we exposed various ways of achieving it. We do not want to
favor a specific method among the ones mentioned above. In
our examples, we illustrate the method using equations (6)
and (7), but there are no restrictions regarding other
techniques.

3.4. Step-by-Step Algorithm

[30] The proposed algorithm is implemented as follows:
[31] 1. Define the marginal cdf and spatial correlation

model of Z(x) as well as the bivariate model f(z, s).
[32] 2. Each conditioning data is assigned to the closest

grid node in the simulation grid (SG).
[33] 3. Define a path through the remaining nodes of the

SG. The path is a vector containing all the indices of the
grid nodes that will be simulated sequentially. Any type of
path is suitable, for example, random or unilateral [Daly,
2004; Pickard, 1980].
[34] 4. For each successive location x in the path:
[35] a. Infer the local pdf f1(x; z) from the known

conditioning data in the neighborhood of x. Any appropriate
geostatistical method can be used for this purpose. In the

following examples, we use multi-Gaussian kriging (see
above for details).
[36] b. Extract f2(x; zjs) from the bivariate model (that

can be spatially dependant or not).
[37] c. Estimate f(x; zjs) by probability aggregation

using Bordley’s equation (6) or using the conjunction of
probability (7) (i.e using weights equal to one). In the
examples below we will first start with the conjunction of
probability and later test the effect of varying the weights.
Note that the tau or nu models could also be used here to
aggregate f1(x; z) and f2(x; zjs) in order to obtain f(x; zjs).
[38] d. Randomly draw a sample z0(x) from f(x; zjs),

assign it to the location x in the grid and add it to the
conditioning data set.

4. Synthetic Example

[39] In this section, we show an example of application of
the proposed algorithm on a synthetic case in which the
primary variable is related to a noisy secondary variable via
a croissant shape bivariate distribution. The bivariate den-
sity function is known and the synthetic reference field for
the primary attribute is created by unconditional simulation.
The secondary attribute is constructed by drawing for each
node x a value of the secondary variable s from the
conditional distribution at that location knowing the previ-
ously simulated primary variable z:

F x; sjzð Þ ¼ Prob S xð Þ � sjZ xð Þ ¼ zf g: ð8Þ

By construction, the secondary variable field is spatially
correlated but rather noisy, as one can expect in real case
examples. Then, the reference is sampled at 50 random
locations. This is used as input conditioning data for the
algorithm. The simulation grid size is 50 � 50 cells, and
100 realizations are generated. In order to evaluate the
performance of the method, the simulations are compared
to the reference which is known exhaustively. The compar-
ison criteria are the reproduction of the histogram and
variogram, the errors between the simulated values and
the known reality, and the visual aspect of the simulations.
[40] Figure 3 illustrates the method. The bivariate distri-

bution function is inspired from the Oman case described in
the introduction. The primary attribute (Figure 3a) has a
bimodal distribution (Figure 3g). Locations of randomly
sampled data are marked by crosses (Figure 3a). The sec-
ondary attribute is noisy (Figure 3b) and is related to the
primary attribute by a crescent-shaped joint pdf (Figure 3c).
Despite the noise, the secondary attribute still contains
enough information to guide the simulations (Figures 3d
and 3e), where features of the reference are present at
locations where no data are available (for example, the dark
channel that runs through the field from left to right).
[41] The joint distribution (Figure 3f), the reference

histogram (Figure 3g) and variogram (Figure 3h) are rather
well reproduced (the solid red line represents the reference,
dots represent the simulations and blue circles the sampled
data). There is no systematic bias, as shown by the histo-
gram of errors of the simulated attribute that is centered on 0
(Figure 3i).
[42] By construction, the relation between the secondary

and primary variable is noninjective. As expected the
proposed method allows to generate an ensemble of simu-
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lations of the primary field that respect this very particular
relation as shown by the reproduction of the joint pdf
(Figure 3f). Among the simulations, at locations where
one finds low values of the secondary variable, the primary
variable is either extremely low or extremely high.
[43] In order to test whether the method could also be

applied in more standard cases where a linear and multi-
Gaussian relation holds, several tests were made with
different correlation coefficients and variograms for the
primary attribute. The accuracy of the method was compared
to standard cosimulation algorithm. These tests are not
shown in this paper for the sake of brevity, however they
have all shown that the method performed as well as a
traditional collocated cosimulation method. However, there
is no advantage of using our method in those cases. When
the multi-Gaussian assumption holds, it is wiser to use a full
cosimulation or cokriging based methods because it
accounts for the value of the secondary variable in the entire
neighborhood, and not only at the location to simulate.
Moreover, it takes advantage of a fully consistent model,

whereas certain parameters of probability aggregation are
subject to calibration (e.g., the weights of equation (6)).

5. Realistic Example

5.1. Testing the Method on Real Data

[44] In order to test further the method, a real data set has
been used. It is based on two Landsat 7 satellite images
corresponding to the same area, but taken at two different
wavelengths (Figures 4a and 4b). One image is considered
to be the primary attribute while the other is the secondary
attribute. We decided to use such images first because
satellite images are often used as secondary variables in
hydrology, for example, for the estimation of soil moisture
[Makkeasorn et al., 2006; Zribi et al., 2005] or for improv-
ing the mapping of ground based measurements of precip-
itation [Haberlandt, 2007]. However, more importantly a
couple of satellite images constitutes a unique data set of
two exhaustively known variables allowing to test the
accuracy of the method with real data and not on a synthetic
case. Indeed, exhaustive data sets are seldom available for

Figure 3. Synthetic example using a multivalued relation modeled by a custom joint pdf. The primary
attribute has a spherical variogram model (sill = 5.3, range = 12, adjusted on the 50-sample data).
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Figure 4. Real case example. (a–c) Input data. The primary attribute has an exponential variogram
model (sill = 1110, range = 90, adjusted on the 100 sample data). (d–i) Results and validation criteria
using the probability aggregation method. (j–o) Results and validation criteria using collocated co-
simulation, using the same input data.
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other variables that may be of higher interest in groundwater
hydrology (exhaustive hydraulic conductivity map and
exhaustive geophysical survey, for example). Of course, in
practice we are generally not interested in estimating a
satellite image at a given wavelength knowing the image
at another wavelength and at a few discrete locations. The
aim here is only to test the method on real data. Because
different processes affect the absorption of light at different
wavelengths, each image highlights different features of the
land and the joint relationship is thus complex (Figure 4c).
In summary, this data set constitutes an analogue to the real
problems encountered in practice, but an analogue whose
primary variable is exhaustively known and therefore an
analogue allowing to evaluate the accuracy of the method.
[45] As for the synthetic examples, multi-Gaussian krig-

ing is used for estimating F1(x; z). The first image is used as
a reference, sampled at 100 random locations, while the
second is the auxiliary attribute. The size of the simulation
grid is 181x201. Figures 4d to 4h present the results of the
100 simulations in the same fashion as the synthetic
examples. Figure 4i shows the standard deviation of the
stack of 100 simulations. The joint distribution used for
the cosimulation (Figure 4c) is very well reproduced in the
simulations (Figure 4f). The root mean square error
(RMSE) of the simulated values compared to the reference
field is 24.70.
[46] To compare the method against existing and well

established cosimulation methods, we used the traditional
collocated cosimulation technique [Almeida and Journel,
1994] to generate 100 simulations of the primary variable
with the same input data: the same exhaustive secondary
variable, the same colocated data points, adjusted cross
variograms, plus the assumption of a linear correlation
between the Gaussian transformed variables. The method
was applied with care and all necessary Gaussian direct and
back transformations were performed. The results are
showed in Figures 4j to 4o, in the same manner as the
previous figures, and the validation criteria are the same.
[47] The traditional cosimulation method provides good

variogram and histogram reproduction, even if the repro-
duction is not as good as the results obtained with proba-
bility aggregation. The RMSE compared to the reference
field is 29.46. Nevertheless, the reproduction of the bivar-
iate joint probability density function is grossly inaccurate
(Figure 4l). This is due to the violation of the assumption of
linear correlation between both variables. The Gaussian
transformations result in a relationship that is not linear,
but still very far from the true relationship (Figure 4c).
[48] In terms of reproduction of the reference image,

probability aggregation is able to reproduce detailed fea-
tures (visible on the mean of the simulations Figure 4e) that
are too specific to be inferred using only the primary
variable data and its variogram. Only the secondary variable
contains such detailed local information, but as the rela-
tionship is nonlinear, the traditional cosimulation approach
is unable to provide a similar level of detail (compare
Figures 4d and 4j to the reference, Figure 4a).
[49] The comparison of the standard deviation maps

(Figures 4i and 4o) show how much information probabil-
ity aggregation is able to get out of the secondary
variable. Standard deviation map of traditional cosimulation
(Figure 4o) is mainly related to the distance to the data points

(high standard deviation when no data are present). Standard
deviation maps issued from probability aggregation also
show high uncertainty at locations where the secondary
information carries a low information content (e.g., the lower
part of the image where the secondary variable value can
correspond to a wide range of values for the primary
variable). At locations where the secondary variable is very
informative, standard deviation is low, even in the absence of
conditioning data.

5.2. Adjusting the Weights

[50] So far, both weights w1 and w2 have been kept
identical and equal to 1. This is justified when the confi-
dence related to each source of information as well as the
data interaction are unknown [Polyakova and Journel,
2007]. Nevertheless, using equation (6) allows setting these
parameters to modify the influence of each source of
information. In the example described above, these param-
eters can be adjusted in order to fit the simulation on the
reference field.
[51] A sensitivity analysis on w1 and w2 has been carried

out by testing all pairs [w1, w2], with each parameter
varying from 0 to 3 with a step of 0.2, thus resulting in
256 possible pairs. A stack of 10 realizations of the primary
attribute has been generated for each pair of weights. The
mean error of each stack compared to the reference has been
calculated. The results of this sensitivity analysis are shown
graphically in Figure 5. For each stack, this error was
evaluated using 4 criteria, consisting in the mean sum of
squared differences between the reference and the simula-
tions of the stack for the histogram (Figure 5a), the vario-
gram (Figure 5b), the joint pdf (Figure 5c) and the values of
the primary attribute (Figure 5d) at each grid node.
[52] The best fits are obtained by setting w2 to a high

value (about 2) and w1 to a low value (about 0.5). This
emphasizes the high local information content of the sec-
ondary attribute when the joint law is accurately estimated.
However, using only F2(x; zjs) (setting w1 to 0) generates a
result that depends only on the joint law, and which might
be biased if this law is inaccurate. The information repre-
sented by F1(x; z), although partially redundant with F2(x;
zjs), is also capital because it ensures a spatial consistency in
the simulated field. Indeed, setting w1 to 0 dramatically
decreases the quality of the simulation. Moreover, F1(x; z)
contains both local and structural information, whereas
F2(x; zjs) contains local information only.
[53] This sensitivity analysis shows that the optimal

weights depend on various factors that are difficult to
foresee in practice if the true primary variable field is
unknown. As a workaround, we propose to determine the
goodness of a pair [w1, w2] using cross validation [e.g.,
Dubrule, 1983]. The true and estimated values can be
compared in several ways: constructing the bivariate plot
of true versus estimated values, building the histogram of
their differences or, simply, by mapping the differences. All
these representations give us ways to assess the adequacy of
the model. Two caveats, though: cross validation cannot
prove that the model is right; it will only highlight its
deficiencies. Secondly, in all rigor, the data to be used in the
cross-validation stage should not be used for building the
model.
[54] In practice, to determine the goodness of a pair [w1,

w2] using cross validation, we propose to proceed as follows:
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[55] 1. At the location xi of each data point:
[56] a. Infer f1(xi; z) as previously, but without ac-

counting for the fact that z(xi) is actually known.
[57] b. Extract f2(xi; zjs) from the bivariate model.
[58] c. Estimate f(xi; zjs) by probability aggregation

using a given pair of weights [w1, w2].
[59] d. Estimate P* = f(xi; z(xi)js), the probability

associated to the true value z(xi).
[60] 2. Compute the mean probability of all data values

P*m = 1
N

P
i

P*(z(xi)). In itself, this mean probability is not

very informative, but it allows comparing various pairs of
weights and determining which one yields the best results
(i.e. where the true values are the most probable).
[61] P*m has been computed on the same pairs of weights

[w1, w2] as the sensitivity analysis. The results are displayed
in Figure 6. The optimal weights found with cross valida-
tion are very similar to those found previously, but this time
they were computed using the available data set only. This
is very important for practical applications, where the
reference field is never available.
[62] 100 additional simulations were generated using the

weights obtained by cross validation, and the same input
data as previously. Results are presented in Figure 7. The
reference field is very well reproduced, with highly accurate
histograms and variograms fit, good reproduction of the
bivariate distribution and a RMSE of 25.37. The features of
the reference field are well reproduced. More interesting is
the standard deviation map, where all features specific to the
secondary variable are highlighted. This is because more
weight has been put on w2, thus generating high variability
when F2 is not well determined.

6. Discussion and Conclusion

[63] Field observations made in a coastal aquifer in Oman
[Alcolea et al., 2009], statistical calculations using simple
physical laws (Figure 2), or the relation between the
magnitude of the signals observed at different wavelength

on satellite images (Figure 4c) suggest that non multi-
Gaussian and possibly noninjective relations need to be
accounted for in a significant number of situations in
surface and groundwater hydrology when interpolating
certain primary variables using an exhaustive map of
secondary information. To account for those type of rela-
tions, the simplest and most general approach is to model it
using a joint probability distribution. In the examples that
were used to illustrate and test the proposed methodology,
we used a nonparametric joint distribution that offers a high
degree of flexibility. However, one can also use an analyt-
ical expression for the joint distribution when such a model
is available without any change in the algorithm.
[64] The proposed geostatistical simulation algorithm is

an extension of the collocated cosimulation techniques. Its
originality is that it is not based on an analytical and explicit
model of the relationship between the various sources of
information. Instead, it uses the joint probability density
distribution to express at any location the conditional
distribution of the primary attribute knowing the secondary

Figure 6. Optimal weights found by cross validation. The
color scale represents the average probability of all
measured data given by the model when a certain pair of
weights [w1, w2] is used.

Figure 5. Sensitivity analysis of the value of the weights w1 and w2.

10 of 13

W08421 MARIETHOZ ET AL.: COSIMULATIONS BY JOINT PDF AND PROBABILITY W08421



attribute and a model of spatial continuity for the primary
attribute. These two models are assembled by a weighted
probability aggregation technique.
[65] The main advantage of this method is that it allows

to provide more accurate maps of the primary attribute than
standard techniques when an exhaustive map of secondary
information is available and when the relation between the
two variables is better described by a joint probability
distribution. Many hydrological applications could then
benefit from that method. Another advantage is that it can
easily be extended to multiple sources of information. A
first possible extension is to use not only two local pdfs but
as many local pdfs as needed. Adjusting the weights wk is
then a powerful way of parameterizing the method to
aggregate secondary attributes having different information
contents.
[66] The drawback of this flexibility is that finding the

appropriate weights can be difficult. Keeping the weights
equal to 1 does not assume conditional independence, but
instead assumes the absence of data interaction, which has
fewer consequences. However, a proper way of adjusting
them is desired in order to improve the results. This is made
difficult because the weights describe at the same time both
concepts of confidence and redundancy. Polyakova and
Journel [2007] suggest two methods to determine them:
the first one is to calibrate the weights using available data,
and the second one is to determine them using proxy cases.
In our example, the first method gave similar weights to the
ones found with a complete sensitivity analysis including a
full knowledge of the true reference field. This tends to
show that weights can be satisfactorily calibrated if enough
hard data are present.
[67] An issue that was not considered in this work is that

the relationship between the primary and the secondary
variables can vary spatially [Day-Lewis and Lane, 2004] or
as a function of a third or fourth auxiliary variables. A

strength of our approach is that this additional information,
when it is known, can be modeled using not only a bivariate
joint probability distribution but a n-dimensional probability
cube. At each location, one could compute the conditional
probability density distribution of the primary variable
knowing all the secondary variables known at that location.
The rest of the method would remain unchanged. In doing
so the method would accommodate spatially dependant
statistical relationship between variables and any number
of auxiliary attributes.
[68] One main limitation of the method is that it does not

include an explicit model for joint spatial cross correlations
between primary and secondary attributes. Only the spatial
correlation of the primary attribute is modeled. We believe
that this limitation is compensated by the flexibility of
adjusting individual weights for an unlimited number of
secondary attributes, and by the simplicity of the algorithm.
[69] The method has been tested using a multi-Gaussian

model for the spatial continuity of the primary variable, but
it can directly be extended to any sequential, pixel-based
simulation technique that uses local conditional pdfs. More-
over, it is not limited to continuous attributes (for example,
it can be used in the framework of multiple points statistics).
Therefore its straightforward implementation makes it in-
teresting to append probability aggregation on existing
simulation codes.
[70] Finally, this paper has shown that the concept of

probability conjunction or aggregation, originating from
management science, is a precious tool for integrating
information originating from diverse sources in problems
related to the characterization of hydrological processes.
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