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Let us consider a large set of candidate parameter fields, such as hydraulic conductivity maps, on which
we can run an accurate forward flow and transport simulation. We address the issue of rapidly identify-
ing a subset of candidates whose response best match a reference response curve. In order to keep the
number of calls to the accurate flow simulator computationally tractable, a recent distance-based
approach relying on fast proxy simulations is revisited, and turned into a non-stationary kriging method
where the covariance kernel is obtained by combining a classical kernel with the proxy. Once the accurate
simulator has been run for an initial subset of parameter fields and a kriging metamodel has been
inferred, the predictive distributions of misfits for the remaining parameter fields can be used as a guide
to select candidate parameter fields in a sequential way. The proposed algorithm, Proxy-based Kriging for
Sequential Inversion (ProKSI), relies on a variant of the Expected Improvement, a popular criterion for
kriging-based global optimization. A statistical benchmark of ProKSI’s performances illustrates the
efficiency and the robustness of the approach when using different kinds of proxies.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction posterior distribution. In such situations, one needs to rely on
Inverse techniques are one of the corner stones of groundwater
modeling. Their aim is to identify model structure and model
parameter values from observed state variables. In practice, a wide
range of approaches exist and have been compared extensively [1–
6]. Often, the inverse problem is formulated in a least-square or
maximum likelihood manner. A data misfit quantifies the differ-
ence between measured and calculated state variables. The aim
is then to find a parameter field minimizing the misfit.

Less frequently in practice, the problem is solved in the Bayes-
ian framework with the aim to recover an ensemble of representa-
tive samples (parameter fields) from the posterior probability
distribution. This is particularly important when prior geological
knowledge is available and can be expressed using geological mod-
els describing the parameter fields. Techniques such as multiple
point statistics, object- or process-based geological simulations
[7] are often used to express this prior knowledge, but then solving
the inverse problem becomes very challenging because it is usually
not possible to provide an explicit analytical expression of the
computational resources and statistical sampling techniques
[8,4,9,10] such as Markov Chain Monte Carlo (MCMC) [11–17]. A
practical difficulty in that approach is that evaluating the likeli-
hood function, involving in itself a calculation of the misfit, is often
computationally very demanding. This inhibits the user to let an
MCMC procedure run for a sufficiently large number of iterations
to enable convergence [18,15]. Similar computational issues arise
in optimization problems related to groundwater management: if
each evaluation of the objective function that has to be minimized
requires a significant amount of computational resources, it be-
comes infeasible to reach the optimum in reasonable time.

To reduce the computational demand, one can use the concept
of metamodel (or response surface). The response (e.g. the misfit) of
the flow simulator is computed for a small set of inputs and can
then be predicted by the metamodel for any other input. Various
interpolation techniques can be employed such as radial basis
functions, splines, or kriging [19–24]. An advantage of kriging is
its ability to provide both a prediction of the possible response (kri-
ging mean m) and a corresponding prediction uncertainty (kriging
variance s2). The prediction uncertainty drops to zero where the re-
sponse has actually been computed with the simulator and in-
creases when moving away from those input points. In the global
optimization problem consisting in finding inputs minimizing the
objective function, one can use m and s2 to express a trade-off be-
tween the exploitation of the mean prediction (finding locations
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where m is low) and exploration of the design space (finding loca-
tions where the prediction is the most uncertain). This idea gave
birth to the Expected Improvement (EI) criterion [25]: for every loca-
tion within the input space, the kriging metamodel is used to
derive a predictive distribution for the improvement that might
be obtained by evaluating the objective function at that location.
Here the term improvement refers to the difference between the
best (i.e. the lowest) response observed so far and the response
at the new location if this difference is positive, and 0 otherwise.

The input point with the highest EI is then chosen to run the
numerical model again and update the metamodel. Such ap-
proaches based on kriging metamodels have been very successfully
used for sequential design of computer experiments since the
development of the Efficient Global Optimization algorithm [26] in
the late 1990’s. Several other criteria were later proposed for
neighboring problems (see, e.g., [27]).

Another approach to reduce the computational demand is to use
a concept of distance between parameter fields [28,29,9]. Several
types of distances can be defined, but the important point is that
the distance should be chosen such that it can be computed rapidly
and help predicting if two parameter fields will lead to similar or dif-
ferent responses. For example, Suzuki et al. [30] used the Hausdorff
distance to quantify the differences in the geometry of complex 3D
models (having different fault systems, horizon geometries, etc.),
coupled with the neighborhood algorithm [31] to search efficiently,
within the prior ensemble, the models that match field observations
of oil production. Scheidt and Caers [29] propose a general frame-
work based on the concept of distance to quantify uncertainty. In
their example, the problem consists in estimating oil recovery in a
production well. The models all have the same geometry, but very
different parameter fields (obtained using multiple-point statistics
with different training images). The prior ensemble is large and
the aim is to rapidly obtain a good estimation of the uncertainty
on the forecast. For that purpose, Scheidt and Caers [29] define
the square distance between two parameter fields as the integrated
square difference between the responses computed for the two
parameter fields with a fast streamline solver. The distances be-
tween every pair of parameter fields is computed and used as a base
for mapping all the parameter fields in an abstract metric space in
which it is possible to select a small number of them covering com-
prehensively the variability of the complete ensemble. Running the
forward two-phase flow numerical simulator only on these selected
geological models allows a fast and rather accurate uncertainty
assessment. Going a step further, Caers et al. [32] use the same
framework to formulate the inverse problem.

A promising direction for reducing the computational demand
is the joint use of a pair of complex and simple models [33–37].
The distinction between the complex and simple models is not
straightforward, but to remain general we can state that the com-
plex model tends to account for all important and relevant physical
processes as well as all the necessary geometrical complexity of
the reservoir. On the opposite, the simple model neglects some as-
pects of this complexity with the aim of being much more compu-
tationally efficient. The simplification may be based on neglecting
some physical processes, on reducing the problem dimension (2D
instead of 3D), or on a coarse spatial or temporal resolution. In
the remaining of this paper, we will use the terminology accurate
model for the complex one, and proxy for the simple one. To use
a combination of accurate and proxy models in practice, one needs
to establish a link between the two. Several approaches can be de-
vised. For example, Doherty and Christensen [36] identify some
parameters of the proxy model by solving an inverse problem
where the results of the accurate model have to be reproduced.

In this paper, we propose to link an accurate and a proxy model
using a distance-based kriging metamodel. It allows to forecast out-
puts of the accurate model as it is done with traditional kriging
metamodels. However, those methods are usually limited to param-
eter spaces of small dimensions. This makes their application for the
identification of complete parameter fields impossible. The novelty
of the proposed approach lies therefore in the way we define the
covariance kernel at the core of the kriging metamodel. The concept
is simple, we assume that the same parameter fields can be used as
input data for the proxy and the accurate model. As suggested by
Caers and his collaborators [28,29,32,9] we use a distance based
on proxy responses, but we include that distance into the covariance
kernel of the kriging equations. The consequence is a drastic reduc-
tion of the problem dimension, allowing to infer covariance param-
eters. Once the statistical relation between the proxy and the
accurate model is established, it can be used to predict the misfit
for any parameter field whose proxy response is known. It can also
be updated when new runs of the accurate model become available.
This general idea can be applied to a very wide range of problems.

One of the main aims of this paper is therefore to describe the
concept of the distance-based kriging technique. We also illustrate
how this technique can be used in a sequential algorithm aiming at
quickly identifying a set of parameter fields whose responses com-
puted with an accurate model match some reference data. In an in-
verse problem, the purpose is often not only be to find the global
minimizer(s) but more to sample from a posterior distribution,
and so we propose a variant of the EI criterion meant to spend
more time exploring the possible various minima of the misfit
function than EI. For illustration purpose, we consider a simple
flow and solute transport problem. The geological heterogeneity
is modeled using a multiple-point statistics technique [38] allow-
ing to account for prior geological knowledge typical for a fluvio
glacial environment. Numerous experiments with a randomization
procedure are conducted to test the robustness of the method.

The paper is organized as follows. In Section 2 we give an over-
view of the sequential algorithm used to solve the inverse problem.
In Section 3, we describe in detail the proposed kriging metamodel.
The equations of ordinary kriging are recalled, with a focus on the
role of the covariance kernel. The original kernel underlying our
work is introduced, followed by a discussion on its interpretation
and mathematical foundations. Some practical details follow on
the estimation of covariance parameters. We end the presentation
of the method in Section 4 by describing how the sequential search
is driven. Sections 5 and 6 are dedicated to results and discussion.
We first introduce a case study to illustrate the methodology. Then
we present the results of a randomized experiment and statisti-
cally assess the method’s performances based on a benchmark of
100 reference curves. We conclude and propose a few theoretical
and practical perspectives in Section 7.
2. Overview of the sequential algorithm

The proposed sequential algorithm is named Proxy-based kriging
for Sequential Inversion (ProKSI). Its aim is to identify rapidly, within
a large ensemble of parameter fields, the ones whose responses com-
puted with the accurate model fit a given reference curve. In prac-
tice, the algorithm consists in sequentially selecting among all the
available parameter fields which one will be used as input for the
accurate numerical model at the next iteration (Figs. 1 and 2). Before
sketching the key phases of the algorithm, let us set a few notations.

Each candidate parameter field is denoted xi 2 E (1 6 i 6 N),
where E is typically a space of dimension 104 to 106 when
representing a discretization of the subsurface. In the following
examples, xi represents a categorical field obtained from multi-
ple-point statistics simulation. But the proposed methodology is
more general and can be applied without much modifications to
models having various geometries or even based on different
conceptual assumptions. The only requirement is that it is possible



Fig. 1. Initialization steps of the ProKSI algorithm.

Fig. 2. Sequential loop of the ProKSI algorithm.
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to compute the accurate and proxy responses for any of those input
parameter fields.

The accurate numerical simulator is considered as a function f
returning a vector of values. In the example, we assume more spe-
cifically that the simulator f returns for any parameter field x 2 E a
breakthrough curve fx (concentration versus time):

fx : t 2 ½0; T� ! fxðtÞ 2 ½0;þ1Þ ð1Þ

where t represents the time. The space of such curves is denoted by F.
Now, given a reference curve fref 2 F, the goal is to recover in a

limited time which xi’s (1 6 i 6 N) minimize the misfit
g�ðxÞ :¼ dðfref ; fxÞ, where d is some metric on F. For example, if we
use the L2 norm, the misfit will be expressed as:

g�ðxÞ ¼
Z T

0
frefðtÞ � fxðtÞð Þ2dt ð2Þ

Ideally, one wishes to describe the subset of input fields leading to a
good fit, relying on a fixed number of evaluations k < N dictated by
computation time constraints. In addition to f, we assume that a
‘‘proxy’’ p : E! F is available, providing an approximate solution
to the flow and transport equations significantly faster than f. p
may stem for instance from an auxiliary simulator solving similar
equations with simplified physics, or from degrading the accurate
simulator f by reducing the time or spatial resolution.

The ProKSI algorithm starts with a series of initialization steps
(Fig. 1):

1. A sample of parameter fields fx1; . . . ;xNg is drawn from a cho-
sen prior distribution (e.g., by multiple-points statistics
simulation).

2. The proxy responses pðxi; tÞ are computed for all xi’s (1 6 i 6 N).
The distances di;j between the proxy responses of any pair of
parameter fields are then computed:
d2
i;j ¼

Z T

0
pðxi; tÞ � pðxj; tÞ
� �2dt ð3Þ
This allows assembling a distance matrix D between all proxy
responses.
3. A clustering technique (k-means) is used to group the parameter

fields in n0 classes. For each class, the parameter fields that are
the closest to the centroïd are selected to get a subset
Xn0 ¼ fxi1 ; . . . ;xin0

g of n0 initial models (See Fig. 6). Multidimen-
sional scaling (MDS) is optionally used to map all the input
parameter fields in a small-dimensional Euclidean space (Fig. 6).

For each of those n0 selected parameter fields, the accurate
response fxij

is computed with the accurate numerical solver. We
obtain a vector g� ¼ fg�i1 ; . . . ; g�in0

g (where g�ij :¼ g�ðxij
Þ; 1 6 j 6 n0)

containing the misfits for the n0 parameter fields.
The values of g� are transformed to obtain a sample g with a

close-to-Gaussian distribution. Such a Gaussian transformation is
important later when the kriging variance is used to represent
the prediction uncertainty for the misfit. Different techniques can
be used for the transformation such as normal score transform,
or Gaussian anamorphosis. Here, a power-law transform

gij
¼ g�ij

h ic
(Box–Cox type) is used as it is simple to implement

and robust even when a small number of samples is available,
and the value of c is obtained by minimizing the skewness of the
sample of transformed values fgij

; 1 6 j 6 n0g.
A sequential loop (Fig. 2) then allows selecting a new parameter

field at each iteration on which to run the accurate solver. This en-
ables building progressively a set of parameter fields with low misfit
values. The steps in that loop are the following (n is first set to n0):

1. If not already done, apply a normalizing transform to the sam-
ple of misfits (See detail above). Estimate the covariance param-
eters s; h, and r2 as described in Section 3. Compute the kriging
mean mðxiÞ and the variance s2ðxiÞ for all inputs xi R Xn.

2. After having computed the value of the modified expected
improvement criterion EIaðxiÞ (see Section 4 for its definition)
for all the remaining candidate models, Select a model with
maximal EIa value as next candidate, called xinþ1 .
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3. Set Xnþ1 ¼ Xn [ fxinþ1g. Compute fxinþ1
with the accurate numer-

ical solver. Calculate the new corresponding misfit and append
it to the vector of misfits: g�nþ1 ¼ fg�n; g�inþ1

g. Go to step 1 and
resume the search until a convergence criterion is met.

The algorithm stops when the EIa reaches a prescribed lower
threshold, or a desired number of evaluations has been done, for
instance because the allocated search time is elapsed.

3. High-dimensional kriging with a proxy-based kernel

The most important difference between the existing methods
and what we propose here is the distance-based kriging approach.
It lies at the heart of sequential algorithm described earlier in
Fig. 2. In this section, we will describe in detail how this step is per-
formed. The main idea is to integrate the distance between proxy
responses within the covariance kernel of the kriging metamodel
(Fig. 3).

3.1. kriging for Computer Experiments

We adopt the framework of Gaussian processes [23] to model
the transformed misfit between fref and the response of the accu-
rate numerical simulator. The transformed misfit g is assumed to
be one realization of a Gaussian process with high-dimensional in-
dex space ðGxÞx2E, with mean function l and non-stationary
covariance kernel k. We assume that l is an unknown constant,
as in the case of ordinary kriging. We denote by g the vector of
known misfit values at the current design of experiments
Xn :¼ fxi1 ; . . . ; xing (n P n0). The kriging mean mðxÞ ¼ E GxjGxi1

¼
h

gðxi1 Þ; . . . ;Gxin
¼ gðxin Þ� and kriging variance s2 at any arbitrary

point x 2 E are written:

mðxÞ ¼ bl þ kðxÞT K�1ðg� bl1Þ ð4aÞ

s2ðxÞ ¼ kðx;xÞ � kðxÞT K�1kðxÞ þ ð1� kðxÞT K�11Þ2

1T K�11
ð4bÞ

where K is a n� n matrix with entries Ki;j ¼ kðxi;xjÞ, referred to as
the covariance matrix of observations, kðxÞ :¼ ðkðx; x1Þ; . . . ; kðx;xnÞÞ0

is a n� 1 covariance vector, and bl ¼ 1T K�1g
1T K�11

is the best linear unbiased
estimate of l.

One of the attracting features of kriging is that m interpolates
the observations (i.e. 8j 2 f1; . . . ;ng; mðxij

Þ ¼ gðxij
Þ). Furthermore,

s2 vanishes at the design points (s2ðxij
Þ ¼ 0), and gives a quantifica-

tion of the prediction uncertainty at unobserved points. A very
important feature is that both properties remain valid whatever
the chosen covariance kernel k. Hence, Eqs. (4a) and (4b) give a
potentially infinite set of interpolating metamodels, and selecting
Fig. 3. Overview of the proxy-based kriging predi
k appropriately for the studied phenomenon appears to be a crucial
issue in practice.

3.2. A new kernel for high-dimensional kriging based on fast proxies

Designing a suitable covariance kernel over E� E is very
challenging because E is a space of parameter fields of typical
dimensions ranging between 104 and 106. Hence, taking kernels
usually employed in d-dimensional (d � 10) cases, e.g., an aniso-
tropic power exponential kernel, will a priori not make sense in
the present framework. Alternatively, uncovering features of the
parameter fields x 2 E leading to similar response curves would
be ideal.

Here, we take advantage of the proxy responses in order to de-
fine a relevant measure of similarity. More precisely, we propose to
use a covariance kernel of the following form:

kðx; yÞ :¼ r2 exp � 1
h2

Z T

0
ðpðx; tÞ � pðy; tÞÞ2dt

� �
þ s21x¼y ð5Þ

In words, the closer two proxy curves associated with two parame-
ter fields x; y are, the closer the fits to the reference are expected to
be when running the accurate simulator with those inputs. In addi-
tion to this transformed Gaussian kernel, the term s21x¼y stands for
the nugget effect, and allows to model a possible dissimilarity be-
tween the accurate responses of the inputs x; y, even if their associ-
ated proxy responses are close or even identical.

In fact, the proposed covariance kernel k can be seen as a stan-
dard stationary Gaussian kernel over F � F, chained with the
‘‘proxy operator’’, that is with the function p:

kðx; yÞ :¼ r2 exp � 1
h2 jjpðxÞ � pðyÞjj2F

� �
þ s21x¼y ð6Þ

where jjf jjF :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T

0 f ðtÞ2dt
q

(f 2 F) stands for the L2 norm over F (the

functions of F being further assumed continuous). This basic fact en-
sures that the proposed kernel is an admissible covariance. k is in-
deed positive definite over E� E (but not necessarily strictly) in
virtue of the following property, for which a proof is proposed in
appendix:

Property. Let E and F be two arbitrary spaces. Given a positive
definite kernel kF over F � F, the kernel kE defined by

kEðx; yÞ :¼ kFðpðxÞ; pðyÞÞ ð7Þ

is positive definite over E� E for any function p : E! F.
Note that in different contexts, similar methods relying on a

change of variables within a positive definite kernel were already
proposed, for example in [39] and subsequent works. Coming back
to Eq. (5), the basis kernel kF corresponding to Prop. 7 is none other
ction workflow (after misfit transformation).
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than an isotropic Gaussian kernel kFðu;vÞ ¼ r2 exp � 1
h2 jju� vjj2F

� �
,

parametrized by a sill r2 and a range parameter h > 0. Note also
that chaining the proxy operator with other kernels being positive
definite in any dimension (e.g. kernels of the Matérn class) would
be admissible too; a Matérn kernel may be preferred to a Gaussian
one depending on the settings.

The next subsection focuses in detail on the chosen methodol-
ogy for estimating the three parameters r2; h; s2 from available
data.

3.3. Parameter fitting for the proposed kriging model

Several methods can be considered for estimating r2; h, and s2

based on available data. In particular, following the logic of Eq.
(6), the problem boils down to a low-dimensional one thanks to
the isotropy assumption relatively to the space F, and so usual vari-
ographic tools may well be applied in theory. However, most
implemented variographic methods take low-dimensional vectors
as inputs, while only the norm of the increments is available here.
Alternative automatic estimation methods include cross-validation
error minimization, and Maximum Likelihood Estimation (MLE).

Here we chose to base covariance parameter estimation on MLE,
while keeping an eye on variographic tools for assisting MLE with
initial values or bounds for the parameters. In ordinary kriging set-
tings, MLE consists in maximizing the likelihood of r2; h; s2 given g
under the assumption that GXn � Nðbl1;KÞ, or equivalently (See,
e.g., [40]) in minimizing:

lðr2; h; s2; gÞ :¼ logðdetðKÞÞ þ ðg� bl1ÞT K�1ðg� bl1Þ ð8Þ

where K and bl are functions of ðr2; h; s2Þ. Various global optimiza-
tion procedures can be used for solving this non-convex optimiza-
tion algorithm, ranging from Nelder and Mead’s simplex to
genetic algorithms using derivatives. Here we adopt a pragmatic
one-at-a-time approach involving a concentration step on the vari-
ance parameter (described in appendix), for which convincing
experimental results could be obtained as shown in Sections 5
and 6.
4. Sequential search driven by proxy-based kriging

For any candidate parameter field xi, the kriging metamodel of
the previous section allows predicting the (transformed) misfit
gðxiÞ by mðxiÞ with prediction variance s2ðxiÞ. Now, in a sequential
procedure aiming at identifying the parameter fields with the low-
est misfits such as considered here, m and s2 can be used at any gi-
ven iteration for selecting on which candidate parameter field to
run the accurate numerical model next. For that purpose, we pro-
pose to use a variant of the Expected Improvement (EI) criterion,
meant to spend more time exploring the basins of optima than
the genuine EI.

By definition, EI is intended to point towards promising points,
but also to foster space exploration. Hence, in EI algorithms like
EGO [26], a typical behavior when evaluating the objective function
at a good point (i.e. at a point becoming the current best) is to
spend some additional iterations in its neighborhood, and then to
get attracted by unexplored regions with higher kriging variances.
This can be explained by coming back to EI’s formal definition. Let
us denote by gðXnÞ the vector of misfit values after n accurate eval-
uations of f, and by minðgðXnÞÞ the minimum misfit value found so
far. The aim is now to find a parameter field x such that the mag-
nitude of the improvement of gðxÞ with respect to minðgðXnÞÞ be
the highest in expectation. Let us remind the reader that the (trans-
formed) misfit is modeled here as a Gaussian Process ðGxÞx2E. For
any x 2 E, the difference between the current minimum and the
unknown value of the misfit, minðGXn Þ � Gx, is then a random var-
iable. Only positive values are usually taken into account when one
is not interested in regions with worse misfit, and the improve-
ment is therefore defined as minðGXn Þ � Gxð Þþ :¼maxðmin
ðGXn Þ � Gx;0Þ. The EI criterion for a candidate parameter field x is
then defined as the expectation of this improvement conditional
on GXn ¼ gðXnÞ:

EIðxÞ :¼ E minðGXn Þ � Gxð ÞþjGXn ¼ gðXnÞ
	 


ð9Þ

where conditioning on the event GXn ¼ gðXnÞ turns minðGXn Þ into
minðgðXnÞÞ, and leads to the well-known Gaussian conditional dis-
tribution for Gx:

LðGxjGXn ¼ gðXnÞÞ ¼ N ðmðxÞ; s2ðxÞÞ ð10Þ

Owing to this convenient property, the EI criterion offers the advan-
tage of being analytically tractable (see [26]). Noting T ¼minðgðXnÞÞ
and fNðmðxÞ;s2ðxÞÞð�Þ for the density of the NðmðxÞ; s2ðxÞÞ distribution,
we have:

EIðxÞ ¼
Z T

�1
ðT � uÞfNðmðxÞ;s2ðxÞÞðuÞdu

¼ ðT �mðxÞÞU T �mðxÞ
sðxÞ

� �
þ sðxÞ/ T �mðxÞ

sðxÞ

� �
ð11Þ

where U and / stand for the cumulative distribution function and
the probability distribution function of the standard Gaussian dis-
tribution, respectively. Here we propose a variant of EI meant to
put more emphasis on the exploration of basins of minimum while
remaining tractable. Indeed, the aim in our motivating applications
is not only to find the global minimizer(s) of g as quickly as possible,
but also to find a representative subset of inputs leading to a
response curve close to the reference, i.e. to a small misfit. The pro-
posed trick to lower the repulsion effect of current best points is to
replace minðgðXnÞÞ by a quantile of gðXnÞ in the definition of EI. Call-
ing a the level of this quantile, we define

EIaðxÞ ¼ ðqa �mðxÞÞU qa �mðxÞ
sðxÞ

� �
þ sðxÞ/ qa �mðxÞ

sðxÞ

� �
ð12Þ

where qa ¼ qaðXnÞ is the empirical a%-quantile of the sample of
misfits gðXnÞ. Varying a allows tuning the criterion from normally
explorative to very local. Indeed, when a ¼ 0; qa;n coincides with
the minimum of gðXnÞ, so that EI0 	 EI. However, when tuning a
to a strictly positive value (obviously smaller than 1), the tendency
of EI to vanish near the observation points disappears. To prevent
the algorithm from resampling at already explored points, we ex-
clude them from the search. However, we are interested in points
very close to the already explored points in terms of the proposed
kernel, since they have similar proxy responses but may be very dif-
ferent in terms of parameter fields. Different values of a will be
investigated in the application section, where the benefit of taking
a > 0 will be illustrated.

5. Illustration of the method through a case study

To illustrate the proposed approach, we consider a synthetic
example. The input parameter fields xi are categorical and describe
a 2D vertical geological section (example Fig. 4(a)). The ensemble
of fields xi is generated using multiple-point statistics. The
forward problem consists in computing a breakthrough curve
fx : t 2 ½0; T� ! fxðtÞ 2 Rþ using an accurate numerical solver f. An
example of a breakthrough curve is illustrated in Fig. 4(e).

The general aim, in this example is to test whether the proxy
based kriging approach proposed in the previous section is able
to help identifying efficiently a subset of fields xj with relatively
small misfit values g�ðxÞ :¼ dðfref ; fxj

Þ.



Fig. 4. Illustration of the main components of the illustrative example: (a) one simulation of a categorical field representing the geological facies. Each color corresponds to a
type of sediment; (b) hydraulic conductivity field derived from the geological facies; (c,e) computation of the transient distribution of the concentration fields and
breakthrough curve using an accurate numerical simulator; (d, f) approximation using a proxy simulator.
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To test the reliability of the method, the procedure is repeated
using different reference curves and configurations. The details of
the generation of the geological models (i.e. the parameter fields),
the forward numerical solver, and two proxy simulators are de-
scribed in the following sections before presenting and discussing
the results.

5.1. Geological facies simulations

The prior geological model for this case study is based on an
aquifer analogue: the Herten site [41], typical of a glacio-fluvial
environment, and on a multiple-point statistics geological model.
Thousand realizations (the xi’s) of the geological medium are gen-
erated using the Direct Sampling (DS) multiple-point statistics
method [38] using a geological section mapped from the Herten
site as a training image. Fig. 4(a) shows one example. The grid
has a size of 320 by 140 pixels covering an area of 16 m by 7 m.
Each color corresponds to a geological facies. The parameters of
the DS method are: a search neighborhood of 20 cells on each axis,
a maximal number of neighboring nodes of 15, a distance thresh-
old of 0.01, and a maximal scan fraction of 0.5. All the stochastic
realizations are constrained by a secondary variable (describing
the large scale sedimentary structures) in the training image and
in the simulations, following the approach used by [42]. Fig. 5(a)
displays 9 of those realizations. The variability between them is
present only at small scales within the main sedimentary bodies.
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Fig. 5. (a) 9 realizations of the lithofacies. Because all the simulations are constrained by the large scale structure data, only the internal architecture within the main layers is
displaying some variability between the simulations. (b) Ensemble of the breakthrough curves obtained with the accurate numerical model and the two proxies (c) and (d) for
the 1000 parameter fields. To make the figure more readable, some breakthrough curves are represented in light gray color.

Table 1
Parameter values for the solute transport model.

Parameter Value
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The large scale structures are identical in all realizations. The
ensemble of those geological models constitutes a sample of our
prior distribution on parameter fields.
Porosity 0.35
Molecular diffusion 4:0� 10�9 m=s
Longitudinal dispersivity (along x axis) 0:1 m
Transversely dispersivity (along z axis) 0:01 m
Total simulation time 1:44� 107 s
Time steps length 1:44� 104 s
5.2. Flow and transport simulations

The breakthrough curves are obtained by solving the classical
advection–dispersion equation in transient state using a finite vol-
ume technique [43,44]. The spatial discretization is kept identical
to the one used for the geological simulations. The boundary con-
ditions and parameters are summarized in Table 1. A constant va-
lue of the hydraulic conductivity is assigned to each facies
(Fig. 4(b)) according to the mean values obtained from laboratory
experiments and described by Bayer et al. [41]. For the sake of sim-
plicity, the porosity is considered homogeneous over all facies. A
constant head is prescribed on the left (0.1 m) and right boundaries
(0 m) and remain constant while the upper and lower boundaries
are no flow boundaries. Those boundary conditions lead to a uni-
form steady-state flow from left to right.

The initial distribution of the solute concentration is set to zero
everywhere in the domain. A fixed concentration of 1 is prescribed
on the left boundary. The transport problem is solved in transient
state. Fig. 4(c) shows the map of the solute concentration for the
realization shown in Fig. 4(a) after 13.3 days of simulations. On
the right boundary, the solute fluxes are integrated to compute
the breakthrough curve fxðtÞ representing the mean concentration
at the outlet versus time (Fig. 4(e)).

Despite the apparent limited variability in the geological struc-
ture described above, a rather wide range of tracer breakthrough
responses are obtained on the prior ensemble (Fig. 5(b)). This illus-
trates the importance of the internal heterogeneity of the high per-
meability features within the main sedimentary layers.
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5.3. Two different proxies

A good proxy is faster than the accurate numerical model and
allows to distinguish parameter fields that have similar or different
responses in terms of tracer breakthrough. Such a proxy is gener-
ally not expected to provide an accurate simulation of the break-
through or of solute concentration states. It should simply be a
fast approximation allowing to discriminate parameter fields.

For this case study, we consider two different proxies and check
their performances and reliability. The first one, p1

xðtÞ, is based on
simplified physics. We use the same solver [43,44] and the same
spatial and temporal resolution as for the accurate model based
on the full physics, but we disregard diffusion and dispersion ef-
fects. The numerical simulation thereby only accounts for advec-
tion and numerical dispersion phenomena. The second proxy,
p2

xðtÞ, is based on simply coarsening the time discretization of the
accurate model. The number of time steps is reduced; their dura-
tion is increased to 2:88� 105 s (i.e. a division by 20 of the number
of time steps).

The breakthrough curves computed with the two proxies are
displayed in Figs. 5(c) and (d). The first proxy gives breakthrough
curves whose general shape resemble more the accurate model
than the second proxy: some of the curves display a sigmoidal
shape like the fine scale solution. The second proxy results in
breakthrough curves that are more regular. For this proxy, the first
arrivals of the tracer are almost identical for all geological models
because of the coarse temporal resolution. The responses for p2

xðtÞ
present some variability, but less than fxðtÞ and the first proxy. For
both proxies, the computational time is reduced by a factor of
about 20. The accurate numerical solution takes about 7.5 min on
a PC, while the two proxies run in about 20 s each.

5.4. Results

Let us now apply our kriging model to the problem of predicting
the transformed misfit between the breakthrough curves of a given
reference and the responses associated with the 1000 candidate
geological media (i.e. parameter fields). The proxy used here is
p1

x ðtÞ, the one with simplified physics. For now we arbitrarily
choose one of the actual response curves (the realization with in-
dex 800) as a reference for illustration purposes. Note that more
general results will be presented in Section 6, where statistics will
be derived based on 100 randomly chosen reference curves.
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Among the 1000 considered inputs, 50 are chosen based on a
clustering technique using proxy-induced distance (Fig. 6), in the
flavor of Scheidt and Caers [29]’s approach. The actual response
curves are calculated by using the accurate numerical model with
the latter inputs, and the 50 corresponding values of misfit to the
reference curve are calculated and stored in a vector, denoted by
g�ðX50Þ or g�, as in Section 3.

As shown on Fig. 7, a transformation is used to make the data
misfits closer to Gaussian. For simplicity, we restrict the transfor-
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Fig. 12. Performances of the ProKSI algorithm (based on proxy 1) without power tran
experiment. (b) Box-plot of EM2.
mation to be a power transform, g ¼ ðg�Þc. The ad hoc approach
proposed here to determine the coefficient of this transform is to
set the skewness of the transformed sample equal to zero. As will
be presented in more detail in Section 6 (performance assessment),
such transform significantly improves the predictivity of the kri-
ging model, as well as the performances of the inversion algorithm
proposed in the next section.

In a second step, we estimate the kernel parameters by maxi-
mum likelihood (MLE) based on the transformed sample of fits.
(b) EM2: Top 30 exploration performances
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We can see in Fig. 8 that the optimal value of h is very clearly de-
fined since the log-likelihood curve has a large curvature at its
minimum value.

The quality of the resulting kriging predictions is then evalu-
ated: we first use a standard cross validation technique on the 50
samples used to build the kriging model (Fig. 9(a)) and then extend
the comparison to an external validation on the complete ensem-
ble of 1000 values (Fig. 9(b)). In both cases, the predicted values
obtained by kriging are in good agreement with the true values;
the regression line of predicted versus actual values has in inter-
cept B0 close to zero and a slope B1 close to 1 (Fig. 9), indicating
that the kriging predictions are not highly biased. Furthermore,
one can see that the leave-on-out errors of (a) give a reasonable
estimate of the prediction errors observed a posteriori on the
exhaustive validation set.

The 50 iterative selections operated by the ProKSI algorithm
provide candidate parameter fields that are assessed through the
accurate numerical flow simulator. The misfit with the reference
is plotted on Fig. 10.
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the evaluated models.
6. Performance assessment

The good results obtained in the leading example (see Figs. 9 and
10) are of course conditioned by the chosen reference breakthrough
curve fref (arbitrarily chosen as the one with index 800) and do not
constitute a sufficient basis to appraise the ProKSI algorithm. Fur-
thermore, the method is proxy-dependent, and it would make sense
to test the sensitivity of the performances to both an improvement
or a degradation in the proxy. In this section, we propose a more sys-
tematic benchmarking of the algorithm’s performance by analyzing
the results obtained with 100 different response curves, and for
three different proxies, with a comparison to Monte Carlo random
search in the case of the worse proxy. In that last situation, we will
use a completely inadequate proxy model to test the robustness of
the method. Furthermore, the effect of the power transform applied
to the misfit function, as well as the effect of the replacement of the
minimum by a quantile in the EI criterion are investigated. Before
giving more details about the benchmark and the obtained results,
let us first present the main performance evaluation metrics.
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6.1. Performance evaluation metrics

EM1: current best model’s rank.
One of the most natural way of evaluating an optimization

method consists in monitoring the evolution of the misfit as a
function of the number of iterations (Fig. 10). One can also plot
the smallest misfit value achieved so far as function of the num-
ber of iterations. However, the curve obtained for such a metric
would have a scale (on the y-axis) depending on the considered
fref , which would prevent us from making comparisons between
different tests. As a consequence, we choose to focus on the
evolution of the rank of the current best model among the
1000 candidates. This rank would normally be unknown but
here we can compute it because we evaluate the true misfit
for all the candidate models (even those which are not selected
by the ProKSI algorithm) in order to be able to test the efficiency
of the method. Repeating the numerical experiment with multi-
ple references, we can then plot some statistics of the rank as a
function of the number of iterations (Fig. 11(a)).
EM2: number of evaluated models from the top 30.

The first metric (EM1) focuses on the capacity of the method
to find at least one parameter field with a low misfit value, but
not on its ability to explore the set of parameter fields with low
misfit values. EM2 is meant to be a complement to EM1, by
measuring the number of models of the top 30 (i.e. the 3% best
models in terms of misfit value) evaluated along the algorithm.
Though this proportion might seem rather arbitrary, EM2 gives
a good picture of the algorithm’s tendency to explore the
possible multiple peaks of the posterior distribution of models.
Again, the statistics of EM2 are plotted as a function of the num-
ber of iterations (Fig. 11(b)). Note that in the best configuration
tested here (proxy 2 with a ¼ 0:6), 26 parameter fields among
the top 30 were found in median after 75 iterations, so explor-
ing all fields of top 30 out of 75 iterations appears as a kind of
reachable best case (contrarily to exploring 75 among 75).
EM3: probability that random search outperforms the pro-
posed algorithm.

It is expected that an elaborated algorithm like ProKSI (rely-
ing on a metamodel) performs better than random search, and
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Fig. 14. Performances of the ProKSI algorithm
at least not much worse in cases where the proxy is misspeci-
fied. The metric EM2 is well-adapted to base a comparison of
ProKSI to a naive Monte Carlo (MC) algorithm, since the proba-
bility distribution of the number of points visited in the top 30
can be analytically derived for the case of a random search (this
number then follows a hyper-geometric distribution). EM3
gives at each iteration of ProKSI the probability that MC sam-
pling finds more points in the top 30.

6.2. Benchmark: design and implementation

6.2.1. Design of the benchmark
The aim of the benchmark was to assess the global perfor-

mances of the ProKSI algorithm on the considered case study with
the following specific questions in mind. How sensitive are the
performances to: (Q1) the chosen proxy, (Q2) the value of the
quantile a, and (Q3) the normalizing transform of the misfit
values?

Consequently, we ran replications of the algorithm (by vary-
ing the reference curve) with different proxies, with or without
power transform of the misfit function, and with different values
of a. In order to obtain results based on solid statistical analysis,
rather than on an arbitrary set of examples with a potentially
low generalizability, we ran the ProKSI algorithm 100 times for
each configuration (i.e. for each considered (proxy, transform,
a) combination). For each considered proxy (p1; p2, and a third
mismatched one described below), 50 parameter fields were cho-
sen by Scheidt and Caers clustering technique, and 100 fref were
randomly chosen among the 950 remaining candidates. Then, for
any given configuration (in terms of transform and/or a value),
75 iterations of the ProKSI algorithm were run for the 100 cho-
sen fref . The results are visualized in terms of box-plot sequences
representing the statistical distributions of 100 values for the
considered evaluation metric, evolving over the 75 iterations.
Finally, for EM3, one sequence of 75 probabilities that a Monte
Carlo algorithm would lead to more points in the top 30 than
the proposed approach (one probability per iteration) can be
produced for each replicate. We chose to summarize these
(b) Top 30 exploration performances
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(based on proxy 2) with default settings.
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results by representing sequences of box-plots for the selected
configurations.
6.2.2. Implementation of the benchmark
All the benchmark algorithm runs and the performance evalua-

tion calculations were done using the open source statistical soft-
ware R, based on the numerical simulation results obtained for
the 1000 multiple-statistics simulations (see implementation de-
tails in Section 5). The R code, gathered in form of a package (Pro-
KSI, forthcoming on the Comprehensive R Archive Network), was
called for each task of the following loop, forming the basic brick
of the benchmark for any fixed configuration:
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(c) Minimization performances, α = 0.6
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Fig. 15. Effect of the a parameter on the perf
Algorithm 1. Testing procedure for a proxy with a given
algorithm configuration

1: Choose the initial design of experiment (50 points using
Scheidt et Caers approach)

2: Choose 100 different simulations among the 950
remaining points

3: for i ¼ 1 to i ¼ 100 do
4: Run 75 iterations of the algorithm on the ith reference
5: Evaluate the 3 EM’s for each iteration of the ith run
6: end for
(b) Top 30 exploration performances, α = 0 
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(d) Top 30 exploration performances, α = 0.6 
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6.3. Results

The first benchmark results, displayed on Fig. 11, deal with the
performances on the ProKSI algorithm when applied to our test-
case with proxy 1, and default settings concerning the normalizing
transform and the EI variant (power transformation done, and
a ¼ 0:15).

Fig. 11(a) represents the evolution of the statistics (box-plot) of
EM1 over the 100 replicates, along the 75 iterations of the algo-
rithm. We can see here that in 42 iterations, the actual best param-
eter field (out of 1000) has been found for more than 50% of the
replications. In Fig. 11(b), the exploration performances are inves-
tigated in terms of EM2; it is found here that 15 parameter fields
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Fig. 16. Effect of a non-informativ
among the 30 best ones have been evaluated in median after 75
iterations of ProKSI. In total, these results show both how the pro-
posed kriging metamodel helps reaching a fast convergence, and
that ProKSI achieves a rather satisfying exploration of the set of
best parameter fields in a limited number of iterations.
6.3.1. Effect of the misfit transformation on the algorithm
performances

Fig. 12 represents the performances (in terms of EM1 and EM2)
obtained by applying the ProKSI algorithm to our case study with
default settings concerning the EI criterion (a ¼ 0:15) but without
normalizing power transform for the misfit function.
(b) Top 30 exploration performances, Mismatched proxy
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The results appear to be clearly inferior to the ones obtained
with the transformation: even after the 75 iterations, the median
rank of the best evaluated parameter field is strictly above 1, which
expresses a significantly slower convergence of ProKSI as with the
transformed misfits. Similarly, the number of models forming the
top 30 evaluated along the algorithm stagnates around 8 in median
after the 75 iterations. The normalizing transform has thus clearly
a positive effect on the efficiency of the algorithm, both in terms of
fast convergence, and in terms of global exploration of the nearly
optimal parameter fields.

However, as illustrated on Fig. 13, the results in terms of EM2
are good enough to outperform a pure random search (upper right
graphic). On the lower graphic, the evolution of the median rank
for the parameter fields evaluated by ProKSI with or without trans-
form illustrate that the algorithm with transform spends more
time in low misfit regions.

6.3.2. Effect of an improved proxy on the algorithm performances
Let us now present the results obtained when using the second

proxy with default settings.
The most striking result when looking at Fig. 14 is the impres-

sively fast convergence of the algorithm in terms of EM1 criterion.
Indeed, in 7 iterations, the minimizer has been found in all consid-
ered cases (100 replicates). ProKSI successfully relies here on the
information given by proxy 2 for uncovering the best point, only
based on slightly more than the misfit values for the set of 50 ini-
tial models. What seems really outstanding in that case is that such
a result is uniformly obtained for the 100 reference curves. To mil-
den this success a bit, let us remark that the performances in terms
of exploration are comparable to the first proxy, that is one half of
the top 30 models were evaluated in median after termination.

6.3.3. Effect of the a parameter (from EIa) on the algorithm
performances

We investigate here the effect of the parameter a, tuning the
quantile level in the proposed generalization of EI, on the perfor-
mances of the algorithm. We obtained very different results for
the two proxys. Indeed, the performances of ProKSI were not very
sensitive to a when using the first proxy, so that we do not discuss
this case here, and refer the interested reader to the appendix for
more detail. However, a was found to be strongly influencing the
algorithm’s performances when using the second proxy, as illus-
trated on Fig. 15.

It is indeed observed on Fig. 15(a) and (b) that using ProKSI with
the standard EI criterion (a ¼ 0) is less efficient compared to the
considered default value a ¼ 0:15 (see Fig. 14): even though the
algorithm convergence to the minimum is always comparably fast,
the exploration performances are strongly affected by this change
of criterion (median number of points in the top 30 after termina-
tion decreased from 15 to 10). On the other hand, increasing alpha
to 0.6 was found to greatly improve the results in terms of explo-
ration (again, without affecting the minimization performances,
see Fig. 15(c)) since the median number of points in the top 30
jumped to 25, as can be seen on Fig. 15(d). In summary, introduc-
ing this parameter a was found beneficial for forcing the algorithm
to spend more iterations (out of the 75 allocated ones) exploring
the top candidates. Its optimal tuning is of course problem-depen-
dent. The rather arbitrary default value a ¼ 0:15 chosen here gave
improved results in both considered cases, even though better per-
formances were reached by using a larger a value in the case of the
second proxy.

6.3.4. Effect of a non-informative proxy on the algorithm performances
Finally, we propose to test the performances of ProKSI when

using a completely inadequate proxy model. The idea is to see if
the algorithm remains consistently applicable when the simplified
model is poorly (or not at all) informative, and how using ProKSI in
such degraded conditions would perform compared to a naive
Monte Carlo search.

In order to emulate a non-informative proxy, we started from
proxy 1, and randomly permuted the 1000 indices. We then ran
the ProKSI algorithm with this ‘‘mismatched’’ proxy, and compared
them to trajectories obtained by Monte Carlo (the whole replicated
for the 100 reference curves).

As illustrated on Fig. 16, the performances of ProKSI with ’’mis-
matched’’ proxy are comparable to those of Monte Carlo. The algo-
rithm hence appears reasonably robust to a proxy misspecification,
while being potentially very efficient for well-chosen proxies.

7. Conclusion

Handling high resolution geological models in combination
with complex physics solvers requiring heavy computational load
to provide an accurate representation of a system while represent-
ing uncertainty is often mutually exclusive. Accurate complex
models are often too computationally demanding to be used in
the general framework of a Monte Carlo approach and analytical
propagation of uncertainty is intractable. Resolving this issue is
an important research topic both from a theoretical perspective
and for a wide range of applications [45, e.g.], including
hydrogeology.

In this paper, we propose a contribution which consists in cou-
pling an accurate model, a simple model (the proxy), and a statis-
tical metamodel. The statistical metamodel is used to link the
results of the proxy with those of the accurate model. More pre-
cisely, this is achieved by developing a specific covariance kernel
accounting for the difference in responses from the proxy models
and allowing to predict by kriging the misfit between a given ref-
erence curve and the response of accurate model. One of the
strengths of this idea is that the use of the distance between proxy
responses permits to drastically reduce the dimension of the kri-
ging problem and allows an efficient inference of the covariance
parameters. The quality of the relation between the accurate and
the proxy models is also directly taken into account via the covari-
ance kernel. In addition, the chosen covariance kernel can be tai-
lored to the practical problem that has to be solved (through the
proxy, the kernel kF , and more), which makes the approach quite
flexible.

In the case study, we showed how such an approach can help in
the case of an inverse conditioning problem where the prediction
refers to the misfit between observations and the accurate model
responses. As a first step, we propose here an iterative search algo-
rithm. This example extends previous work done by Caers and col-
leagues [30,29,9] in which we add a step based on the kriging
model described above to orient the search. We propose to guide
the selection of a model during the search by defining a modified
Expected Improvement criterion EIa such that the algorithm will
potentially explore multiple basins of minimum, if they exist.

The systematic analysis of the case study showed the following
results.


 When the proxy is informative, the method is extremely effi-
cient in finding the parameter fields that minimize the misfit.

 When the proxy is less informative, the method efficiency

decreases remains competitive with respect to a random search.

 The proposed modified expected improvement criteria allows

both identifying the global minimizer and exploring the exist-
ing basins of minimum.

 The method is more efficient if the misfit is properly trans-

formed so as to get a close-to-Gaussian sample.
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 The parameter a –defining the quantile of the misfit distribu-
tion below which a parameter field is considered as an interest-
ing candidate – allows to control the degree of exploration of
the method. For low values of a, the algorithm tends to rapidly
leave regions of parameter fields with proxy responses similar
to those of already evaluated fields. For higher values of a, the
algorithm spends more iterations in regions of fields with proxy
responses close to the ones of evaluated fields with the lowest
misfit values, hence performing a more extensive exploration
of top candidates.

The results obtained so far are very encouraging and show that the
use of a kriging technique to couple a complex and a simple model
will open a broad range of new perspectives. Note that in the pre-
sented example, selecting the misfit minimizer among parameter
fields generated by multiple-points simulation provides a useful
parameter reconstruction without any regularization. If one wants
to obtain not only the best solution but an ensemble of models,
then the selection criterion and the iterative search procedure will
have to be modified in order to ensure that the final ensemble will
be a representative sample of the posterior distribution. The
method can also be extended in a relatively straightforward man-
ner to allow generating new candidate models by coupling it, for
example, with the Iterative Spatial Resampling method [15]. It is
also very clear that this type of approach can be parallelized to
improve the numerical performances [46].

As a final note, the model selection approach illustrated in the
case study is applicable when detailed geological knowledge is
available (type of geological environment, sufficient data to build
a good geological model, and known properties for the various fa-
cies) and when this information can be used to generate a prior
ensemble of geological models. An obvious limitation of that ap-
proach is that the algorithm is only searching within a predefined
ensemble of parameter fields. If all the proposed candidates are
very unrealistic, it may happen that none of the candidates will
lead to a reasonable fit to the observations. However, the approach
is very flexible: users can apply it with many different geological
priors, and explore their relevance in an efficient manner with
the proposed method. There is no limit in the type of prior on
the parameter field used to generate the initial ensemble (e.g. bool-
ean model, truncated plurigaussian, pseudo-genetic model, etc.).
Coping with such a variety of priors is usually not possible with
more traditional inversion methods.
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Appendix A. Proof that a p.d. kernel chained with a proxy is p.d.

Property. Let E and F be two arbitrary spaces. Given a positive-
definite kernel kF over F � F, the kernel kE defined by

kEðx; yÞ :¼ kFðpðxÞ;pðyÞÞ ðA:1Þ

is positive-definite over E� E for any function p : E! F.
Proof. Let n 2 N;x1; . . . ;xn 2 E, and a1; . . . ;an 2 R. Then
Xn

i¼1

Xn

j¼1

aiajkEðxi;xjÞ ¼
Xn

i¼1

Xn

j¼1

aiajkFðpðxiÞ; pðxjÞÞ

¼
Xn

i¼1

Xn

j¼1

aiajkFðyi; yjÞP 0

by using the definition of positive-definiteness applied to kF with
the points yi :¼ pðxiÞ 2 F (1 6 i 6 n) and the coefficients a1; . . . ;an

as above. h
Appendix B. On the approximate MLE used here for the
covariance parameters

When s2 ¼ 0, it is known [40] that bl ¼ 1T RðhÞ�1g
1T RðhÞ�11

, and the optimal

value of r2 can be expressed as a function of h only:

r2�ðhÞ :¼ 1
N
ðg� bl1ÞT RðhÞ�1ðg� bl1Þ; ðB:1Þ

where RðhÞ is the correlation matrix of GXn . Minimizing l is then
equivalent to the one-dimensional minimization over h of the so-
called concentrated(or profile) log-likelihood:

lcðh; gÞ :¼ lðr2�ðhÞ; h;0; gÞ: ðB:2Þ

When s2 > 0, it is not possible to concentrate on r2 as in Eq. (B.1)
because the correlation matrix itself then depends on r2 too.

Here we approach the problem sequentially, and preserve the
concentration step at the price of a minor approximation. First,
an estimate of s2 is derived based on variographic considerations
(variance of differences corresponding to increments with smaller
norm values). Then, a first guess of r2, say r2

0, is made using a sim-
ilar approach. This guess may also stem from a previous iteration
in the case of a sequential design of experiments. Based on s2

and r2
0, an approximate formula – analogue to Eq. (B.1) – is then

proposed for the optimal variance as a function of the range:

gr2� ðhÞ :¼ 1
N
ðg� blðhÞ1ÞT RðhÞ þ s2

r2
0

I
� ��1

ðg� blðhÞ1Þ; ðB:3Þ

h is then tuned by optimizing the following approximate concen-
trated likelihood:

elc ðh; gÞ :¼ lðgr2� ðhÞ; h; s2; gÞ ðB:4Þ
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