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Abstract
Categorical parameter distributions consisting of geologic facies with distinct properties, for example, high-permeability

channels embedded in a low-permeability matrix, are common at contaminated sites. At these sites, low-permeability facies store
solute mass, acting as secondary sources to higher-permeability facies, sustaining concentrations for decades while increasing risk
and cleanup costs. Parameter estimation is difficult in such systems because the discontinuities in the parameter space hinder the
inverse problem. This paper presents a novel approach based on Traveling Pilot Points (TRIPS) and an iterative ensemble smoother
(IES) to solve the categorical inverse problem. Groundwater flow and solute transport in a hypothetical aquifer with a categorical
parameter distribution are simulated using MODFLOW 6. Heads and concentrations are recorded at multiple monitoring locations.
IES is used to generate posterior ensembles assuming a TRIPS prior and an approximate multi-Gaussian prior. The ensembles are
used to predict solute concentrations and mass into the future. The evaluation also includes an assessment of how the number
of measurements and the choice of the geological prior determine the characteristics of the posterior ensemble and the resulting
predictions. The results indicate that IES was able to efficiently sample the posterior distribution and showed that even with an
approximate geological prior, a high degree of parameterization and history matching could lead to parameter ensembles that can
be useful for making certain types of predictions (heads, concentrations). However, the approximate geological prior was insufficient
for predicting mass. The analysis demonstrates how decision-makers can quantify uncertainty and make informed decisions with an
ensemble-based approach.

Introduction
Groundwater contamination remains above cleanup

goals at hundreds of thousands of hazardous waste sites
across the United States (National Research Council 2013)
and the rest of the world. According to the U.S. Envi-
ronmental Protection Agency, expenditures for soil and
groundwater cleanup at over 300,000 sites in the United
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States may exceed $200 billion (not adjusted for infla-
tion) by the year 2033 (USEPA 2004)—a significant
amount. Heterogeneous formations often underlie con-
taminated sites with distinct geological facies of differ-
ent hydraulic conductivities. The low-permeability facies
in these formations can serve as secondary contaminant
sources to higher permeability zones over time (e.g.,
Zheng and Gorelick 2003; Chapman and Parker 2005;
Chapman et al. 2012; Sale et al. 2013; Farhat et al. 2020).
Therefore, characterizing low-permeability facies is vital
for accurately forecasting concentrations at contaminated
sites.

Managers and stakeholders at these sites rely on
various tools, including numerical models, to assess the
impact of remedial alternatives, predict future conditions,
and manage remediation costs. These numerical models
consist of parameters (m) and calculate a state vector
d (e.g., groundwater heads; solute concentrations) in
response to initial and boundary conditions by solving
the forward problem using partial differential equations
representing groundwater flow and solute transport.

Traditionally, the numerical model is initially param-
eterized based on a conceptual site model that describes
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the geological heterogeneity, and initial/boundary condi-
tions. Subsequently, the parameter vector (m) is adjusted
by solving the inverse problem , such that the model can
match measured aquifer states. Once the match between
simulated and measured aquifer states is deemed accept-
able, this calibrated numerical model is used in a predic-
tive context. Often, predictions are made using a single
model; however, inaccurate predictions can have human
health/ecological/monetary repercussions. The stochastic
form of the inverse problem (Aster et al. 2013) is shown
below.

q(m|d) = f (d|m)p(m)

constant
(1)

In equation 1, p(m) represents the prior probability
distribution and contains parameters unconstrained by
measurement states (d) or site-specific information. The
term f (d|m) represents the likelihood of simulating
the measured state data d given model parameter m. The
posterior probability density function ( q(m|d)) represents
the probability of occurrence of the parameter m given the
measured state data d.

Because the inverse problem does not have a unique
solution (Tarantola 2005), predictions made with a cali-
brated numerical model do not always bear fruit (Moore
and Doherty 2005; Ahmmed et al. 2020). Since it is
nearly impossible to characterize heterogeneous subsur-
face environments, Rajaram 2016, suggests that predicting
solute behavior in such settings for deterministic predic-
tions at relevant scales necessitates a stochastic approach,
which is in line with a typical decision-making agency’s
expectation that predictions should be accompanied by
uncertainty measures that allow risk assessment.

Zhou et al. 2014 published a review article on
the inverse problem and the associated methods and
challenges. Aquifers at contaminated sites often consist of
distinct geological facies/categories. The inverse problem
at these sites is known as the categorical inverse
problem. Several authors (e.g., Hu et al. 2001; Caers and
Hoffman 2006; Mariethoz et al. 2010; Li et al. 2013)
have presented methods to solve the categorical inverse
problem and generated parameter ensembles that sample
the posterior distribution. Linde et al. 2017 presented
a summary of several methods to solve this class of
problems.

Khambhammettu et al. 2020 developed the Traveling
Pilot Point method (TRIPS) based on “traveling” pilot
points to parameterize the categorical inverse problem.
For a synthetic model, the TRIPS method was used in
conjunction with linear subspace methods to solve the
categorical inverse problem and estimate a categorical
parameter ensemble.

A computationally intensive requirement of linear
subspace methods is the estimation of a sensitivity
(Jacobian) matrix G, which contains the partial derivatives
of the measured data with respect to the parameters in the
model. The iterative ensemble smoother (IES) (Chen and
Oliver 2013) offers a computationally efficient method for
estimating an approximate form of the Jacobian matrix, G,

and sample from the posterior distribution. A software
package called pestpp-ies (White 2018) contains an
implementation of the IES.

Ensemble smoothers are increasingly used to condi-
tion groundwater parameter fields to aquifer state mea-
surements (e.g., Cao et al. 2018; Knowling et al. 2019;
Lam et al. 2020; White et al. 2020a). The ensemble
smoother’s documented success and computational effi-
ciency motivated us to explore their use at contaminated
sites with discrete geological facies. This paper demon-
strates a framework where the TRIPS method for parame-
terizing the categorical inverse problem and the pestpp-ies
software for conditioning parameter ensembles could be
used for evaluating predictive uncertainty.

The fate and transport of a conservative solute (no
sorption/decay) in a synthetic aquifer with two distinct
geological facies (permeable channels incised in a low-
permeability matrix) is analyzed in this paper. Since
groundwater heads alone are not adequate for accurately
characterizing aquifer heterogeneity (Fiori et al. 2016;
Rajaram 2016; Schilling et al. 2019), a measurement
vector d comprising both groundwater solute concentra-
tions and groundwater heads is considered. TRIPS and
pestpp-ies are used to assimilate this measurement vector
and generate posterior parameter ensembles under various
assumptions of heterogeneity and size of the measurement
vector d.

Since the categorical parameter ensembles explicitly
represent both permeable channels and low-permeability
matrix, they are well suited to represent both the
rapid advective transport through the permeable channels
and the delayed diffusive transport from the solute stored
in the low-permeability matrix. The applicability of
these posterior parameter ensembles in predicting solute
concentrations and mass at a synthetic contaminated site
is evaluated. The evaluation also includes an assessment
of how the number of measurements and the choice of
the geological prior determine the characteristics of the
posterior ensemble and the resulting predictions.

This paper is organized as follows. The various meth-
ods used in this paper are presented under the Meth-
ods section. The synthetic problem used in this paper is
described in the section titled Synthetic Problem . Poste-
rior parameter ensembles for the synthetic problem are
presented in the Results section. The implications of the
number of observations and the choice of the geologi-
cal conceptual model on the accuracy of predictions are
discussed. A summary of findings is presented in the
Summary section.

Methods
In this section, we briefly summarize the IES method

and the TRIPS method.

Iterative Ensemble Smoother
The Ensemble Smoother (ES) (van Leeuwen and

Evensen 1996) “smooths” all the members in an ensemble
by assimilating data in a single step and computing a
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global member update. Skjervheim and Evensen 2011,
demonstrated the applicability of ensemble smoothers
in characterizing the posterior distribution for reservoir
history-matching problems. To improve the fit to the
measured data, Emerick and Reynolds 2013, developed
the IES by assimilating the same data several times
to iteratively improve the match obtained by the ES
method. IES progressively smooths ensembles of prior
parameter distributions so that they represent a posterior
parameter ensemble. Chen and Oliver 2013 proposed
an improved IES by starting with a prior parameter
ensemble and repeatedly iteratively assimilating data and
smoothing. This method, referred to as LM-EnRML,
used the Levenberg–Marquardt method (Hanke 1997) to
regularize the parameter update vector for an ensemble.
The pestpp-ies software (White 2018) incorporates the
LM-EnRML method into the PEST++ framework (White
et al. 2020b) and is used in this paper.

The Traveling Pilot Point Method
Khambhammettu et al. 2020 proposed the TRIPS

method where pilot points are not used for spatial inter-
polation but are instead used to define the geometry of
discrete facies. The method can be used in conjunction
with different geostatistical techniques like, for example,
transition probabilities or object-based models. Providing
the TRIP locations as conditioning data to the geological
simulation algorithm allows changing the parameteriza-
tion of the geological simulation, and solving the inverse
problem in this manner means to search for the optimal
locations of these TRIPSs. This approach modifies a dis-
crete inverse problem into a continuous one and makes it
more tractable.

Synthetic Problem
In this section, a synthetic problem is designed to

illustrate the decision-making process for evaluating the
uncertainty in forecasting/predicting solute concentrations
and mass at contaminated sites. This problem has several
elements in common with complex real world settings:
a mix of low- and high-permeability facies, decade-long
solute transit times, head and concentration measurements,
sensitivity to the size of the measurement dataset, and the
assumed geological model of heterogeneity. The problem
is described below and contains two data sets used for
the inversion, plus one data set to assess the quality
of predictive uncertainty assessment. Posterior parameter
ensembles are developed for this problem using TRIPS in
conjunction with pestpp-ies. These parameter ensembles
are applied in a predictive context as described in the
Predictive Evaluation section.

In this problem, two-dimensional groundwater flow
and transport are simulated in a synthetic cube-shaped
confined aquifer (100 m × 100 m × 1 m) containing two
facies, high-permeability channels incised in a low-
permeability matrix. As in heterogeneous real-world
contaminated sites, the low-permeability matrix facies
in this problem can serve as a secondary contaminant
source to the higher-permeability channel facies over

time. A reference hydraulic conductivity distribution
was previously developed for this aquifer using the
TRIPS method (Khambhammettu et al. 2020) based on
a training image. The reference aquifer was assumed
to have a maximum of three channels with five TRIPS
per channel. For simplicity, the channels were assumed
to have a constant width of 6.5 m and a constant
thickness of 1 m. A previously developed prior covariance
matrix (Khambhammettu et al. 2020) for flow was
augmented to represent the prior covariance for the
transport parameters. An ensemble member with hydraulic
conductivities of 8.7 × 10−3 m/s (meters per second) for
the channel facies and 1.1 × 10−4 m/s for the matrix
facies was selected as the reference hydraulic conductivity
distribution (Figure 1).

Constant head boundaries of 1 and 0.95 m were
enforced on the left and right edges of the model, respec-
tively, to simulate steady-state two-dimensional ground-
water flow from left to right. The low gradient across
the model grid (5 × 10−4) increases solute travel times
through the model, mimicking travel times at a real-world
site. Since the simulation of solute transport requires a
finely spaced grid (Konikow 2011), a numerical grid with
1 layer (thickness of 1 m), 500 rows, 500 columns (row
and column spacings of 0.2 m) was used in this model.

Two different monitoring scenarios are considered
in this evaluation. In the first monitoring scenario,
groundwater heads and concentrations are monitored at 13
monitoring locations in the Site. This scenario is assumed
to represent a relatively sparse monitoring network. The
second monitoring scenario considers a denser monitoring
network with 25 monitoring locations—almost double
the number of locations in the sparse scenario. The
model grid, facies, boundary conditions, and monitoring
locations are shown in Figure 1.

A dissolved solute source with a concentration of
104 μg/L is assumed to be present in the second column
of the model along all the rows for a period of 2 years.
After 2 years, the source is assumed to be removed
instantaneously, and the remaining solute is allowed
to transit through the aquifer and exit through the
downgradient specified head boundary.

Groundwater flow and transport are simulated using
MODFLOW 6 (Langevin et al. 2021). For this problem,
the solute is assumed to be conservative, and sorption
and decay processes are not represented. Hydrodynamic
dispersion is ignored for simplicity. An attempt was also
made to explicitly incorporate diffusive transport, but very
little difference was observed in the simulated concen-
trations with and without diffusion. This observation is
consistent with the findings of Chapman et al. 2012,
who demonstrate that simulation of diffusive mass trans-
port required centimeter scale grid cells with very small
time steps. Ideally, a more refined grid with very small
timesteps would be better suited for representing the
diffusion processes. However, that spatial and temporal
refinement would have resulted in very long simulation
times, complicating the task of uncertainty analysis, which
requires several model evaluations.
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Figure 1. Model setup, boundary conditions, and monitoring well locations for the groundwater flow problem. The model
setup and boundary conditions are shown in panel (a). The facies distribution of the reference model and the sparse (13
locations) and dense (25 locations) monitoring networks are shown in panels (b) and (c), respectively.

As a compromise, the dual-domain formulation,
with upstream finite difference scheme and adaptive
time stepping is used in this evaluation. In the dual-
porosity/domain formulation (Deans 1963; Coats and
Smith 1964; Van Genuchten et al. 1974), a heterogenous
aquifer is assumed to comprise of a mobile domain
where advective transport is dominant, and overlapping
immobile domain where molecular diffusion is dominant.
A mass-transfer coefficient (ζim) is used to control mass
transfer between the mobile and immobile domains.

In the reference model, the total porosity of the
channel facies (θch) is assumed to be 35% and the total
porosity of the matrix facies (θmx) is assumed to be 43%.
These porosities are representative for high- and low-
permeability materials (Payne et al. 2008). The mobile
porosities for the channel (θm,ch) and matrix (θm,mx) were
assumed to be 10% and 1%, respectively. The mass-
transfer coefficient (ζim) between the mobile and immobile
domains is assumed to be 10−3/day.

In the reference model, the hydraulic conductiv-
ity contrast ratio between the channel and matrix
facies is 79 (8.7 × 10−3/1.1 × 10−4). This ratio com-
pares well with researchers (Zheng and Gorelick 2003)
who noted that when the hydraulic conductivity in
permeable channels approaches 100 times that of the
matrix’s hydraulic conductivity, calculated concentration
distributions start exhibiting non-Gaussian patterns with
pronounced tails which are incidentally observed in real-
world contaminated sites.

Solute transport was simulated for a period of
30 years assuming steady-state groundwater flow. It was
assumed that measurement data exists only for the
first 4 years and that the remaining 26 years represent
future (predictive) conditions. Because of the steady-
state flow assumption, a single head measurement was
taken at the monitoring locations (13 or 25, depending
on the scenario). At each monitoring location, solute
concentrations were measured quarterly over a 4-year
period, resulting in a total of 16 measurements (4 × 4).
Given measured heads and concentrations over the first
4 years, the inverse problem requires the estimation

of parameter ensembles that honor the measured data.
The objective function, (∅m), minimized for the inverse
problem is represented mathematically as shown below in
equation 2.

∅m = [
dh,mes − dh,sim

]T [
dh,mes − dh,sim

]

+ [
dc,mes − dc,sim

]T [
dc,mes − dc,sim

]
(2)

dh,mes and dh,sim represent the measured and simulated
heads, respectively. These vectors have sizes of 13 and
25 for the sparse and dense monitoring scenarios, respec-
tively. dc,mes and dc,sim represent the log10 transformed
measured and simulated concentrations. These vectors
have sizes of 208 and 400 for the sparse and dense mon-
itoring scenarios, respectively. Measurement noise was
ignored in this evaluation for simplicity and hence the
covariance matrix of the measurement noise error is not
shown in the equation. Since aquifer heterogeneity is a
key driver of solute transport (Zheng and Gorelick 2003;
Konikow 2011), two different priors to model the geolog-
ical heterogeneity for the inverse problem are evaluated:
the continuous and the discrete cases.

Continuous Case
One of the aims of this paper is to investigate how

the inverse problem and uncertainty quantification will
perform if, instead of using the proper conceptual model
for the geological heterogeneity, a simpler multi-Gaussian
model is used. This mismatch of the geological priors
is designed to illustrate real-world conditions where one
often works with a limited understanding of subsurface
heterogeneity and relies on multi-Gaussian models.

In this case, the hydraulic conductivity is evaluated at
250,000 (500 × 500) grid block locations and is assumed
to vary between 5 × 10−5 m/s and 5 × 10−2 m/s. Since the
number of model evaluations for calculating the parameter
sensitivity matrix in the pestpp-ies implementation is not
governed by the number of parameters; it is feasible
to estimate the sensitivity matrix for many parameters
efficiently.
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The parameters of the multi-Gaussian model were
obtained by seeking a match with the variance of
the reference hydraulic conductivity field rather than
the underlying conceptual heterogeneity. The hydraulic
conductivity distribution for the reference model was log-
transformed, and a spherical semivariogram with a sill
of 0.583, a range of 140 along the X direction, and an
anisotropy ratio of 4 was fitted to the empirical variogram
computed from the reference hydraulic conductivity field.
This variogram was then used to generate realizations
of the logarithm of the hydraulic conductivity using
the FIELDGEN utility from the PEST groundwater
utility suite (Doherty 2018). FIELDGEN generates these
parameter distributions based on the Sequential Gaussian
Simulation technique (Deutsch and Journel 1998).

Three additional parameters are also estimated for
the continuous case. These were the dual domain mass-
transfer coefficient (ζim), the mobile porosity for the chan-
nel facies (θm,ch), and a parameter identifying the transi-
tion between channel and matrix facies (Ktran). Model
cells with estimated hydraulic conductivities greater than
Ktranwere assumed to be channel cells and assigned a total
porosity of 35% (θch) and the estimated mobile porosity
for the channel facies (θm,ch). Model cells with estimated
hydraulic conductivities less than Ktran were assumed to
be facies cells and assigned a total porosity of 43% (θmx)
and the estimated mobile porosity for the matrix facies
(θm,mx). To simplify the problem, θm,mx was constrained
to be 1/10th of θm,ch.

Discrete (Categorical) Case
In the discrete case, a categorical hydraulic conduc-

tivity distribution is created using the TRIPS method,
assuming three channels with five TRIPS per channel,
resulting in 15 TRIPS. The number of channels was deter-
mined based on a training image and discussed in Khamb-
hammettu et al. 2020. Besides the TRIPS locations, the
channel and matrix hydraulic conductivities are also esti-
mated using pestpp-ies. The channels are allowed to move
in and out of the model domain to represent situations with
fewer than three channels. Channel width and thickness
are assumed to be constant.

Two additional parameters: the dual domain mass-
transfer coefficient (ζim), and the mobile porosity for
the channel facies θm,ch are also estimated. The mobile
porosity for the matrix facies, θm,mx, was constrained to
be 1/10th of θm,ch. The discrete approach has a clear

advantage as it assumes a geological prior for the aquifer
heterogeneity that is the same as the reference model.

Input Summary
In summary, four different cases are considered: two

with a sparse data set and continuous or discrete hydraulic
conductivity fields, and two with a dense data set
with continuous or discrete hydraulic conductivity fields.
Table 1 summarizes the parameters and observations for
these four cases. In subsequent sections of this paper,
parameter ensembles that honor the measured heads and
concentrations in these different cases are presented.

Results
Posterior parameter ensembles for the continuous

case and the categorical case, along with predictive
uncertainty analyses, are presented in this section.

Results for the Continuous Case
pestpp-ies was used to estimate the posterior param-

eter ensemble. As shown in Table 1, this inverse
problem required the estimation of 250,003 parameters
(250,000 + 3) based on 13 (or 25) head observations and
208 (or 400) concentration observations. An initial ensem-
ble of 100 realizations was progressively smoothed for
a maximum of 15 iterations. Models with realizations
that took over four times the average run time or whose
objective function was two standard deviations outside
the ensemble mean objective function (defining the misfit
between the simulated and measured values) were dis-
carded to keep the estimation stable.

The ensemble diversity and simulated heads and con-
centrations were evaluated at each iteration. Parameters
corresponding to iterations 13 and 10 were selected to be
the posterior ensembles for the sparse and dense monitor-
ing scenarios, respectively. The process of choosing the
iteration was a compromise between ensemble diversity
and matching the measured data. The posterior ensemble
for the sparse monitoring scenario had 45 members, while
the posterior ensemble for the dense monitoring scenario
had 65 members.

Estimated ensemble characteristics are shown in
Figure 2. Hydraulic conductivity and simulated heads for
the reference model are shown in the top row. Prior
ensemble characteristics (mean and standard deviation of
the hydraulic conductivity and simulated heads) are shown

Table 1
Parameters and Observations for Inverse Problem

Heterogeneity
Approach

Monitoring
Network

Head
Measurements

Concentration
Measurements

Heterogeneity
Parameters

Other
Parameters

Continuous Sparse 13 208 (13 × 16) 250,000 ζim, θm ,ch, Ktran

Continuous Dense 25 400 (25 × 16) 250,000 ζim, θm ,ch, Ktran

Categorical Sparse 13 208 (13 × 16) 17 ζim, θm ,ch

Categorical Dense 25 400 (25 × 16) 17 ζim, θm ,ch
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Figure 2. Ensemble hydraulic conductivity and heads for the continuous parameterization case. The hydraulic conductivity
and simulated heads for the reference model are shown in the top row. The characteristics of the prior ensemble (mean and
standard deviation of the hydraulic conductivity and simulated heads) are shown in the second row. The characteristics of
the posterior ensemble for the sparse and dense monitoring scenarios are shown in the third and fourth rows, respectively.

in the second row. Posterior ensemble characteristics
for the sparse and dense monitoring scenarios are
shown in the third and fourth rows, respectively. While
neither monitoring scenario could faithfully produce
the original ensemble’s characteristics, they could still
produce specific characteristics of the reference model.
The ensemble mean hydraulic conductivity for both
monitoring scenarios has highs in the center and along
the north and south edges and lows in the center—a
pattern observed in the reference model. However, the
mean hydraulic conductivity from the posterior ensemble
estimated using the denser monitoring network seems to
represent the orientation of the channel facies better. The
ensemble standard deviation of hydraulic conductivity for
the posterior ensemble was lower than that of the prior
ensemble.

Assimilation of the measured data led to a better
match between the measured and simulated heads for the
posterior ensemble. The ensemble mean head exhibited
some differences when compared to the reference head
distribution mainly in the southern regions of the aquifer.
The ensemble standard deviation of simulated head for
the posterior ensembles is lowest near the left and right
edges because of the specified boundary heads.

The simulated concentrations for the reference model
are compared against the ensemble mean concentrations

of the posterior ensembles obtained from the sparse and
dense monitoring networks in Figure 3. Concentrations
are compared at times of 0, 2, 5, 10, 20, and 30 years.
The reference concentrations are shown in the first
column. The high-permeability regions allow the solute
to quickly exit the domain, whereas the low-permeability
regions retain solute mass for decades. This inability
to match the reference concentrations is most likely
a consequence of incorrectly assuming a continuous
parameter distribution model. Compared to the reference
model, the posterior ensembles underestimate the time
at which solute reaches the boundary because the
estimated permeable regions are disconnected. However,
the estimated posterior ensembles exhibit similarities in
where the high and low concentrations occur in the model.
The concentration results from the denser monitoring
network compare slightly better to the reference model
because the percentage of the channel facies in this
ensemble is closer to the reference distribution.

Results for the Categorical Case
As shown in Table 1, this inverse problem required

the estimation of 19 (17 + 2) parameters based on 13
(or 25) head observations and 208 (or 400) concentration
observations. An initial ensemble of 100 realizations was
progressively smoothed for 10 iterations. Models with
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Figure 3. Simulated concentrations for the continuous parameterization case. The reference concentrations are shown in the
first column. The ensemble average for the sparse monitoring scenario is shown in the second column. The ensemble average
for the dense monitoring scenario are shown in the third column.
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Figure 4. Ensemble hydraulic conductivity and heads for the discrete parameterization case. The hydraulic conductivity and
simulated heads for the reference model are shown in the top row. The characteristics of the prior ensemble (mean and
standard deviation of the hydraulic conductivity and simulated heads) are shown in the second row. The characteristics of
the posterior ensemble for the sparse and dense monitoring scenarios are shown in the third and fourth rows, respectively.

realizations that took more than four times the average
run time or whose objective function was two standard
deviations outside the ensemble mean objective function
were discarded to keep the estimation stable.

Parameters corresponding to iterations 6 and 7 were
selected to be the posterior ensembles for the sparse
and dense monitoring scenarios, respectively. As in
the continuous case, this selection was performed to
maintain diversity in the ensemble while also matching
the measured data. The posterior ensemble for the sparse
monitoring scenario had 41 members while the posterior
ensemble for the dense monitoring scenario had 45
members.

The characteristics of the estimated ensembles are
shown in Figure 4. The hydraulic conductivity and
simulated heads for the reference model are shown in
the top row. The features of the prior ensemble (mean
and standard deviation of the hydraulic conductivity
and simulated heads) are shown in the second row.
The characteristics of the posterior ensemble for the
sparse and dense monitoring scenarios are shown in
the third and fourth rows, respectively. The ensemble
mean hydraulic conductivities and simulated heads closely
resemble the reference distribution for both the sparse and
dense monitoring networks. The match for the discrete
case is a lot better than the corresponding match for

the continuous case shown in Figure 3. The standard
deviation for the posterior ensembles is highest at the
boundaries of the channel facies suggesting that the
ensemble members differ in the thickness of the channels.
The ensemble standard deviation of simulated head is very
small indicating similarity in the simulated heads.

The simulated concentrations for the reference model
are compared against the ensemble mean concentrations
of the posterior ensembles obtained from the sparse and
dense monitoring networks in Figure 5. Concentrations
are compared at times of 0, 2, 5, 10, 20, and 30 years.
The reference concentrations are shown in the first
column. The posterior ensembles generated from both
the sparse and dense monitoring are very much like the
concentrations from the reference model. The ensemble
parameter statistics (mean and standard deviation) for the
continuous and discrete cases are shown in Table 2. In
both monitoring cases, ensemble smoothing reduced the
variability of simulated concentrations and led to good
matches at all the monitoring locations.

Predictive Evaluation
This section uses the posterior ensembles for the

continuous and discrete cases to support the remedial
decision-making process. The prior and posterior ensem-
bles for both cases were used to make two kinds of
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Figure 5. Simulated concentrations for the discrete parameterization case. The reference concentrations are shown in the
first column. The ensemble average for the sparse monitoring scenario is shown in the second column. The ensemble average
for the dense monitoring scenario is shown in the third column.
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Table 2
Parameter Ensemble Statistics

Case Parameter Ensemble
Ensemble

Mean

Ensemble
Standard
Deviation

Continuous ζim (log10 day−1) Reference −3.00 —
Prior −2.94 0.6851
Posterior (Sparse) −3.00 0.0207
Posterior (Dense) −3.00 0.0379

Mobile porosity of Channel facies (θm ,ch) Reference 0.10 —
Prior 0.10 0.0280
Posterior (Sparse) 0.14 0.0090
Posterior (Dense) 0.12 0.0157

Discrete ζim (log10 day−1) Reference −3.00 —
Prior −3.00 0.5281
Posterior (Sparse) −3.01 0.0315
Posterior (Dense) −3.04 0.0254

Mobile porosity of Channel facies (θm ,ch) Reference 0.10 —
Prior 0.10 0.0450
Posterior (Sparse) 0.07 0.0072
Posterior (Dense) 0.10 0.0092

Hydraulic Conductivity (log10 m/s) of Channel facies Reference −2.06 —
Prior −1.95 0.0342
Posterior (Sparse) −2.11 0.0543
Posterior (Dense) −2.13 0.0465

Hydraulic Conductivity (log10 m/s) of Matrix facies Reference −3.96 —
Prior −3.89 0.0363
Posterior (Sparse) −3.98 0.0222
Posterior (Dense) −3.98 0.0175

predictions. First, the ensembles were used to predict
maximum concentrations at the down-gradient boundary
(column 499 of the model). At a real site, this type of
prediction is typically performed for areas with sensi-
tive receptors where concentrations are compared against
a regulatory threshold limit. Second, the ensembles were
used to predict the total mass exiting the aquifer. At a real
site, this prediction is typically used to design treatment
systems and quantify the mass remaining in the system.
The mass prediction is more challenging between the two
predictions because it is a spatial aggregation of both the
concentration distribution and the volumetric flux.

The predicted maximum concentrations for the var-
ious ensembles are shown in Figure 6. The maximum
concentrations from the reference model are shown with
a dashed line in this figure. The predictions from the
prior ensembles for both the continuous and discrete cases
are shown in the first column. The prior predictions vary
several orders of magnitude while encompassing the refer-
ence prediction. The predictions with the posterior ensem-
bles for the continuous case are shown in the top row
and the predictions with the posterior ensembles for the
discrete case are shown in the bottom row. The second
column represents the ensembles based on the sparse mon-
itoring network, while the third column represents the
ensembles based on the denser monitoring network.

For the continuous case, the ensemble for the
denser monitoring network does better at bounding the

reference prediction than the ensemble for the sparser
monitoring network. This is interesting given the discrep-
ancies between the posterior ensembles for the continuous
case and the reference distribution. It is possible that
for some predictions, the act of assimilating additional
head/concentration data could reduce predictive uncer-
tainty even when working with an imperfect geological
prior.

For the discrete case, both sets of posterior ensembles
(sparse and dense) performed well in bounding the
reference prediction and reproducing the features of the
reference prediction, like the kink observed between
10 and 15 years. The close correspondence between the
ensembles for the two different monitoring networks
indicates that when the geological prior is representative,
additional head/concentration data did not significantly
add value to the process of quantifying the predictive
uncertainty. These findings should be considered in the
context of the current example. At most real-world
locations, the geological prior, contamination source
locations/ release history, are unknown/uncertain, and
additional data may help better quantify the predictive
uncertainty.

The predicted mass estimates (cumulative over time)
in kilograms (kg) for the various ensembles are shown in
Figure 7. This figure shows the mass exiting the reference
model with a dashed line. The predictions from the prior
ensembles for both the continuous and discrete cases
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Figure 6. Predicted maximum concentrations at the downgradient boundary (column 499). Predictions from the ensembles for
the continuous case are shown in the top row and predictions for the ensembles for the discrete case are shown in the bottom
row. The first column depicts the concentrations from the prior ensembles. The second column depicts the concentrations
from the scarce monitoring scenario. The last column depicts the concentrations from the dense monitoring scenario.

are shown in the first column. The predictions with the
posterior ensembles for the continuous case are shown
in the top row and the predictions with the posterior
ensembles for the discrete case are shown in the bottom
row. The prior predictions consistently underpredict the
reference estimate. The second column represents the
ensembles based on the sparse monitoring network while
the third column represents the ensembles based on the
denser monitoring network.

The reference model estimates that nearly 54 kg of
solute would exit the aquifer at the end of 30 years.
The reference model also predicts that most of the mass
would have exited the aquifer within the first 5 years.
Interestingly, none of the continuous prior ensembles
(first row, first column) can match this behavior. The
highest mass estimate from the continuous prior ensemble
is about 10 kg—an underprediction by a factor of five.
The primary reason for the discrepancy is that the high-
permeability areas in the continuous case are not well
connected. As a result, there is an accumulation of mass
within the aquifer, implying that lesser amount of mass
inflow (as compared to the discrete case) is required
into the system to maintain similar concentrations. This
discrepancy in the mass estimates is also seen in the
continuous posterior ensembles for the two monitoring
scenarios (second and third columns, first row). On the

other hand, the estimates from the discrete TRIPS prior
ensemble encapsulate the reference estimate. Assimilation
of head and concentration measurements lead to the
posterior ensembles encapsulating the reference estimate
(second and third columns, second row).

This analysis thus demonstrates that IES can assim-
ilate head and concentration data to develop parameter
ensembles that could be used for evaluating prediction
uncertainty. More importantly, these results show that
all predictions are not the same. For the concentration
predictions, the continuous ensembles could “reasonably”
simulate the spatial patterns of heads and concentrations
and bound the reference prediction. However, the con-
tinuous ensembles were not suited to estimate the mass
exiting the system. The discrete TRIPS ensembles on the
other hand do an excellent job of simulating both heads
and concentrations and are also well suited as a predictive
tool for this problem.

Summary and Discussion
Decision makers at contaminated sites are often

required to make complex decisions regarding the fate
and transport of the contaminants at their sites. They
often rely on a single calibrated groundwater model to
make forecasts several years/decades into the future to
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Figure 7. Predicted mass (kilograms) exiting the downgradient boundary (cumulative over time). Predictions from the
ensembles for the continuous case are shown in the top row and predictions for the ensembles for the discrete case are
shown in the bottom row. The first column depicts the mass from the prior ensembles. The second column depicts the
concentrations from the scarce monitoring scenario. The last column depicts the concentrations from the dense monitoring
scenario.

guide decision-making. However, the non-unique nature
of the inverse problem can lead to predictions that may not
occur. This paper presented an approach for developing
an ensemble of models that honor measured aquifer states
and can be used to develop multiple remedial forecasts to
quantify the predictive uncertainty arising from parameter
uncertainty.

The primary contribution of this paper is to demon-
strate that TRIPS and pestpp-ies together can be used
to develop categorical parameter ensembles that honor
measured aquifer heads and concentrations simultane-
ously. Additionally, the analysis illustrates how multiple
puzzle pieces (geological parametrization, history match-
ing, and remedial forecasts) could be assembled to guide
decision-makers at contaminated sites by quantifying the
predictive uncertainty associated with parameter uncer-
tainty. The results indicate that even with an approximate
geological prior model, a high degree of parametriza-
tion and history matching can lead to parameter ensem-
bles that can be useful for making certain predictions
(e.g., heads/concentrations). However, an approximate
geological prior may be inadequate for more demanding
predictions (e.g., mass).

Uncertainty in predicting solute transport can arise
from an imperfect understanding of model parametrization
(e.g., heterogeneity), initial aquifer conditions, boundary

stresses, solute sources, and release history. This paper
only focuses on the predictive uncertainty arising from
the possible variations in parametrization. However, the
uncertainty in initial/boundary conditions could also be
incorporated into the uncertainty framework based on
“soft” information like the site history and climatic
variations.

Previous attempts by the authors at solving the cat-
egorical inverse problem with only head measurements
(Khambhammettu et al. 2020) produced parameter ensem-
bles that had much more variability than the ensembles
described in this paper. By incorporating concentration
data which are directly affected by permeability con-
nections and contrasts in the subsurface, the posterior
parameter uncertainty was decreased.

Despite using many parameters for the continuous
case, the resulting hydraulic conductivity distribution(s)
did not have the connectedness of the reference model’s
hydraulic conductivity distribution. This discrepancy
arises from representing the non-Gaussian variance of
hydraulic conductivity with a multi-Gaussian assump-
tion (variogram). For example, Gómez-Hernández and
Wen 1998, showed for a hypothetical site that using a
multi-Gaussian model resulted in over-estimating source-
to-receptor travel times because of incomplete
permeability connections. Other researchers (Zinn
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and Harvey 2003; Renard and Allard 2013) also convey
similar warnings.

The observations related to the role of the number
and location of monitoring data in sampling the posterior
and quantifying model uncertainty are problem specific. In
real-world scenarios, the geological prior, contamination
source locations/release history, are unknown/uncertain,
and additional data may more often help better quantify
the predictive uncertainty.

The synthetic problem analyzed in this paper
is simple—three channels of uniform width; two-
dimensional groundwater flow and solute transport, etc.
However, utility software like PLPROC (Doherty 2023)
based on the TRIPS framework can be used to generate
complex meandering and intersecting channels of nonuni-
form width and thickness in three dimensions to represent
real world conditions by associating a width and thick-
ness parameter to each TRIPS along the channel. The
prior statistics on the number of channels can be derived
from a set of initial simulations that are conditioned to
site-specific geologic knowledge.

Despite its simplicity, the synthetic problem analyzed
in this paper has several similarities to real world sites,
namely facies with high and low permeability, decade-
long solute transit times, and a partial understanding of the
subsurface. Therefore, the approach presented here could
be adopted at large contaminated sites where the cost of
an incorrect prediction far outweighs the costs associated
with sampling the posterior and generating an ensemble
of likely models.

Site managers, regulators, stakeholders, and decision-
makers can thus make informed decisions by evaluating
the spectrum of likely predictions rather than relying
on a single prediction. The framework should include
periodic data collection efforts, which could then be used
to update the predictions. Data worth analyses (Dausman
et al. 2010; Wöhling et al. 2016) which have been shown
to reduce predictive uncertainty, could be used to decide
the locations of future monitoring wells. A pragmatic
framework that integrates data acquisition efforts with
an ensemble-based approach could lead to better future
outcomes.
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