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Abstract

The performances of kriging, stochastic simulations and sequential self-calibration inversion are assessed when characterizing a non-
multiGaussian synthetic 2D braided channel aquifer. The comparison is based on a series of criteria such as the reproduction of the ori-
ginal reference transmissivity or head fields, but also in terms of accuracy of flow and transport (capture zone) forecasts when the flow
conditions are modified. We observe that the errors remain large even for a dense data network. In addition some unexpected behaviours
are observed when large transmissivity datasets are used. In particular, we observe an increase of the bias with the number of transmis-
sivity data and an increasing uncertainty with the number of head data. This is interpreted as a consequence of the use of an inadequate
multiGaussian stochastic model that is not able to reproduce the connectivity of the original field.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Groundwater flow and transport are controlled by phys-
ical properties that are characterized by a high degree of
heterogeneity and by scales of variation that span several
orders of magnitude. A major difficulty is that this hetero-
geneity, whose knowledge is fundamental for modelling rel-
evant environmental problems (e.g. protection zone design,
contaminant migration prediction, aquifer remediation,
seawater intrusion), has to be inferred on the basis of
sparse measurements. In the past decades, a large number
of techniques has been developed with the aim of charac-
terizing the spatial variability of aquifer parameters and
their uncertainty [11,26,31]. Generally speaking, the char-
acterization of the heterogeneity can be addressed based
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on direct observations of the physical parameters (direct
methods) or on observations of the state variables of the
system (inverse methods).

Direct methods infer the distribution of the physical
parameters (transmissivity, porosity, etc.) from the local
information about the parameters themselves. Note, how-
ever, that this information is often obtained by solving
an inverse problem involving the state variables (e.g.
pumping tests) but their interpretation is local and provides
parameter values that become the input of the characteriza-
tion methods. Additional direct information about the
characteristics and the position of geological facies can be
provided by geophysical observations. Among the most
widely employed direct interpolation techniques are kriging
and stochastic multiGaussian simulations. They both are
two-point geostatistical methods that proved efficient in a
wide variety of applications in hydrogeology but also in
other fields such as mining, or petroleum engineering
[4,13,25].
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In practice, however, direct methods are seldom used
alone because they do not account for the global informa-
tion on state variables (e.g. hydraulic head or concentra-
tion) and lead to groundwater models that do not
reproduce the observed values of those state variables.
Instead, this information is taken into account by inverse
methods, which characterize the physical parameters from
measurements of the state variables. Inverse modelling has
been a topic of intense research and developments
[1,5,12,19,21]. As argued in a recent review by Carrera
et al. [9], most methods do not differ from each other in
essence, but they may differ with respect to the computa-
tional details. Among the inverse techniques, the
Monte-Carlo approach, in which multiple equally likely
realisations of aquifer properties are conditioned to
hydraulic head and concentration data, allows estimating
uncertainty. Inverse methods have been applied success-
fully in a wide range of problems [7,27,28,41].

Since both direct and inverse methods rely on measure-
ments acquired at few discrete locations, some hypotheses
have to be made on the parameter statistics in order to
infer the continuum distribution. Most two-point geostatis-
tical techniques illustrated in the previous sections are
based on the assumption that the physical parameters fol-
low a multiGaussian distribution, which is analytically sim-
ple and fully characterized by a mean and covariance
function. Numerical testing is usually performed by apply-
ing the characterization techniques to synthetic fields that
also feature multiGaussian statistics. The results demon-
strate the accuracy and the consistency of the methods.
While remaining in the multiGaussian framework, few
studies have shown how uncertainty can be reduced by
increasing the number of transmissivity, head or concentra-
tion data [19,40].

MultiGaussian fields maximise entropy (disorder), and
in return, minimize the spatial continuity of the extreme
values, thus, a loss of connectivity [24]. This feature has a
high impact on flow and transport as shown by a number
of numerical investigations [17,33,39,42]. While these stud-
ies were limited to the context of direct techniques, they all
showed that the selection of a multiGaussian model might
be consequential on flow and transport simulations. Both
direct and inverse techniques are available to handle non-
multiGaussian media. Examples of direct techniques
include the sequential indicator simulation method [16],
truncated pluriGaussian simulations [2], or multiple-point
statistics [36]. Examples of inverse methods that are able
to handle non-multiGaussian media are the conditional
probabilities method [8], a combination of truncated plu-
riGaussian simulation and the gradual deformation
approach [21], the inverse modelling of multimodal
hydraulic conductivity distributions with the representer
method [22], or the probability perturbation method com-
bined with multiple-point statistics [6] among others.

Although it is known already now for more than a dec-
ade that multiGaussian models have severe limitations, and
although alternative methods exists, most groundwater
hydrology studies adopt a multiGaussian model, often also
because data are not available to infer a non-multiGaus-
sian model. Therefore, this study explores what happens
if a multiGaussian model is adopted for a non-multiGaus-
sian medium, a situation that is most probably very com-
mon in practice. In particular, we do not only investigate
the implications of a wrong random function model in
direct studies, but also in inverse problems.

In summary, the goal of the present study is to investi-
gate and compare the reliability of direct and inverse mul-
tiGaussian techniques when applied to characterize fields
that are not multiGaussian and exhibit preferential flow
paths. A main question of interest in this study was to what
extend hydraulic head data, used in inverse modelling, are
able to correct the consequences of the wrong assumption
of a multiGaussian random function model. Two situa-
tions may occur: either the inverse conditioning is able to
detect non-multiGaussian structures and would alleviate
the problems associated with a wrong random function
(multiGaussian), or the discrepancy between the model
and the reality would still lead to inaccurate predictions.
In the latter case, checking the multiGaussianity assump-
tion for a particular case study would be extremely impor-
tant; moreover, the groundwater community would be
encouraged to further develop and adopt methods based
on different statistics.

After creating a synthetic reality, our methodology mim-
ics the procedure that would be followed during a practical
case study. We start constructing a synthetic transmissivity
field such that it possibly represents a real aquifer charac-
terized by long-correlation structures such as channels
and lenses (Section 2.1). A reference head field, which mim-
ics natural flow conditions, is obtained by simulating the
flow on this transmissivity field (Section 2.2). The transmis-
sivity and the head fields are sampled in order to obtain a
series of datasets with an increasing number of data points,
which represent synthetic experimental data to be used as
input for the aquifer characterization (Section 3.1). At this
point, we first analyse the datasets in order to infer the sta-
tistics required for the characterization step and compute
histograms and variograms (Section 3.2). Then, for each
dataset, we reconstruct three transmissivity fields by apply-
ing three multiGaussian characterization techniques, i.e.
kriging, stochastic direct simulations and self-calibrated
sequential simulations (Sections 3.3 and 3.4). The perfor-
mance of the characterization techniques is evaluated both
in terms of reproduction of the real transmissivity field and
reproduction of the initial flow situation (Section 4.1).
Most important, the inferred transmissivity fields are used
to make predictions on different flow scenarios. In particu-
lar, we consider the response of the aquifer to the construc-
tion of a well. Forecasts in terms of total fluxes through the
domain, head in the pumping well, and protection-zone
extension around the pumping well are considered (Sec-
tions 4.2 and 4.3). The reliability of the techniques is esti-
mated as a function of the number of transmissivity and
head data used to condition the transmissivity fields.
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2. Synthetic reality

2.1. Transmissivity field

The study is conducted on a synthetic transmissivity (T)
field, which consists of channels and lenses displaying inter-
nal heterogeneity (Fig. 1a–c). It is built from an aerial pho-
tograph displaying braided channels in the Ohau River,
New Zealand [30]. According to the classification of natu-
ral rivers from Rosgen [32], the architecture displayed on
this photograph belongs to the type D: braided channels.
This kind of sedimentary environment can be regarded as
the ancestor of our synthetic aquifer.

The Ohau aerial photograph is digitized and used at its
real scale so that the size of the channels and lenses is real-
istic. The image size is 1000 m by 400 m and discretized
into 1 m by 1 m cells. Two multiGaussian unconditional
simulations are separately generated to populate the chan-
nels and the lenses with natural logarithm of transmissivity
(T) values. The first simulation describes the T distribution
in the channels and has an exponential variogram with a
short correlation range (3 m). The second simulation
describes the lenses and has a nested variogram that
includes one isotropic exponential model with a 3 m range,
plus a cubic anisotropic model with a long range in the x

direction (600 m) and a shorter one in the y direction
(300 m). Note that the mean and the variance of the two
distributions were chosen such that the values are realistic
for such a geological environment. The long-range correla-
tion is used to mimic a regional trend in the deposition of
fine sediments. This leads to a bimodal, non-multiGaus-
sian, anisotropic transmissivity filed with about 50% of
the surface occupied by channels (highly permeable coarse
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Fig. 1. (a) The synthetic transmissivity field, (b) histogram of the log decima
variograms, (d) head field and boundary conditions for the uniform steady flow
(gray shape) and the mapped area; the 10-days capture zone calculated using t
mean (dashed line) and using the equivalent transmissivity (solid line).
material) and 50% occupied by lenses (poorly permeable
fine material).

The decimal logarithm of T has a mean of �2.3 and a
variance of 0.67, which corresponds to r2

lnðT Þ ¼ 3:6 (note
that the variance is computed considering the T field as a
whole, regardless to its bimodal nature). The overall inte-
gral scale was estimated to be 27 m in the x direction
(approximately 2.7% of the length of the domain) and
8 m in the y direction (2% of the domain width) by integrat-
ing numerically the correlation function calculated from
the reference T field.

2.2. Reference flow

A reference 2D flow field, which mimics natural flow
conditions, is obtained by prescribing the hydraulic heads
on the eastern and western boundaries, and imposing no-
flow conditions on the northern and the southern bound-
aries (Fig. 1d). It is assumed that the aquifer is confined
and there is no recharge (no source term). The flow prob-
lem on the reference transmissivity field is solved with the
Feflow code [14] and a head distribution is obtained that
reflects the flux variations generated by the permeability
contrast between the channels and the lenses (Fig. 1d).
The reference head field will be sampled to provide the
input data for the inverse characterization technique.

3. Characterization procedure

The characterization procedure consists in applying
independently or successively different techniques. The
starting point is the sampling of the transmissivity field to
obtain the data for computing the experimental histogram
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and variogram. In addition, either the data are interpolated
by kriging, or a set of stochastic simulations conditional to
transmissivity measurements is generated. These stochastic
simulations can be additionally conditioned to hydraulic-
head data obtained by sampling the reference flow field.
Finally, we consider the case in which an exhaustive knowl-
edge on the geology is available (i.e. channel location and
structure are exactly known).

3.1. Sampling the transmissivity and head fields

To simulate the aquifer characterization procedure in a
real case study, the reference transmissivity field and the
head field are sampled at random locations in order to
mimic field measurements. For each variable three datasets
consisting of 21, 250, and 1000 measurements are obtained.
(Note that transmissivity and heads are sampled at identi-
cal locations.) Fig. 2c and 2f shows the sample locations
(circles) of the 21 and 250 datasets, respectively (1000-data-
set locations are not shown because they are too dense).
The transmissivity and the head datasets represent error-
free local data. The mean distance between the samples is
89 m, 26 m, and 12 m, respectively. In order to avoid
unit-dependent indicators and include the integral scale in
our reasoning, the mean distance is normalized by the inte-
gral scale in the x direction. The corresponding dimension-
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Fig. 2. T fields estimation steps for 21 T (a–c), 250 T (d–f), and 1000 T data (g–
line) and model (solid line) variograms of the N Gaussian transform of the de
except for 21 T which was isotropic, (c, f and i) kriged maps and T samples l
less mean distances, d, are 3.5, 1, and 0.47 for 21, 250, and
1000 samples, respectively. In other words, the three data-
sets represent measurements whose mean spacing ranges
from three times to half the integral scale. Note that the ref-
erence image is anisotropic and that the integral scale in the
y direction is much smaller, even smaller than the mean dis-
tance between the samples in the 1000-measurement case.
The statistics of the decimal log-transmissivity of the three
datasets used are presented in Table 1.

3.2. Experimental variograms

The three transmissivity datasets (25, 250 and 1000 T

samples) are analysed separately in a geostatistical frame-
work. The 250 and 1000 T samples clearly exhibit a
bimodal histogram (Fig. 2d and g). Before analysing
the spatial correlation, the log10 T values are transformed
into a normal variable N via a Gaussian transformation
since the simulation algorithms require to work with nor-
mal distributed variables. Note that, after comparison
with the normal score transform, Hermite polynomials
decomposition was selected to compute the Gaussian
transform as it provided a slightly better histogram
reproduction for the direct and back transform. Then,
the assumption of bi-Gaussianity of the normal variable
N is tested and cannot be rejected, even if this may be
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ocations except for 1000 T because of its high density.



Table 1
Samples statistics and adjusted variograms, N represents the Gaussian transform of log10(T)

Number of T samples [m] 21 250 1000

Average distance between samples [m] 89 26 12
Dimensionless distance d [–] 3.5 1 0.47
Mean log10(T) [m2/s] �2.06 �2.28 �2.23
Minimum log10(T) [m2/s] �3.31 �3.86 �3.82
Maximum log10(T) [m2/s] �1.03 �0.82 �0.37
Std. log10(T) [m2/s] 0.77 0.82 0.82
N variogram type Exponential Exponential Exponential + Spherical
Nugget effect 0 0 0
Variogram sill 0.98 0.99 0.77 + 0.23
Variogram range along x [m] 89 85 35 & 185
Variogram range along y [m] 89 15 25 & 35

J. Kerrou et al. / Advances in Water Resources 31 (2008) 147–159 151
surprising since the transmissivity data are clearly not bi-
Gaussian. After analysing the anisotropy of the vario-
gram maps of the transformed data, directional experi-
mental variograms are calculated and modelled for each
dataset in both x and y directions (Fig. 2b, e and h).
Note that the experimental variogram of the 21 T sam-
ples did not show any anisotropy, thus an isotropic expo-
nential model is used in this case. The variogram of 1000
T showed a nested structure, which is modelled by one
exponential and one spherical model. Cross validation
is performed to test whether the fitted variogram models
are acceptable. Note that no nugget effect is considered
since data are known to be error free. Furthermore, the
absence of nugget effects allows a higher degree of con-
trol on the T field during the inverse calibration.

3.3. Kriging and conditional simulations

First, ordinary kriging of the N normally distributed
values is applied to each transmissivity dataset (21, 250,
1000 T samples) with the corresponding modelled vario-
gram. The T fields (Fig. 2c, f and i) are obtained by
back-transforming the kriged N field in two steps. First,
N is back transformed into log10 (T) with the inverse
Gaussian transform (Hermite polynomials) based on the
histogram of the data, then we take the decimal power
of this field to obtain the transmissivity. Note that the
last part of the back transform is often corrected to
avoid the bias that it induces in the value of the arithme-
tic mean of T, but for 2D aquifers we should be more
concerned with the bias in the geometric mean of T

rather than in the arithmetic mean because the later con-
trols the mean flow through the system. Taking the dec-
imal power preserves the geometric mean, therefore this
is what we did. Then, 100 conditional stochastic simula-
tions of the normally distributed N values are generated
for each dataset using the Turning Band Method and
back transformed into T fields. The upper row of
Fig. 3 shows examples of the resulting T-field simulations
(the lower row shows how these fields are improved by
inverse modelling). In the end, the geometric means of
the simulations, of the kriging and of each dataset have
been compared and are very similar.
3.4. Inverse modelling

The three sets of stochastic simulations of log-transmis-
sivity can, in addition, be conditioned to the hydraulic-
head data by means of the sequential self-calibration
method as implemented in the INVERTO code [20]. Six
pairs of data are considered with an increasing number of
transmissivity (T) and head (h) samples, i.e. (21 T, 21 h),
(21 T, 250 h), (21 T, 1000 h), (250 T, 250 h), (250 T, 1000
h), (1000 T, 1000 h). Note that the number of conditioning
head data is always at least as large as the number of trans-
missivity data. For each pair, 100 equally likely inverse
realisations are generated that are conditioned both to
the transmissivity and hydraulic-head data.

During the inversion, the variogram estimated from the
data (Section 3.2), is used as a model to interpolate the per-
turbations optimised at the master blocks. Two master
blocks are laid out per correlation length, and the position
of the master blocks is modified during the inverse condi-
tioning. The lower row of Fig. 3 shows examples of the
resulting transmissivity fields.

3.5. Characterization with exhaustive geological conditioning

In addition to the multiGaussian characterization pre-
sented in the previous sections, a test was conducted to esti-
mate the efficiency of the characterization methods when
the location of the channels would be exhaustively known.
This is clearly unrealistic but it constitutes an end member
that allows investigating what is the best estimate that can
be obtained if one would know the position of the chan-
nels. We considered only the dataset with 21 T samples,
but in addition we have a binary map that indicates if a
pixel is within a channel or not. The 21 T samples are then
divided into two groups, according to their locations in a
channel or in a lens, and they are analysed and modelled
separately. Note that, due to the lack of data, the two vari-
ograms are very weakly constrained. The resulting models
are spherical with a range of 85 m for the channels data
and 190 m for the lenses. Following the procedure pre-
sented above, Turning Band simulations are used to sepa-
rately populate the channels and the lenses and generate
100 T fields.
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Table 2
Performance measures for the generated ensembles, conditioned to
different amounts of data. The absolute average error e and average
ensemble standard deviation er are expressed in percent of the values
calculated for 21 T

Conditioning data e(Y) er(Y) e(h) er(h)

T = 21 100.0 100.0 100.0 100.0
T = 21, H = 21 98.9 90.1 41.9 19.5
T = 21, H = 250 94.3 80.9 13.2 8.1
T = 21, H = 250
Known geology 48.0 54.4 7.2 4.5
T = 21, H = 1000 92.9 74.9 9.2 6.1
T = 250, H = 250 79.5 106.7 11.0 7.4
T = 250, H = 1000 79.4 106.0 8.7 6.5
T = 1000, H = 1000 64.9 87.0 10.0 5.7
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Finally, these fields are processed with INVERTO to
produce 100 equally likely realisations conditional to 21
transmissivity data, 250 hydraulic-head data, and to the
exhaustive geological information. In the inverse condi-
tioning, each geological unit is separately perturbed. This
means that perturbations in lenses do not affect the hydrau-
lic conductivities in channels and vice versa. Both in the
lenses and the channels 100 master blocks each are placed.
In that case, INVERTO uses the geological knowledge to
optimize the local values of the transmissivity by having
different variograms for the different facies.

4. Numerical results

In order to evaluate the reliability of the characteriza-
tion techniques, the estimated T fields and the simulated
h fields are compared with the corresponding reference
fields. Note that the two techniques provide different kind
of results: the estimated field is unique and aims at provid-
ing a locally accurate map, the simulations aim at repro-
ducing the variogram. Consequently, their comparison
may be theoretically questionable, but we argue that it
has practical relevance and this is why we perform it.
Moreover, since we want to assess the ability of predicting
the behaviour of the aquifer under different flow scenarios,
the estimated transmissivity fields are used to forecast the
system response when a pumping well is located in the mid-
dle of the domain.

4.1. Reproduction of the reference T and h fields

The kriged T fields and some examples of simulations
conditional to transmissivity and head data are shown in
Figs. 2 and 3. By visual comparison with the reference
transmissivity field (Fig. 1) it is evident that a large number
of samples is required to start recovering the channel struc-
ture. Even in these cases, the simulated images are quite
different from the reference.
To quantify this discrepancy and assess the accuracy
both in terms of reproduction of the log-transmissivity
and hydraulic-head fields, we introduce the average abso-
lute error,

eðX Þ ¼ 1

n

Xn

i¼1

X s;i � X ref ;i

�� ��; ð1Þ

and the average ensemble standard deviation,

erðX Þ ¼
1

n

Xn

i¼1

rX i ; ð2Þ

where n is the number of grid cells, i a grid cell index, X the
variable considered (decimal log-transmissivity or steady-
state hydraulic head), the overbar indicates ensemble aver-

age, rX i ¼ X 2
s;i

� �
� ðX s;iÞ2

� �1=2

is the ensemble standard

deviation of X at a given node, the subscript s refers to
the realisations, and the subscript ref to the reference (syn-
thetic) values.

Table 2 presents calculated average absolute error e and
average ensemble standard deviation er for transmissivity
and head fields of all the combinations of T and h data.
From the results presented in Table 2, one can observe
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that, in general, conditioning improves the characterisation
of the log-transmissivity and hydraulic-head fields, and
reduces the ensemble variance as expected. However, the
reduction is smaller than observed in similar multiGaussian
studies [20]. It is noteworthy to indicate that the uncer-
tainty reduction for the logT and h estimation (er(Y) and
er(h)) are in most cases smaller than the improvement in
the characterisation of the log-transmissivity field (e(Y))
and the hydraulic head field (e(h)), unlike the studies with
a multiGaussian model for log-transmissivity [20].

Note that, in spite of using a wrong logT model in the
inverse conditioning and in spite of a somewhat limited
improvement in the characterisation of the logT field, the
characterisation of the hydraulic head field improves spec-
tacularly. Overall, the inverse modelling improves the char-
acterisation of hydraulic-head and log-transmissivity fields
and reduces uncertainty, but compared with multiGaussian
cases using the correct random function model the
improvements tend to be smaller. Note that in case of
1000 head samples no clear trend can be observed when
the number of T samples is increased from 21 to 250 and
1000.

As expected, knowing the geology (the position of chan-
nels and lenses) considerably improves both the character-
isation of the log-transmissivity field and the reproduction
of the heads.

4.2. Forecasting the flow: fluxes and heads

In this section, the transmissivity fields obtained from
the characterization procedures are used to predict the sys-
tem behaviour under a different flow scenario, i.e. when a
pumping well is added in the middle of the domain. The
boundary conditions are identical as for the reference flow,
but an additional pumping well with a constant flow rate of
700 m3/d is added in the middle of the domain (x = 500 m,
y = 200 m).

Two criteria are used to evaluate the performance of the
T estimated fields: the accuracy in estimating the outflux at
western boundary (Qout) and the well-bore head (Hw).
Fig. 4 shows the histograms of Qout and Hw for some of
the considered cases. The vertical lines represent the refer-
ence value calculated with the reference T field, the ensem-
ble average from the simulations, and the value calculated
with the kriged field. Note that heads and fluxes estimated
with the kriged field are different from those obtained by
the ensemble averages of the simulations. This is due to
the fact that even if the flow equations are linear for heads,
they are not linear in terms of hydraulic conductivities.
However, none of these two estimations can be said more
accurate than the other.

Without conditioning to head data, we observe a reduc-
tion of the uncertainty on the forecast heads or fluxes when
the number of T data increases (compare Fig. 4a, i and m
or Fig. 4b, j and n). It is instructive to compare the results
provided by an exhaustive geological knowledge with those
provided by conditioning to 1000 transmissivity data (Fig.
4e–f and m–n, respectively). As expected, the information
on the position of channels and lenses truly improves the
knowledge of the system, as proved by the reduction of
both errors and uncertainty. In the case of 1000 T data,
instead, the uncertainty reduces, but the error does not,
as can be observed in Fig. 4n, where the histogram of the
forecast outfluxes does not contain the reference value.
The uncertainty has reduced but the forecasts are incorrect.
This clearly shows the risk of conditioning to many T data
with a wrong statistical model. The systematically smaller
fluxes indicate that the connectivity is lower than in the ref-
erence field.

Adding head data generally has a positive impact but
does not necessarily reduce the uncertainty. When the
number of T data is small, conditioning with head data
reduces uncertainty (compare Fig. 4a and c for example).
It was surprising to observe that when the number of T

data is very large, conditioning on heads increases the
uncertainty (Fig. 4n and p). However, it has to be
observed that this effect is such that the forecast histograms
always include the reference values. In other words, it
seems that if too many points are conditioned to transmis-
sivity, information on the hydraulic heads is not able to
substantially affect the flux ensemble average, but it
improves the correctness of the prediction by increasing
the uncertainty. This result will be addressed in more detail
in the discussion.

4.3. Capture zone forecast and performance analysis

As a last comparison between the characterisation meth-
ods, we assess the accuracy of the different T fields in fore-
casting the 10-days capture zone of the pumping well,
which is delineated by simulating advective–dispersive
transport. We assume a constant porosity equal to 0.3,
whereas the longitudinal and transversal dispersivities are
small and equal to 2 and 0.2 m, respectively. This yields
an advection-dominated transport. The capture zones are
calculated by solving the Kolmogorov backward equation
[29,37]. The mean-life expectancy is calculated with the
GroundWater finite element code [10] and the 10-days cap-
ture zone is defined as the region around the well where the
mean-life expectancies are less than 10 days (Fig. 1e). Note
that the shape of the capture zone is strongly controlled by
the local transmissivity distribution in the vicinity of the
well. The reference capture zone is depicted in Fig. 1e,
together with the capture zones calculated by means of
the analytical solution of Bear and Jacobs [3] for a purely
advective transport of an inert solute. Shown are both
results obtained by using the geometric mean of the T ref-
erence field and the equivalent homogenous transmissivity
obtained from the Darcy flux. Note that the 10-days cap-
ture zone resulting from the geometric mean reflects the
assumed isotropy of the field.

In the direct conditional simulation approach and in
the inverse approach, several simulations have been
constructed for a given dataset. In these two cases, the
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uncertainty is estimated by constructing the probability
maps for a point to belong to the capture zone. These
maps are shown in Fig. 5. Visual inspection of the results
(Fig. 5) reveals that the forecasts can significantly differ
from the reference. We note that the reference is not
always completely included in the forecasted capture
zones. Indeed, the eastern finger of the reference capture
zone is predicted neither by kriging, nor by the 0.5 iso-
probability contour of the simulations, nor by the geomet-
ric mean. The latter leads to a prediction very similar to
that obtained with the analytical isotropic solution of Bear
and Jacobs [3]. As observed before, the a priori knowledge
of the geology significantly improves the characterization
of the T fields. If the position of the channels is known,
the predicted capture zone is already accurate with a small
number of T data (21) and even better when additional
head data (250) are used for conditioning the transmissiv-
ity field.
To quantify the accuracy of the characterization meth-
ods, we introduce two error norms for comparing the fore-
cast capture zone, Z, with the reference capture zone, Zref:
the missed area,

ema ¼
Np

Bp þ Np

; ð3Þ

and the unnecessarily protected area,

euc ¼
P l

Bp þ P l
; ð4Þ

where Np [m2] is the area of the reference protection zone
that is not correctly identified by the forecast, i.e. the area
of Zref \ Z, Bp [m2] is the area of the reference protection
zone that is correctly forecasted, i.e. the area of ZnZref,
Pl [m2] is the area wrongly forecasted as belonging to the
protection zone, i.e. the area of ZrefnZ. In other words,
ema is the percentage of the reference that has not been



Fig. 5. 10-Days capture zone probability maps. The black line represents the reference 10-days capture zone. The white line (in the upper maps) represents
the zone forecasted by kriging. The gray levels represent the isoprobability contours for all the combinations of T and h datasets (according to the map
title). The dashed line on the upper maps represents the 10-days capture zone for an homogenous field in which T is equal to the geometric mean of the T

samples.
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identified, whereas euc is the percentage of the forecast that
is unnecessarily protected.

In addition, an evaluation of the total error is provided
by the average squared residual between the forecasted (Z)
and the reference well-capture zone (Zref),

es ¼
1

100

X100

s¼1

1

n

Xn

i¼1

ðZs;i � Zref ;iÞ2
 !

; ð5Þ

where s indicates the simulation, i is the grid node and n the
total number of nodes in the grid. s, resp. ref, is an indica-
tor variable, equal to 1 if the node belongs to Z, resp. Zref,
and 0 if not. Finally, the uncertainty is quantified by the
dimensionless ratio between the uncertain area and the ref-
erence protection zone,

u ¼ I
N p þ Bp

; ð6Þ
where Np + Bp [m2] is the area of the reference protection
zone, Zref, and I [m2] is the area located between the 0.9
and 0.1 isoprobability contours.

The missed area ema and unnecessarily protected area euc

errors are calculated for different levels of probability
threshold (0.2, 0.5 and 0.8) and are summarized in Fig. 6.
It can be observed that the average squared residual (es)
is almost identical for kriging and for the simulations con-
ditioned only on T (Fig. 6a) and that es decreases regularly
with decreasing d. Adding head data clearly reduces es only
when the mean distance d between the sample is large with
respect to the integral scale, i.e. when the simulations are
conditioned to few T data. The best results are obtained
with the geological knowledge.

When kriging is employed, es, the missed area (ema), and
the unnecessarily protected area (euc) decrease when d

decreases (Fig. 6a, and c–f). When d is lower than 1, the
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errors do not reduce significantly (or stabilize) when new
samples are added. In the best cases, the missed area repre-
sents around 20% of the reference protection zone and the
area unnecessarily protected represents around 45% of the
forecasted zone.

When stochastic simulations are employed, the uncer-
tainty area u can be estimated. We find that it varies
between 1.5 and 3.5 times the real area of the reference cap-
ture zone. Fig. 6b shows how u decreases regularly when d

decreases and that adding head data reduces the uncer-
tainty very significantly, especially when the distance d

between the transmissivity data is large.
The probability maps obtained from stochastic simula-

tions (Fig. 5) are tools to help making decisions. The level
of risk can be quantified by the probability threshold P that
is employed to define the capture zone. A risk-prone deci-
sion maker may for example take a probability threshold of
0.5 while a conservative decision maker may take a proba-
bility threshold of 0.8. Fig. 6c and d shows the evolution of
the missed area and unnecessarily protected area as a func-
tion of d, and of the probability threshold P in the case of
simulations conditioned only to T data, while Fig. 6e and
6f shows the equivalent when 1000 h data are used in addi-
tion. These results suggest that the error decreases with d
only if the latter is larger than 1. When conditioning to
head data, it does not appear clear whether conditioning
to more T data improves the characterization. On the con-
trary, in case 1000 T data are used for conditioning, the
unnecessarily protected area is larger than in case only 21
T data are used for conditioning (using in both cases
1000 head data for inverse conditioning). There are also
some counterintuitive results that show that when the dis-
tance between the sample is small and when a large number
of head and transmissivity data are provided, the errors can
be larger than with a smaller number of data (see for exam-
ple the curves of the unnecessarily protected area euc in
Fig. 6f and for a probability threshold of 0.2; euc decreases
when the distance between the samples decreases). This is
in contrast with what was observed for the fluxes, where
the inverse simulations yield a better histogram than the
simulations conditioned only to T. In all cases, the most
remarkable fact is that errors remain large even with a con-
siderable amount of data.

5. Discussion

The numerical simulations presented in this paper con-
sider a 2D aquifer that displays channels and lenses and
follows non-multiGaussian statistics. Our approach has
been to consider this field, which supposed to reflect the
properties of a realistic aquifer, as ‘‘the reality’’ and try
to characterize it on the basis of simulated local measure-
ments of transmissivity and heads. It has to be remarked
that we have used a single T field as reference (as in a real
test case there is only one real aquifer) and the results are
therefore influenced by the specific transmissivity arrange-
ment and location of the well. However, we believe that
the difficulties encountered might be faced anytime that
the problem of characterizing a channelized aquifer is
addressed. Having located the well in the most permeable
region reflects the fact that real wells are placed in trans-
missive regions in order to optimize efficiency. Our assump-
tion is that the T-field considered qualitatively illustrates
the difficulties encountered with media that exhibit a highly
connected network of permeable channels. In practice, ver-
tical averaging of the 3D hydraulic conductivity might filter
the complexity of the porous media by yielding a model
characterized by smoother contrasts between permeable
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and less-permeable regions. However, if we accept the pic-
ture of the 3D aquifer as having a hydraulic conductivity
that displays an interconnected network of permeable
channels and isolated poorly permeable lenses, we can
expect difficulties similar to those described in this paper.
Even more problematic, the smoother 2D data of the trans-
missivity would tend to additionally hide the extreme val-
ues of the hydraulic conductivity, which are expected to
play an important role, in particular for transport (e.g.
for capture-zone estimation or remediation problems).

Therefore, despite the limitations, we argue that the
numerical results presented in the previous section enable
some general considerations. Some conclusions are
expected, such as the fact that exhaustive geologic knowl-
edge provides most of the necessary information or that
samples denser than the integral scale do not significantly
improve the characterization. Other conclusions are sur-
prising such as the fact that (1) uncertainty and errors
remain very large even in the presence of (unrealistically)
many data, (2) conditioning to many T data may reduce
uncertainty but increase the bias, and (3) conditioning to
many T data seems to inhibit the inverse conditioning from
improving the characterization.

Before going further, we observe that the reduction of
uncertainty concomitant with an increased bias that has
already been mentioned by Scheibe and Chien [34]. They
compare multiGaussian characterization techniques based
on real field data. The quality criterion was the reproduc-
tion of a measured tracer breakthrough curve. They
showed that conditioning to a large number of small scale
measurements did not significantly improve the model pre-
diction and could even lead to biased and overly confident
predictions. Our findings are fully consistent with these
results and suggest that problems do not arise because of
measurement errors, but are generated by erroneously
applying multiGaussian characterization techniques to
non-multiGaussian fields.

Why the multiGaussian assumption prevented provid-
ing accurate results when the number of data is large?
When the mean distance d between the T data is small with
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respect to the integral scale of the reference, the inference
of a variogram model is easy and accurate. The histograms
are also well defined. Then, the high density of condition-
ing T data leads to a situation in which the variability
between the simulations is very small. This can be seen
on the histograms of the forecasted water levels in the
pumping well or in the histogram of the forecasted outflow
rates (Figs. 4m and n). The simulated fields are very
strongly constrained by the T data, by the variogram
model, as well as by the multiGaussian assumption used
by the simulation technique. Therefore, the inverse tech-
nique has very little degrees of freedom. In case of a large
amount of conditioning transmissivity data, the hydraulic
head data can not modify the transmissivity field signifi-
cantly, because the transmissivity data ‘‘freeze’’ the –
wrongly postulated – multiGaussian model. Conditioning
to head data has only very local impacts and cannot result
in significant changes of the large scale structure of the
field. This can be seen by comparing the fields before and
after inversions in Fig. 3. Important changes are observed
with 21 T data, while little changes are visible with 1000
T data.

These observations and the fact that the error norms did
not reduce significantly when increasing the number of T

conditioning data from 250 to 1000 samples, are in agree-
ment with the findings of Grabow et al. [18] and van Leeu-
wen et al. [38]. Grabow et al. [18] showed that the reduction
of the number of T conditioning data did not increase the
error of flow and transport predictions. van Leeuwen et al.
[38] showed that beyond a certain threshold of condition-
ing data density the performance did not improve further.
Both Grabow et al. [18] and van Leeuwen et al. [38] explain
their results by the screening effect due to redundancy of
data. Note that van Leeuwen et al. [38] dealt with a
reference multiGaussian field originally avoiding the con-
nectivity problem. This redundancy effect is probably
accentuated when narrow preferential flow paths exist.

The synthetic field used in this numerical study displays
a bimodal distribution with a high connectivity of the large
values. There are clear channels that completely cross the
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domain (Fig. 1). The channels are globally oriented along
the x axis and offer a high connectivity in that direction,
but locally their orientation varies and they are generally
not parallel to the x axis; and they have a wide range of
width along the y direction. All this complexity cannot be
captured by the variogram, and is smoothed out by the
multiGaussian model. Even if the variograms are very well
estimated with a large number of T data and even if the T

map produced by kriging shows the locations of most of
the main channels (Fig. 2i). The kriged map does not repro-
duce the connectivity because the thin sections of the chan-
nels are clogged by low transmissivity values (compare
Figs. 2 and 3i).

This visual observation is confirmed by the comparison
of the connectivity functions of the reference field and of
the kriging or the simulated fields (Fig. 7). We remind that
the connectivity function represents the probability that a
transmissive cell taken randomly in the domain is con-
nected by a continuous path of adjacent cells of similar
transmissivity with another transmissive cell located at a
certain lag distance [35]. Fig. 7 shows that all the character-
ization methods reasonably reproduce the covariance func-
tion of the reference (Fig. 7a), but they systematically
underestimate the connectivity of the reference (Fig. 7b).
The lack of connectivity of the high values explains the ten-
dency of underestimating the flux through the domain.

6. Conclusion

The goal of this work was to investigate and compare
the reliability of direct and inverse multiGaussian tech-
niques when applied to characterize fields that are not mul-
tiGaussian and exhibit preferential flow paths. For that
purpose, the performances of kriging, stochastic simula-
tions and sequential self-calibration method have been
compared, as a function of an increasing number of sam-
ples of transmissivity and head data on a synthetic braided
alluvial aquifer for predicting flow and transport. Multiple
error indicators were used.

We found that up to a certain quantity of data, adding
head or transmissivity measurements reduces the errors
and the uncertainty. However, a limit is reached: when the
density of samples becomes high, we observe unexpected
outcomes such as increased bias with an increasing number
of T data, or increased uncertainty estimation with an
increased number of head data. The simulations results sug-
gest that in case a large number of transmissivity data is used
for conditioning, the hydraulic head data are less able to
correct the consequences of the erroneous multiGaussian
model (in terms of the evaluated performance measures).
Particularly problematic is the bias with many T-data
because the simultaneous decrease of the uncertainty may
lead to overestimate the reliability of the results. In any case,
errors remain important even with a large quantity of data.

These outcomes can be explained by the fact that two-
point multiGaussian characterization techniques are
unable to capture the correct connectivity, which plays a
primary role in dictating flow and transport. Using a mul-
tiGaussian model when the reality is not multiGaussian
may lead to inaccurate predictions. These results confirm
and extend the opinion expressed by Gómez-Hernández
and Wen [17] that modellers must be extremely careful
when taking the decision of using a multiGaussian model.

In order to overcome these limitations, it is extremely
important to use a stochastic model that allows reproduc-
ing the connectivity of the original field. Along that direc-
tion, we argue that techniques such as the multiple-point
statistics [15,23,36] may allow that. Moreover, secondary
information, such as geophysics, should be used whenever
possible to infer the connectivity structures and to con-
strain the stochastic model.
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[40] Wen X-H, Gómez-Hernández JJ, Capilla JE, Sahuquillo A. Signif-
icance of conditioning to piezometric head data for predictions of
mass transport in groundwater modeling. Math Geol 1996;28(7):
951–68.

[41] Zimmerman DA, de Marsily G, Gotway CA, Marietta MG, Axness
CL, Beauheim RL, et al. A comparison of seven geostatistically
based inverse approaches to estimate transmissivities for modeling
advective transport by groundwater flow. Water Resour Res
1998;34(6):1373–413.

[42] Zinn B, Harvey CF. When good statistical models of aquifer
heterogeneity go bad: a comparison of flow, dispersion, and mass
transfer in connected and multivariate Gaussian hydraulic conduc-
tivity fields. Water Resour Res 2003;39(3):1051. doi:1010.1029/
2001WR001146.

http://dx.doi.org/10.1029/2005WR004356

	Issues in characterizing heterogeneity and connectivity in non-multiGaussian media
	Introduction
	Synthetic reality
	Transmissivity field
	Reference flow

	Characterization procedure
	Sampling the transmissivity and head fields
	Experimental variograms
	Kriging and conditional simulations
	Inverse modelling
	Characterization with exhaustive geological conditioning

	Numerical results
	Reproduction of the reference T and h fields
	Forecasting the flow: fluxes and heads
	Capture zone forecast and performance analysis

	Discussion
	Conclusion
	Acknowledgements
	References


