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Abstract 

Despite intensive explorations by speleologists, karstic systems remain only partially described as 

many conduits are not accessible to humans. The classical exploration techniques produce sparse 

data, leading to various uncertainties about the conduit dimensions, essential parameters for flow 

simulations. 

Stochastic simulations offer a possibility to better assess these uncertainties. In this paper, 

we propose different methods to stochastically simulate the properties (size and shape anisotropy) 

of karstic conduits on already existing skeletons. These approaches, based on Sequential Gaussian 

Simulations (SGS), allow taking different conditioning data into account, while respecting the 

intricacy of the networks. 

To infer the input parameters, we perform a statistical study of the conduit dimensions of 

49 explored karstic networks, focusing on their equivalent radius and width-height ratio. Thanks to 

the definition of 1D-curvilinear variograms, we demonstrate the existence of a spatial correlation 

along the networks, which is even higher when considering independently each conduit. Finally, 

using ad hoc algorithms implemented for computing both a conduit hierarchy inside karstic 

networks and a relative position regarding outputs, we find no evidence of an obvious link between 

these two entities and the studied metrics. 

The simulation methods are then demonstrated on the karstic network of Arrestelia 

(Pyrénées-Atlantiques, France), and show the consistency of the proposed approach with the 

observations made on the explored natural systems. 

Keywords: Karst, Conduit network, Conduit geometry, Statistics, Stochastic simulation 

1. Introduction 
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Karstic systems are characterized by a weathered landscape associated with numerous cavities and 

a subterranean hydrographic network entailing large heterogeneities inside the rock. The water 

flow can form wide networks of conduits with various geometries and topologies. It is estimated 

that karsts cover between 7% and 12% of emerged lands but they provide potable water for more 

than a quarter of the whole human population (Hartmann et al., 2014). The management of karst 

ressources and vulnerability often requires to characterize these networks in 3D, but also to 

simulate flows within their conduits. 

The modeled karstic networks commonly serve as support for flow simulations. Some 

software allow performing flow simulations on discrete conduit networks (e.g., SWMM, Epanet, 

Modflow-CFP). To obtain good results, the network geometry should be as close to reality as 

possible. Peterson and Wicks (2006) found out that a difference of conduit length or diameter of 

10% can give statistically significant differences of fluid flow responses. Thus, being able to 

generate spatially variable conduit dimensions along a karstic network could improve the 

characterization of its fluid flow behaviour using flow simulation. 

However, karsts are complex systems which remain only partially explored. Indeed, 

speleologists can only collect data in the accessible parts of the networks. The management of 

karst resources and vulnerability often requires to characterize these networks in 3D. Tracer tests 

give interesting information about the fluid flow inside the networks, and enable the estimation of 

a rough approximation of their geometry (e.g., Borghi et al., 2016; Tinet et al., 2019). Nonetheless, 

this method can not provide highly detailed information about conduit geometries. Acquiring data 

on paleokarstic systems is even more challenging. The lack of access to these networks impedes 

the use of tracers and imposes to rely on other techniques (e.g., well or seismic data analysis), 

which have their own limitations. Wells provide high resolution data but have a very restricted 3D 

coverage. Seismic data allow the identification of large sinkholes but their resolution hardly 

enables to identify metric conduits (e.g., Francesconi et al., 2018). 

Thus, for about ten years, various methods have been developed to model karstic networks 

(e.g., Pardo-Igúzquiza et al., 2012; Borghi et al., 2012; Collon-Drouaillet et al., 2012; Fournillon et 

al., 2012; Viseur et al., 2014; Hendrick and Renard, 2016b). A large part of them use stochastic 

procedures, either in the core of the modeling methods or in the generation of the input parameters, 

providing an insight about the network uncertainties. Some approaches try to reproduce the 

physical and chemical processes controlling the karstic network formation (e.g., Kaufmann and 
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Braun, 2000; Birk et al., 2003; Dreybrodt et al., 2005). Other approaches focus directly on the 

reproduction of the final structures using spatial statistics techniques (e.g., Fournillon et al., 2012; 

Viseur et al., 2014). Simplifications and approximations of the formation processes, combined or 

not with statistics, have also been developed to propose original modeling approaches (e.g., Jaquet 

et al., 2004; Labourdette et al., 2007; Pardo-Igúzquiza et al., 2012; Borghi et al., 2012; 

Collon-Drouaillet et al., 2012; Hendrick and Renard, 2016b). 

The local conduit size is often characterized by the radius of its local section. Several 

authors use constant values of conduit radius to perform flow simulations. They can set one 

specific value of radius for all the conduits (e.g, Ronayne, 2013), different values for each conduit 

(e.g., Chen and Goldscheider, 2014) or power law values depending on the conduits hierarchy 

inside the network: high values in conduits receiving the highest recharge, smaller values in 

conduits receiving less recharge and widening at each confluence (Vuilleumier et al., 2013; Borghi 

et al., 2016). Often, the radius or the parameters controlling the radius distribution are calibrated 

directly during the flow simulations to reproduce observed discharge rates at different nodes. In 

these works the values are set constant in each branch (e.g., Vuilleumier et al., 2013; Jeannin et al., 

2015). 

Given the importance of the radius property (e.g., Peterson and Wicks, 2006), we 

developed simulation methods designed for generating variable radius along karstic networks. 

These methods aim to fill dataless parts of the networks. They can be applied both to partially 

known networks or simulated network skeletons. These simulation methods constitute the first 

contribution of this paper. 

Stochastic simulation methods require pertinent input parameters. Defining rules on the 

equivalent radius and the shape anisotropy properties could help modelers to reproduce realistic 

karstic networks from sparse information on the conduit geometries. Thus, the second main 

contribution of this paper is a statistical analysis of a set of observed karstic networks, which meets 

two objectives: i) highlighting statistical laws on the equivalent radius and the shape anisotropy 

(measured by a width-height ratio) of the conduits and ii) studying the spatial variability of these 

properties along the karstic networks. 

Thus, in section 2.1, we present the database of 49 networks used for the statistical 

analysis. It includes the Arrestelia network, which is used as a demonstration case to illustrate the 

simulation methods. Then, in section 2.2.1, we describe the statistical tools used to analyse the 
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karstic data. They include two innovations. First, a 1D-curvilinear variogram is proposed to 

quantify the spatial variability of the studied metrics along the networks. Secondly, a new 

algorithm is proposed to rank the karstic conduits in order to analyse the potential correlation 

between the conduit dimensions and their relative position in the network. In section 2.2.2, we 

introduce two new approaches for simulating the properties along the karstic networks. They rely 

on the classical Sequential Gaussian Simulation (SGS) method but are adapted to graph structures 

such as karstic networks. The first method mainly uses the spatial variability at the network scale, 

whereas the second one privileges the spatial variability within the conduits. Finally, we present 

the results of the statistical analysis (Section 3.1) and of both simulation methods (Section 3.2) and 

discuss their significance and limitations (Section 4). 

2. Data and methods 

In geomorphology, statistical analyses on curvilinear objects were already done on fluvial systems 

(e.g., Horton, 1945) and different studies tried to expand it on karstic systems from the 1960s 

onwards (e.g., Curl, 1966; Howard, 1971). Basic metrics like network extent, conduit length, dip, 

orientation, width, height or equivalent radius were already studied (e.g., Jeannin, 1996; Frumkin 

and Fischhendler, 2005; Fournillon et al., 2012; Collon et al., 2017), but only a few studies focused 

directly on the statistics of the cross-sectional shape and dimensions of the conduits 

(Pardo-Iguzquiza et al., 2011; Jouves et al., 2017). We aim here to complement these studies with 

new karstic networks and additional statistical and spatial descriptors. 

2.1. Data 

Data acquisition when exploring karstic networks can be quite arduous. Measurements are done at 

different points called stations, and speleologists determine the distance, orientation and dip 

between the neighbouring stations (Figure 1). With this information, it becomes possible to 

determine the position of the points in Euclidian coordinates. On some networks, they also 

measure the width and height at each station or even their 4 dimensions in order to be more precise: 

right, left, top and bottom (Figure 2). 

 

Figure 1: Example of infield measurements of the orientation and dip (modified from Collon et al., 

2017). 

 

These dimensions are traditionally estimated by sight by speleologists when mapping the 
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networks. This dimensional description is restrictive, for it does not take into account the whole 

geometry of the conduits but only their main dimensions. The data lack precision, but we 

nonetheless consider these values as pertinent for our study, as the acquisition methods are similar 

from a network to another. Nonetheless, new developments in optical laser technology enable 

better precision since the last decade and adapted rendering methods are currently being developed 

(e.g., Lønøy et al., 2020). 

To homogenise the values, we choose to estimate the equivalent radius (
iRe ) at a given 

station i  from its width 
iW : 

=i i iW R L  (1) 

and its height 
iH : 

=i i iH U D  (2) 

based on an elliptic approximation (Figure 2). We consider each conduit section as an 

ellipse of the same height and width and define the equivalent radius as the radius of a circle with 

the same area as the considered ellipse: 

=
4

i i
i

W H
Re  (3) 

 

Figure 2: Measurements of the dimensions at a station i of the network. The elliptic approximation 

appears in red. 

 

To quantify the shape anisotropy, we use the width-height ratio (e.g., Pardo-Iguzquiza et 

al., 2011; Jouves et al., 2017) (Figure 3): 

= i
i

i

W
W H

H
 (4) 

 

Figure 3: Schematisation of the width-height ratio. 

Figure 4: Example of a network graph. It corresponds to nodes linked together by edges and is a 

simple schematisation of the network. Both the nodes and the edges can hold information: here 

nodes hold the width and the height, while edges hold the length, the orientation and the dip of the 

corresponding segments. 
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The data used for this paper consists in 49 different networks, shared with us by various 

speleologists during two previous studies (Collon et al., 2017; Jouves et al., 2017) and presented in 

Appendix A. The extent of these networks can be quite different, the widest one, Sieben Hengste 

(Switzerland), extending itself over 80 kilometers with 15340 data points, while the smallest one, 

Baume Galinière (France), has less than 200 meters of conduits with 50 data points. Most of them 

are rather small, their median length being 2135 meters long, and are sampled with a median 

number of 269 points. The average sampling distance is every 7.5 meters. It has to be noted that the 

sampling is not homogeneous and some network parts lack geometrical information. There is also 

a great uncertainty about the sampling itself. 

To perform statistical analyses, networks are represented as graphs (Collon et al., 2017). 

They are based on the network skeletons which correspond to the observed conduits. Each node 

coincides with a measurement point and holds the width and height information (Figure 4). The 

nodes are linked by edges holding the properties corresponding to the respective lengths and 

orientations of the conduits. As the direction of the flow within karstic networks are unknown, we 

use undirected graphs. Undirected graphs are graphs with bidirectional edges, meaning that if there 

is a direct link between a node A and a node B, there will also be a direct link between the node B 

and the node A. In opposition, in directed graphs, even if there is a direct link between the node A 

and the node B, there is not necessarily a link between the node B and the node A. These graphs are 

cleaned during a first step in order to remove overlapping nodes (Collon et al., 2017). 

We can divide the networks into different parts named branches (Figure 5). A branch is 

defined as a set of adjacent edges connecting nodes, similarly to Collon et al. (2017) and Jouves et 

al. (2017). They correspond to the parts located between two intersections of conduits or network 

extremities, including the intersections and extremities themselves. 

 

Figure 5: Example of branches in a network. Among the seven branches of this network, one is 

highlighted in blue and another one in red. 

 

Many aspects covered by the paper are illustrated with the Arrestelia network 

(Pyrénées-Atlantiques, France, courtesy of J.P. Cassou), which data were post-processed in order 

to keep only the main explored parts for which the conduit dimensions were available. The data 
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from this 58-kilometers long network are composed of 6000 nodes but only 4283 of them are 

associated to a radius and a width-height ratio value (Figure 6). 

 

Figure 6: Equivalent radius of the Arrestelia cave in the whole network (A) and in a part of it (B). 

The size of the nodes is directly proportional to their value. 

 

2.2. Methods 

2.2.1. Statistical inference 

Univariate analysis 

Network comparisons 

Our first objective is to compare the statistical distributions of the studied metrics in the 

different networks, to highlight potential similarities. Besides basic statistical analysis, we also use 

hypothesis testing to achieve this. We perform different statistical tests to check the similarities 

between the networks, both for the equivalent radius and the width-height ratio. These tests 

compare the obtained p-value with a chosen  , the statistical significance (risk of rejecting the 

tested hypothesis 
0H  while it is true). If the p-value is inferior to  , the hypothesis 

0H  is 

rejected in favour of the alternative hypothesis 
1H . Otherwise, there is no clear evidence against 

the hypothesis 0H  and it goes unrejected (but is however not validated). 

We use the following tests with different   values: 

 The Wilcoxon individual signed rank test to check individually if the distributions of all 

networks could be samples of a distribution with a specified median (Wilcoxon, 1945; 

Hollander and Wolfe, 1999; Gibbons and Chakraborti, 2003). Here we choose to compare 

them with the median of all network medians. 

 The Wilcoxon rank-sum test (which is equivalent to the Mann-Whitney U-test) to compare 

all the network medians two by two by checking if the two distributions could possibly be 

samples of distributions with the same median (Wilcoxon, 1945; Hollander and Wolfe, 

1999; Gibbons and Chakraborti, 2003). 

 The two-sample Kolmogorov-Smirnov test to check if each pairs of networks are likely to 

be samples originating from the same distribution (Massey, 1951; Miller, 1956; Marsaglia 

et al., 2003). 
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 The Kruskal-Wallis test to check if each pairs of networks are likely to be samples 

originating the same distribution (Kruskal and Wallis, 1952; Gibbons and Chakraborti, 

2003). It is an extension of the Wilcoxon rank-sum test. 

 

Variographic analysis 

The second objective of the statistical analysis is to check if the data are spatially 

correlated. We hence propose to use variography to characterize the spatial variability along the 

karstic networks. 

Variograms are mathematical functions describing the spatial variability of a given random 

variable. They can be omnidirectional or computed along a specific direction. The experimental 

variogram of a random function Z is computed as follows: 

( )
2

=1

1
( ) = [ ( ) ( )]

2 ( )

N h

e i i

i

h Z x Z x h
N h

    (5) 

Where h  is a distance and ( )N h  the number of node pairs distant of h . 

Variograms may be computed in a one-, two- or three- dimensional space. They are usually 

computed in the three dimensional XYZ Cartesian space, but for reservoir applications, it is often 

necessary to compute them within a UVW parametric space allowing to quantify spatial 

correlations along the geological structures (Mallet, 2002). For karst applications, we would like to 

compute a variogram along the graph representing the karstic network, which can not be 

considered simply as a one-dimensional or a three-dimensional space. Using variograms computed 

in a Cartesian system of coordinates, Pardo-Iguzquiza et al. (2011) showed that the width, height 

and shape anisotropy are spatially correlated with a correlation length of roughly 40m. Here, we 

refine this analysis and consider the spatial correlation along the conduit network. Therefore, the 

variograms are computed as 1D-curvilinear variograms. Similar approaches were proposed for the 

case of rivers (Ver Hoef et al., 2006; de Fouquet, 2006). The variograms used during the present 

study are based on the shortest curvilinear distance between pairs of nodes and are independent of 

any specific direction. We use the Dijkstra algorithm (Dijkstra, 1959) to compute these distances. 

The spatial variability of the studied metrics can also be visually assessed and seems even 

greater inside the branches themselves. On the other hand, abrupt differences can be seen at some 

of the intersections of different conduits (Figure 7). To analyse this behaviour, we define the 

intrabranch variogram, which is only based on pairs of nodes located inside the same branch 
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(Figure 8C). We similarly define the interbranch variogram, which is based on pairs of nodes 

located in different branches (Figure 8D). In opposition, variograms computed independently of 

the branches are designed as global variograms (Figure 8E). 

 

Figure 7: Representation of the Aspirateur network (269 nodes). The size of the nodes is 

proportional to their equivalent radius while their color depends on the width-height ratio. 

Noticeable differences between neighbour values can be seen at intersection. A: Difference of 

width-height ratio. B: Difference of equivalent radius. 

Figure 8: A: Example of a network. B: The three branches of this network, each represented by a 

different color. The intersection node (in grey) belongs to the three branches. C: Nodes (blue) 

paired with the node 2 (red) during the computation of the intrabranch variogram. D: Nodes (blue) 

paired with the node 2 (red) during the computation of the interbranch variogram. E: Nodes (blue) 

paired with the node 2 (red) during the computation of the global variogram. F: List of the nodes 

paired with the node 2 in C, D and E. 

 

Metric distribution analysis 

Our third objective is to analyse the networks individually, to highlight specific behaviour. 

To do so, we check if the metric distributions are following a specific parametric law, either a 

log-normal or a Pareto distribution. Different tests are also used to this end. These tests are 

designed for uncorrelated data and were therefore performed after the variographic analysis in 

order to be able to subsample nodes that are sufficiently far away to minimize spatial correlation 

effects. 

 The 2 goodness-of-fit test (Pearson, 1900; Gibbons and Chakraborti, 2003) and the 

One-sample Kolmogorov-Smirnov test (Massey, 1951; Miller, 1956; Marsaglia et al., 

2003) with = 5%  to check if the networks follow individually a Pareto law. 

 The 2 goodness-of-fit test (Pearson, 1900; Gibbons and Chakraborit, 2003), the 

One-sample Kolmogorov-Smirnov test (Massey, 1951; Miller, 1956; Marsaglia et al., 

2003), the Lilliefors test (Lilliefors, 1967; Lilliefors, 1969; Conover, 1999), the 

Anderson-Darling test (Anderson and Darling, 1952; Anderson and Darling, 1954) and the 

Jarque-Bera test (Jarque and Bera, 1987) with = 5%  to check if the decimal logarithm 

of the metrics follow a gaussian distribution. 
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Multivariate analysis 

As univariate analyses can not grasp potential links between the studied metrics and other 

parameters, we have to rely on multivariate analysis. 

Relations with the node altitudes and the conduit dips and orientations 

Altitudes and conduit dimensions are studied jointly to see if any relation can be observed. 

As networks form preferentially along pre-existing fracture networks, we compare the dips 

and orientations of the conduits with their geometrical properties. We could, indeed, expect to see 

different geometries of conduits depending on the associated fracture family. The conduits link 

two nodes and are of variable lengths. The orientation and dip are directly computed on the the 

edge, while the related equivalent radius and width-height ratio are the mean of both edge 

extremities. If one of the edge extremity has no value, the segment is not taken into account. 

Conduit hierarchy 

In order to distribute conduit equivalent radius on a network with a minimal number of 

parameters, it was assumed in previous works (Vuilleumier et al., 2013; Borghi et al., 2016) that 

the radius can be expressed as a power-law depending on the hierarchy level of the associated 

conduit in the network. The rationale behind this assumption was that conduit size should scale 

with the amount of flow that it can carry and therefore, in average, a conduit located downstream 

should be larger than a conduit upstream (Figure 9A, B). In these papers, the hierarchical level was 

estimated by accounting for the catchment size for each inlet into the network and propagated 

downstream. 

Here, we want to test the assumption that the conduit size varies along the system with 

actual data. However, a practical difficulty is that we do not have access to all hydrogeological 

information for all the conduit networks that we use. In order to make a systematic analysis on all 

the networks, we were obliged to define the hierarchy in a simple and reproducible manner. This is 

the reason why we propose a new ranking method that can handle flow separation and loops as 

observed in the considered networks, and which does not require any information about the 

catchments of the inlets or the global karstic network which we rarely have as data (Figure 9C, D). 

The hierarchical values propagate from the entries at the top of the network to the exits at the 

bottom, similarly to a fluid flowing down into the network under gravity constraint (in accord with 

the epigenic formation of most networks). To simplify the algorithm, all nodes of degree 1 

(extremity nodes), which refers to nodes with a single neighbour, are considered as entries or exits, 
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depending on the altitude difference between their position and the closest intersection node within 

the graph. If the extremity node has an altitude superior to the intersection node, we label it as an 

entry, as the water will flow within the network per gravity. Otherwise, the extremity is labelled as 

an exit. If a node is deep within the network and should nonetheless be labelled as an entry, we 

consider it to be an infiltration node directly linked to a real entry and treat it as a normal entry 

point. When two conduits of value 
An  and 

Bn  join together, the resulting conduit has an value of 

A Bn n . When a conduit of value n  divides itself into two, both resulting conduits become of 

value / 2n , which accounts for the separation of the flow (Figure 9B). If this "flow" becomes 

stuck in a low altitude node (in a siphon) it is made to ascend and reach unreached nodes. This 

uprising is not fully implemented and the whole algorithm is thus only adapted to small networks. 

Once the conduit hierarchical values are computed, it is possible to look for a correlation with the 

values of the studied metrics at the same point. 

 

Figure 9: A: Example of a branchwork network which could correspond to a fluvial network or a 

karstic network. The blue arrows show the direction of the flow and its size is proportional to the 

theoritical flow value. B: Example of complex network, with one loop and two exits, which could 

correspond to a karstic network. C-D: Proposed ranking method (top view) applied, respectively, 

to networks A and B. 

 

Distance to the closest extremity 

To complete the analysis of the conduit hierarchy, we look for a direct link between the 

distance to the closest entry or exit and the studied metrics. In order to be respectful of the network 

organisation, we use the curvilinear distance along the network instead of a Euclidian distance. 

2.2.2. Simulation methods 

In the following, we develop two methods based on Sequential Gaussian Simulations (SGS). 

These methods aim to generate properties, mostly the radius and width-height ratio, inside karstic 

networks. These properties are generated along the network graphs. It allows the users to fill 

dataless parts of known networks or to fill entirely some simulated networks. 

These methods respect the conditioning data as well as specified geostatistical information 

(distribution and variogram) while taking the uncertainties into account thanks to their stochastic 

nature (multiple equiprobable realisations can be performed) (e.g., Chilès and Delfiner, 2009). 
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The SGS method supposes an input Gaussian distribution. If it is not the case, it becomes 

necessary to do a normal score transform of the simulated property to get a normal distribution 

(Goovaerts, 1997; Deutsch and Journel, 1998). The variogram parameters are then estimated from 

the transformed property instead of the initial property. Finally, a backward transformation step is 

done to get the final simulated properties. The variogram parameters are then estimated from the 

transformed property instead of the initial one. 

SGS implies a kriging at each node of the network. The kriging is a linear estimator which 

estimates the value of a node by using its neighbour information. Since the mean of the distribution 

is known (and is equal to 0 if the distribution is transformed), we use a simple kriging. 

For each realization, a random path allowing to visit all the nodes to simulate (valueless 

nodes) is generated. For each valueless node, the algorithm searches for its neighbourhood. The 

neighbourhood corresponds to the set of nodes having a value and located closer than a specified 

distance. If the neighbourhood is empty, a value is sampled from the marginal distribution. 

Otherwise, a simple kriging is performed and results in an estimated value *

0Z  and its variance of 

estimation 2

k . A random value is then obtained using a Monte-Carlo sampling in the Gaussian 

distribution * 2

0( , )kN Z  . The result is added to the conditioning nodes. 

The main differences between our methods and the classical SGS methods are: i) the use of 

the curvilinear distance along the network instead of the Euclidean distance and ii) the definition of 

the neighbourhood. Besides the distance and the existence of an associated value, the presence of 

the neighbours in the same branch or in a different one as the simulated node is also considered. 

Two variants of the 1D-curvilinear SGS are implemented and tested. Both use a distance 

matrix computed on all pairs of nodes with the Johnson’s algorithm (Johnson, 1977). The first one 

respects the spatial variability inferred at the network scale. The algorithm is illustrated in the box 

entitled Algorithm 1. It simulates all the values using the global variogram. The Branchwise 

1D-curvilinear SGS (see Algorithm 2) accounts for the difference in spatial variability within the 

branches and also try to reproduce the variability at the network scale. It starts by simulating a 

number of nodes in each branch with the interbranch variogram (Figure 10B-D). The number of 

simulated nodes in each branch depends on two user defined parameters: a proportion and a 

maximal number per branch. The remaining nodes located inside the branches are simulated with 

the intrabranch variogram in a second step (Figure 10E-J). The used neighbourhood is, this time, 
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only composed of nodes located in the same branches as the simulated nodes. Finally, the 

intersection nodes are simulated with the global variogram in a third and last step (Figure 10K). 

The two methods are implemented in C++ in the RingKarst Plugin of the SKUA-Gocad 

software
1
. 

 

Figure 10: Example of one unconditional simulation with the Branchwise 1D-curvilinear SGS. 

The simulated node order is drawn randomly at each step. As the simulation progress, simulated 

nodes are used as conditioning data for the following node simulations. A: Initial network. B-D: 

Interbranch conditioning. Simulation of one node per branch using the interbranch variogram. E-J: 

Intrabranch simulation. Simulation of all valueless non-intersection nodes using the intrabranch 

variogram. K: Intersection simulation. Simulation of the intersection node using the global 

variogram. L: Final result. 

 

Algorithm 1 1D-curvilinear SGS 

Input: Network skeleton, distribution, 1D-curvilinear variogram, conditioning data (if conditional 

simulation) 

Output: Simulated property values 

if distribution not gaussian then 

Normal score transform of the distribution and conditioning data 

end if 

Computation of the shortest curvilinear distance between all pairs of nodes by using the 

Johnson algorithm 

for each realization do 

Generation of a random path to visit all the valueless nodes 

for each node in the path do 

Search for its neighbourhood 

if empty neighbourhood then 

Draw a random value from the marginal distribution 

else 

                                                 
1
 https://www.pdgm.com/products/skua-gocad/ 
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Simple kriging with the global variogram at the node to obtain the expected value 

*

0Z  and the variance of estimation 2

k   

Sample the normal distribution * 2

0( , )kN Z   to obtain the node value  

Add the result to the conditioning nodes 

end if 

end for 

if normal score transform was performed then 

Reverse transformation of the results 

end if 

end for 

 

Algorithm 2 Branchwise 1D-curvilinear SGS 

Input: Network skeleton, distribution, intrabranch 1D-curvilinear variogram, interbranch 

1D-curvilinear variogram, conditioning data (if conditional simulation), proportion of 

nodes simulated per branch with the interbranch variogram, maximal number of nodes 

simulated per branch with the interbranch variogram  

Output: Simulated property values 

if distribution not gaussian then 

Normal score transform of the distribution and conditioning data 

end if 

Computation of the shortest curvilinear distance between all pairs of nodes by using the 

Johnson algorithm 

for each realization do 

Interbranch conditioning 

for each branch do 

Compute the number of nodes that are to be simulated in this branch from the number of 

non-intersection nodes in this branch, the input proportion and the maximal number of 

nodes per branch 

Generation of a random path on the same number of valueless non-intersection nodes 

located inside the branch 
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for each node in the path do 

Search for its neighbourhood 

if empty neighbourhood then 

Draw random value from the marginal distribution 

else 

Simple kriging with the interbranch variogram at the node to obtain the expected 

value *

0Z  and the variance of estimation 2

k   

Sample the normal distribution * 2

0( , )kN Z   to obtain the node value  

Add the result to the conditioning nodes 

end if 

end for 

end for 

 

Algorithm 2 Branchwise 1D-curvilinear SGS (continued) 

Intrabranch simulation  

Generation of a random path to visit all the valueless non-intersection nodes  

for each node in the path do 

Search for its neighbourhood in the same branch 

if empty neighbourhood then 

Draw a random value from the marginal distribution 

else 

Simple kriging with the intrabranch variogram at the node to obtain the expected value 

*

0Z  and the variance of estimation 2

k   

Sample the normal distribution * 2

0( , )kN Z   to obtain the node value 

Add the result to the conditioning nodes 

end if 

Intersection simulation 

for each valueless intersection node do 

Search for its neighbourhood 

if empty neighbourhood then 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Draw a random value from the marginal distribution 

else 

Simple kriging with the global variogram at the node to obtain the expected value *

0Z  

and the variance of estimation 2

k   

Sample the normal distribution * 2

0( , )kN Z   to obtain the node value  

Add the result to the conditioning nodes 

end if 

end for 

if normal score transform was performed then 

Reverse transformation of the results 

end if 

end for 

 

3. Results 

3.1. Statistical inference 

Univariate analysis 

Network comparisons 

We first compare the distributions of all networks. Most networks tend to have similar 

order of magnitudes of equivalent radius (Figure 11) and width-height ratio but, differences are 

observable from a network to another. 

 

Figure 11: Boxplot of the of the equivalent radius in the different networks. We use a logarithmic 

scale for the y-axis. The boxes correspond to to the interval between the first and the third quartile, 

while the red strike corresponds to the median value. The zone between the whisker extremities 

represent around 99% of the values, the other ones being outliers. 

 

A summary of the raw data can be found in Table 1. The pooled mean of the equivalent 

radius is equal to 1.52 meters, while the pooled mean of the width-heigh ratio is 1.10. The median 

of the medians of the equivalent radius in the different networks is equal to 1.22 meters and it is 

equal to 1.00 for the width-height ratio. Detailed statistical values can be found in Appendix A and 
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all histograms are provided in supplementary materials. 

 

 Number of 

nodes 

Number of 

valueless nodes 

Mean 

radius 

Median 

radius 

S. Deviation 

radius 

Max 15340 1717 5.02 4.80 4.37 

Min 45 0 0.42 0.39 0.21 

Mean 1050 102 1.76 1.44 1.31 

Pooled Mean / 333 1.52 1.20 1.24 

Median 269 16 1.62 1.22 1.14 

Standard Deviation 2378 265 0.94 0.82 0.81 

 Mean WH 

ratio 

Median WH 

ratio 

S. 

Deviation 

WH ratio 

Total 

Length (m) 

Mean 

distance 

between 

nodes (m) 

Max 2.77 2.16 3.39 82238 12.2 

Min 0.25 0.13 0.46 189 3.2 

Mean 1.32 0.97 1.34 7757 7.5 

Pooled Mean 1.10 0.69 1.34 40834 7.3 

Median 1.21 1.00 1.29 2135 7.7 

S. Deviation 0.54 0.48 0.55 15370 2.5 

Table 1: Summary of the statistical analysis of the raw data of 49 different networks. 

 

The visual inspection of all the histograms reveals a strong asymmetry of the distributions 

for all cave networks and rather similar shapes of the distributions if we use a logarithmic scale. 

The statistical tests are performed on the whole samples, during a blind-study. The 

Wilcoxon individual signed rank tests are rejected in almost all cases, the exception being the 

networks with medians extremely close to the median of the medians, both for the equivalent 

radius and width-height ratio. The results of the other tests are summarized in Table 2 for the 

equivalent radius and Table 3 for the width-height ratio. 

As almost all tests are rejected and given the differences observed between the networks 

(Figure 11), we can assume that there is no generic distribution, both for the equivalent radius and 
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the width-height ratio. We thus advise to use, if possible, data acquired specifically on the studied 

system to define the reference distribution of the modeled network. 

 

Table 2: Proportion of rejected tests of network similarity for the equivalent radius depending on 

the statistical significance. 

  5% 10% 20% 

Wilcoxon rank-sum 0.84 0.86 0.90 

Kruskal-Wallis 0.84 0.87 0.90 

Two-sample Kolmogorov-Smirnov 0.91 0.93 0.95 

 

Table 3: Proportion of rejected tests of network similarity for the width-height ratio depending on 

the statistical significance. 

  5% 10% 20% 

Wilcoxon rank-sum 0.84 0.86 0.89 

Kruskal-Wallis 0.84 0.86 0.89 

Two-sample Kolmogorov-Smirnov 0.89 0.92 0.94 

 

Variographic analysis 

Let us now try to quantify more precisely the spatial variability. When the networks have 

enough nodes (more than 100), most of the experimental variograms of the decimal logarithm of 

the equivalent radius have a behaviour close to the one shown in Figure 12. In the other cases, the 

variograms are far too erratic to be correctly interpretable. The ranges and sills of the variograms 

differ from a network to another, but the lambda values are usually low at short distance, 

demonstrating a good spatial correlation between close nodes. There is still a nugget effect which 

can not be avoided given the usual data sampling (one data point every 7.5 meters in average on 

the studied networks). After a sharp increase, the experimental variogram values oscillate around 

the sill value, which means that the data become spatially independent. In most cases, exponential 

models of variograms represent well the experimental variogram. We also often observe an 

intermediate stabilization of the variogram. This could be modeled with nested variograms, which 

are the combination of multiple variogram models, and the high distances only concern few data 

nodes. It could be interpreted as two scales of variability, which is likely a direct consequence of 
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the network intricacy. Nonetheless, for the sake of simplicity we decide to keep only one single 

structure. 

 

Figure 12: Experimental and theoretical variograms of the equivalent radius decimal logarithm for 

the Arrestelia network (4283 data nodes). We decide to limit the display to a maximal plotted 

distance of 700 meters but the maximal distance is close to 2000 meters. 

 

While we observe a low spatial variability of the radius and of the width-height ratio inside 

the networks, the variability of the metrics is even lower inside the branches: the intrabranch 

variogram has values lower than the global variogram (Figure 13). Conversely, two nodes located 

in different branches are likely to have more different values than two nodes in the same branch, 

even at close distance. The interbranch variogram values are higher than the global variogram 

values at close distance. This underlines an important spatial variability between the different 

branches. Since the branches have a very limited size, the values of the intrabranch variograms 

become quickly erratic because of the lack of data pairs. Finally, the interbranch variogram starts 

to overlap with the global variogram past a certain distance (wich is usually proportional to the size 

of the network). 

 

Figure 13: The 3 experimental variograms of the equivalent radius decimal logarithm for the 

Arrestelia network (4283 data nodes), along with the corresponding theoretical variograms. Also, 

after 350 meters, the values of the intrabranch variogram become too erratic to be considered as 

valid. 

 

These results highlight the spatial variability of the studied metrics inside the networks and 

their branches and constitute a good basis to perform stochastic simulations. 

Metric distribution analysis 

We also check if the distributions of the network metrics follow a specific law. On a 

logarithmic scale, the histograms obtained for most of the large networks seem close to normal 

(Figure 14), both for the radius and for the width-height ratio. Narrow conduits tend to be 

undersampled and it is hard to make measurements on vertical conduits. It leads to an 

underestimation of small values, both for the equivalent radius and the width-height ratio. It is one 
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of the reasons behind the log-normal aspect of the distribution and leads also to misleading 

representations of the distributions on a linear scale. Thus, after truncating the distributions above 

its smallest values to try to remove the sampling bias, they seem to follow a Pareto law or a Power 

law on a linear scale (Figure 15). 

 

Figure 14: Histogram of the decimal logarithm of the equivalent radius in the Arrestelia network 

(4283 data nodes), along with an adjusted gaussian distribution. 

Figure 15: A:Histogram of the equivalent radius in the Arrestelia network (4283 data nodes). B: 

Histogram of the equivalent radius in the Arrestelia network without the values inferior to 0.6 

(3573 data nodes). A power-law is adjusted to this cut distribution: 1.076( ) = 0.132* 0.010f x x  . 

 

We first performed the different tests on the whole networks in a blind approach and most 

of them were rejected. Yet, these tests could not be truly considered as valid as the different node 

values are not independent from each others, as demonstrated by the variographic analysis. For 

that reason, we perform the tests on subsampled networks, where all kept nodes are more distant 

from each others than the global variogram range. As we desire to perform these tests on more than 

a few points, we subsample only the 11 networks which have 1000 data points or more. The 

subsampling is done twice, both for the equivalent radius and for the width-height ratio, because 

the ranges of their variograms are usually different. The resulting uncorrelated subsamples have 

thus a mean number of 53 points (as the range of the variograms can be important). The results can 

be found in Table 4 for the Pareto distribution and Table 5 for the log-normal distribution. 

 

Table 4: Proportion of rejected tests checking if the distributions follow a Pareto law on the 11 

uncorrelated subsamples, for = 5% . 

 Equivalent radius WH ratio 

2  goodness-of-fit test 0.27 0.27 

One-sample Kolmogorov-Smirnov test 0.55 0.18 

 

Table 5: Proportion of rejected tests checking if the distributions follow a log-normal distribution, 

on the 11 uncorrelated subsamples, for = 5% . 
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 Equivalent radius WH ratio 

2  goodness-of-fit test 0.09 0.36 

One-sample Kolmogorov-Smirnov test 1 0.82 

Lilliefors test 0 0.27 

Anderson-Darling test 0.09 0.36 

Jarque-Bera test 0.09 0.36 

 

The results seem to indicate an absence of a strong bias against the existence of a Pareto or 

a log-normal distribution, both for the equivalent radius and the width-height ratio. Nonetheless, 

given the incompatibility between these two distributions, the small number of subsampled 

networks and their small number of associated values, it is not possible to over-interpret these 

results. Even if the visual inspection of the 49 histograms shows that those computed on large 

networks are close to being log-normal, the statistical tests can not fully confirm this hypothesis. A 

power-law may also be representative of the equivalent radius distributions but the lack of small 

values in our data do not allow to prove it either. 

Multivariate analysis 

Relations with the node altitudes 

We now look for a relation between the node altitudes and their associated geometrical 

properties. Figure 16A shows the distribution of the altitudes within the Arrestelia network, while 

Figure 16B shows the boxplot of the equivalent radius for different ranges of altitudes. This 

example is representative of the results we obtain on almost all studied karstic systems : no clear 

relation between the geometrical properties of the conduits and their altitudes is observed in the 

different networks. Nonetheless, some networks have smaller values of radius associated to high 

altitude nodes (e.g., 16B), but it is likely because they correspond to the vadose parts of the 

networks, where conduits tend to be narrower (Jouves et al., 2017). It is, however really case 

dependent and should not be generalized for unexplored networks. Moreover, discussions with 

speleologists have warned us about the diversity of height and width definitions in sub-vertical 

conduits, which are, in practice, less sampled. 

 

Figure 16: A: Histogram of the altitudes of the Arrestelia network nodes (4283 nodes, only those 

associated to an equivalent radius value are taken into account). B: Boxplot of the equivalent 
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radius depending on the altitudes values. 

 

Relations with the conduit dips and orientations 

We then analyse the relation between the conduit dips and orientations and their 

geometries. Most networks, such as Arrestelia do not seem to present any generic relation between 

the conduit dips and orientations and the studied metrics (Figure 17). Yet, it exists in some specific 

networks (Figure 18). As a consequence, no generic relation can be drawn for all karstic networks. 

But it seems that in some particular cases, probably when pre-existing fractures are involved in the 

speleogenetic process, relations can be identified. Such relation should, however, be first 

demonstrated in the specific studied context as in some cases, even with preferred orientation 

developments, no relation appears (e.g. Figure 17). 

 

Figure 17: A: Rose diagram of the Arrestelia network conduit segments (6012 segments). B: 

Schmidt net of the Arrestelia network conduit segments (6012 segments). C: Histogram of the 

orientations of the Arrestelia network conduit segments (4009 segments, only those associated to 

an equivalent radius value and which are not vertical are taken into account). D: Histogram of the 

dips of the Arrestelia network conduit segments (4088 segments, only those associated to an 

equivalent radius value are taken into account). E: Boxplot of the equivalent radius depending on 

the orientation values. F: Boxplot of the equivalent radius depending on the dip values. 

Figure 18: A: Wakulla network (474 nodes). The size of the nodes is proportional to the associated 

equivalent radius. There seem to be a clear difference of behaviour between the North-South 

conduits and the East-West conduits. B: Histogram of the orientations of the Wakulla network 

conduit segments (469 segments, only those associated to an equivalent radius value are taken into 

account). C: Boxplot of the equivalent radius depending on the orientation values. 

 

Conduit hierarchy 

We now illustrate the results obtained with the hierarchical ranking method. Figure 19A 

shows an example of the computed hierarchical values on the Everest network. This network is 

indeed one of the most simple karstic network we have, with sufficiently few siphons to allow a 

consistent ranking when no flow direction information are available. Figure 19B shows the 

boxplot of the equivalent radius for different levels of hierarchy. We see a slight increase of the 
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radius for the highest hierarchical values but no clear regular increase of the radius with them, and 

the high values only concern few data nodes. Moreover, a visual inspection (for example in Figure 

7) of the networks shows that the radius varies in a complex manner in space, as large radius can be 

found anywhere along the network. They do not seem to increase with the hierarchy level in a 

simple manner. 

 

Figure 19: A: Hierarchisation of the conduits inside the Everest network (94 nodes). The size of 

the nodes is directly proportional to their value. B: Boxplot of the equivalent radius depending on 

the hierarchisation values of the nodes. 

 

Distance to the closest extremity 

To complete this ranking analysis, we study the link between the distance of the nodes to 

the closest exits and entries defined by our algorithm and its radius and width-height ratio. This 

approach is interesting as it can be applied even on complex networks with siphons. The Figure 20 

shows the results for the Arrestelia network on which no direct relation between the distance to the 

closest exit and the radius of the conduits is underlined. The shown bins and boxes have a width 

equal to 50 meters but the same results are observed for lower widths. No relation is also found for 

the width-height ratio. Similar results are observed in the different networks. 

 

Figure 20: A: Histogram of the distance to the closest exit within the Arrestelia network (4283 

nodes). B: Boxplot of the equivalent radius depending on the distance to the closest exit within the 

Arrestelia network. 

 

3.2. Property simulation 

3.2.1. 1D-curvilinear SGS 

We use the Arrestelia network as a basis to illustrate and test the proposed simulation method. The 

average distance between each measurement station is 9.7 meters but since the sampling is not 

regular, we choose to densify the network with a maximal distance of 5 meters. The distance of 5 

meters is chosen to have enough data nodes to perform a robust analysis of the simulation results, 

while keeping a reasonable computation time. The network used for simulation tests has thus 

14610 nodes, with 4283 holding geometrical information. 
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Twenty unconditional simulations of the decimal logarithm of the equivalent radius are 

performed on the whole Arrestelia network (e.g. Figure 21). We choose to perform the simulations 

on the decimal logarithm of equivalent radius instead of the metrics themselves, as its variations 

are less important. We use the distribution of the decimal logarithm of the equivalent radius of the 

Arrestelia network as an input parameter. The input variograms are computed on the property 

obtained with the normal score transform of the decimal logarithm of the equivalent radius of the 

Arrestelia network (because the distibution is not gaussian). We choose a maximal size of 

neighbourhood of 16 nodes to limit the computation time. 

The distributions of the results are rather close to the initial distribution but they are more 

centred around the mean (Figure 22). Nonetheless, the means and the medians are close: the mean 

of the results is 0.10 instead of 0.095, while the median of the results is 0.084 instead of 0.073. The 

variances are a bit lower than the initial ones, with an average value of 0.092 instead of 0.097. 

While the experimental global and interbranch variograms computed on the simulations 

are close to the input one, it is not the case for the intrabranch variogram, which is closer to the 

other variograms (Figure 23). Since it is not used in that simulation method, this result was 

expected. 

 

Figure 21: A: Part of the initial network. B-C-D: 3 Examples of results obtained on this part during 

a simulation by unconditional simulation with the 1D-curvilinear SGS method on the whole 

network (no conditioning data are used). 

Figure 22: Histogram of the sum of 20 unconditional simulation results obtained with the 

1D-curvilinear SGS method, along with the initial distribution of the decimal logarithm of the 

equivalent radius. 

Figure 23: Mean experimental variograms of 20 unconditional simulation results obtained with the 

1D-curvilinear SGS method, along with the theoretical variograms of the decimal logarithm of the 

equivalent radius. 

 

We also perform 20 conditional simulations (e.g. Figure 24). We create the conditioning 

data randomly by choosing random nodes distant of more than 100 meters from each other, 203 in 

total. We then perform a Monte-Carlo sampling of 203 random values in the initial distribution, 

assign them randomly to these nodes and use them as conditioning data. The input distribution 
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variograms and maximal size of the neighbourhood are the same as for the unconditional 

simulation. 

The statistical values of the results are almost similar to those of the unconditional 

simulations with a mean value of 0.10, a median of 0.080 and a variance of 0.091. It is also the case 

for the histograms and variograms (Figures 25; 26). 

A brief summary of the results can be found in Table 6. 

 

Figure 24: A: Part of the initial network. B-C-D: 3 Examples of results obtained on this part by 

conditional simulation with the 1D-curvilinear SGS method on the whole network (use of 

conditioning data). 

Figure 25: Histogram of the sum of 20 conditional simulation results obtained with the 

1D-curvilinear SGS method along, with the initial distribution of the decimal logarithm of the 

equivalent radius. 

Figure 26: Mean experimental variograms of 20 conditional simulation results obtained with the 

1D-curvilinear SGS method, along with the theoretical variograms of the decimal logarithm of the 

equivalent radius. 

 

Table 6: Comparison of input parameters and results of 20 simulations performed using the 

1D-curvilinear SGS method. 

 Mean Median Variance 

Data 0.095 0.073 0.097 

Unconditional simulation 

results 

0.10 0.084 0.092 

Conditional simulation results 0.10 0.080 0.091 

 

3.2.2 Branchwise 1D-curvilinear SGS 

We perform 20 unconditional simulations of the decimal logarithm of the equivalent radius on the 

Arrestelia network using the Branchwise 1D-curvilinear SGS (e.g. Figure 27). The input 

distribution variograms and maximal size of the neighbourhood are the same as for the first 

method. After testing different values of proportion and maximal number of nodes simulated using 

the interbranch variogram in each branch during the preconditioning step, we observe that the most 
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satisfying results are obtained with a maximal number of 15 nodes and a proportion of 100%. It 

means that if a branch has more than 15 valueless nodes, 15 of them are simulated with the 

interbranch variogram and the others are simulated with the intrabranch variogram (Algorithm 2). 

Otherwise, all of them are simulated with the interbranch variogram. 

The distributions of the results are close to the initial distribution but less than with the 

previous method (Figure 28). Nonetheless, the means and the medians are closer to those of the 

data than with the previous method: the mean of the results is 0.098 instead of 0.095, while the 

median of the results is 0.081 instead of 0.073. The values are nonetheless more centred around the 

mean and median values, because of an important decrease of the variance from 0.097 to 0.078. 

Since the intrabranch variogram contributes more than previously, and that its sill is lower 

than the global sill, it is but natural to observe a lower resulting variance. This phenomenon can be 

observed in the computed variograms (Figure 29). The intrabranch variogram tends indeed to be 

more respected (even if the fit is still perfectible) but the values of the general and interbranch 

variograms are significantly lower than the data. The differences between the intrabranch 

variogram and the interbranch and global variograms are now clearly visible. 

We also perform conditional simulations and the overall statistics of the results are also 

close to those of the unconditional simulations, as seen in Table 7. 

 

Figure 27: A: Part of the initial network. B-C-D: 3 Examples of results obtained on this part by 

unconditional simulation with the Branchwise 1D-curvilinear SGS method on the whole network 

(no conditioning data are used). 

Figure 28: Histogram of the sum of 20 unconditional simulation results obtained with the 

Branchwise 1D-curvilinear SGS method along, with the initial distribution of the decimal 

logarithm of the equivalent radius. 

Figure 29: Mean experimental variograms of 20 unconditional simulation results obtained with the 

Branchwise 1D-curvilinear SGS method, along with the theoretical variograms of the decimal 

logarithm of the equivalent radius. 

Table 7: Comparison of input parameters and results of 20 simulations performed using the 

Branchwise 1D-curvilinear SGS method 

 Mean Median Variance 

Data 0.095 0.073 0.097 
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Unconditional simulation results 0.098 0.081 0.078 

Conditional simulation results 0.098 0.084 0.078 

 

4. Discussion 

4.1 Statistical analysis 

The present statistical analysis is performed on a large database of karstic networks. No other 

similar study was, to our knowledge, done on that many networks so far. Except for small 

differences, mostly linked to the cleaning of the networks, the mean width-height ratio of the 

different networks are similar to those presented in Jouves et al. (2017) and Pardo-Iguzquiza et al. 

(2011). 

We show that there is no single and universal simple statistical law that can be applied 

anywhere regardless of local conditions to describe the distributions of the equivalent radius and 

width-height ratio. Statistical tests are performed in order to assess our observations, but the 

existence of a distribution identical in all networks is rejected. Nonetheless, most of these 

networks are located in the same regions and some are likely parts of the same systems, which may 

induce bias. 

Tests performed on uncorrelated subsamples do not reject the assumptions that the 

distributions of the large networks are simply log-normal or of Pareto type. As these tests are 

performed on only 11 subsamples, which are themselves small (mean number of 53 values), it is, 

however, difficult to extrapolate the results. There is also no obvious reason why a Gaussian or 

Pareto distribution should represent perfectly the reality of the equivalent radius. Indeed, the data 

are directly measured by speleologists, mostly on human-sized conduits. It means that the conduits 

of smaller dimension are not taken into account in these data. Given the fractal behaviour observed 

in some networks (e.g., Hendrick and Renard, 2016a) and which may be generalized in most cases 

(Pardo-Igúzquiza et al., 2019), the real distributions of conduit equivalent radius may be more 

likely to follow a power-law. 

Because of the complexity of the networks, measurements may lack precision, which 

directly impacts the results of the analysis. The elliptic approximation is also a potential source of 

errors on the results. It tends to smooth the shape of the conduits (hence the "approximation"). Yet, 

we assume that there is no basic approximation as close to the reality as this one. A circular or 
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rectangular approximation would be less respectful of the shape of the conduits. Nonetheless, the 

cumulation of the distance in two directions to get the width and the height changes the centering 

of the conduits. Moreover, the cleaning of networks (e.g., removal of duplicated nodes) implies 

necessary hypotheses, which may also constitute a source of errors. However, flow simulators 

(e.g., SWMM, Epanet, Modflow-CFP) only consider such approximation of the conduit shape. 

Thus, this treatment is consistent with the fact that we aim to provide a mean to compute this 

equivalent property and not the exact geometry of the conduits. 

No generic relation between the node altitudes, the conduit orientations or their dips and 

the conduit geometrical properties are found. Yet, there seems to be existing links in some 

networks. We thus advise for case-by-case analysis. The definition of the conduit width and height 

are also difficult to define for almost vertical conduits. 

The ranking algorithm is thought to obtain values equivalent to a theoretical flow within 

the networks and handles the presence of loops and the existence of more than one exit for most 

networks. It is currently usable only for small networks because of the difficulties to handle 

siphons, but no link is found between the studied metrics and the computed conduit hierarchy. 

Borghi et al. (2016) associate each conduit with a value proportional to the supposed 

corresponding drained area. The drained areas are computed from the topography and are linked to 

each inlet of the network. If we had the corresponding topological information, it would be 

interesting to use these values instead of assigning a value of 1 to each potential inlet. It is 

nonetheless complicated to define an efficient ranking method as the water flow within the 

networks can change depending on different parameters. The lack of general information about the 

potential entries and exits and the fact that the networks are usually not fully mapped are also 

major problems. Despite these difficulties, the visual inspection of the data show that there is no 

simple hierarchy in the distribution of the conduit. This leads us to question this assumption for 

defining the conduit radius, which, it should be mentioned, is not based on field data. 

No direct link between the distance to the closest exit or entry and the conduit geometrical 

properties were found during this study. It also brings doubt about the idea of conduit becoming 

wider, the farther they are within the network, with maximal values associated to the springs. As 

the network can have many entries and exits (or at least termination nodes), the biggest equivalent 

radius is not necessarily associated to a specific exit conduit. 

Moreover, it can be hard to define where are the entries and the exits of the network. The 
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main entries and exits may be known for active networks but is no easy task to determine them for 

case where this information is not available, such as in paleokarstic networks. Our two methods to 

define the entries and exits of the network may not be efficient or realistic but there is no obvious 

way to define them when the information are not present. Also, the matrix flow is not taken into 

account, while it is not be negligible in reality. To summarize this part of the work, we consider 

that this study leads to reject the previous assumption of a dependence of the conduit radius with 

the hierarchical value or the distance to the exits since it is not supported by the data and shows 

much more complexity. 

The 1D-curvilinear variograms underline existence of spatial correlation at a scale of the 

equivalent radius and the width-height ratio inside the networks. The variability is usually low 

inside the branches. The ranges of the variograms differ from a network to another but seem 

nonetheless higher than in Pardo-Iguzquiza et al. (2011), who computed it with Euclidean 

distances. Not taking the curvilinear structure of the networks could, indeed, lead to an 

underestimation of the spatial correlation of the studied metrics. 

Nonetheless, intrabranch variograms are limited in range because of the definition of the 

branches. As a branch is defined between two intersection nodes, the real length of the conduit do 

not matter. If a long conduit is joined in different places by other conduits, only small parts of this 

conduit will be individually taken into account. 

Palmer (1991) proposed the first classification of cave patterns and further studies have 

offered more detailed information about them (e.g., Audra and Palmer, 2013). Depending on the 

type of recharge, the position of the water table and its evolution, as well as other parameters (e.g., 

porosity, lithology), different speleogenesis processes, resulting in the existence of different 

patterns of network structures, were indeed identified. Networks are usually formed over a long 

period of time, during which the speleogenesis process may change. Different parts of the same 

networks can thus be formed through different processes. Jouves et al. (2017) underlined 

differences of width-height ratio and other metrics between the different cave patterns. Some of 

the networks in our database were divided into different parts during this work, depending on the 

associated speleogenesis process. We try to expand this analysis to the equivalent radius of the 

networks. An overview of the results is presented in Appendix B. As some network studied by 

Jouves did not have the geometrical information we needed, the number of networks associated to 

each pattern may be slightly different. The results of this pattern study offer new information but 
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should not be generalized, as it is not robust. Indeed, we have far too few networks associated to 

each pattern, they are all located in France and some of them are in fact different parts of the same 

network, so the real number is even smaller. Moreover, most of these parts are rather small, 

compared to a full network, meaning that the statistical significance of the analysis is rather 

questionable. For example, the famous Lechuguilla cave is one of the longest cave of the world 

and was formed through hypogenic processes (e.g., Duchene et al., 2017). The 5 hypogenic 

networks presented in this study appear to have a really small extent and are thus not representative 

of such a cave. Furthermore, while field information are used to divide the networks in different 

parts, the division is also based on the topology and geometry of the conduits and may induce a 

bias. It is logical for conduits in the vadose parts of the network to be more vertical and have 

smaller width-height ratio. Hence, while these results are interesting, they should not be 

over-interpreted. 

4.2. Simulation 

Two approaches are proposed to simulate properties along complex karstic networks, while 

reproducing input statistics and conditional data. Both approaches honor the input distribution. 

The 1D-curvilinear SGS method reproduces the global variogram. The results are reasonable but 

the intrabranch variogram is not reproduced. This is not surprising because the algorithm does not 

account for it. The Branchwise 1D-curvilinear SGS method is still not completely satisfactory. It 

accounts for the intrabranch and interbranch variograms. It partially respects the intrabranch 

variogram, but it induces a lower value of variance in both the general and interbranch variograms, 

as well as a slightly narrower distribution. Additional work is therefore required to design an 

algorithm that would properly reproduce both the intrabranch and interbranch variograms. 

The main advantages of the proposed simulation methods are: 

 They are not based on a regular or cartesian grid. It results in smaller computation times 

and allows the user to freely define the resolution of the networks. Yet the computation 

times can still be important for large networks (around 30 seconds per unconditional 

realisation to simulate around 15000 nodes on a standard laptop). 

 They allow to simulate the spatial variability inside one conduit instead of a constant value 

for the whole conduit. 

 They use a skeleton defined by the user and there is no dependence between the creation of 

the skeleton and the generation of its property. It gives the user the choice to work on 
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already explored networks or on simulated networks. 

 They are based on observed statistics, instead of arbitrary values, and input parameters can 

be specifically defined by the user for each network. 

 They are stochastic, which gives a good insight about the network conduit and geometry 

uncertainties. 

 It would also be possible to adapt these methods to non-geometrical properties (e.g., 

porosity), given that a low spatial variability at short range is shown by a 1D-curvilinear 

variographic analysis. They could also be used to simulate properties on other curvilinear 

networks, such as rivers. 

5. Conclusion 

This paper presents two simulation methods adapted to the case of karstic networks. A statistical 

analysis of the equivalent radius and width-height ratio of the conduits is done on 49 different 

networks. 

These analysis show the absence of perfectly similar distributions for the studied metrics 

within the different karstic networks. The distributions are found to be close to log-normal but they 

would not follow exactly such a distribution. No real link are found between the studied metrics 

and the altitudes, the conduit orientations and the conduit dips. Besides, the studied metrics are not 

found to correlate well with the hierarchical ranks computed in this paper. In addition, the 

inspection of the data seem to indicate that there is no clear correlation between the hierarchy of 

the network and the equivalent radius or width-height ratio. No relations are also observed with the 

distance to the closest entry and exit. Moreover, the low spatial variability of the metrics at short 

range is highlighted by the development of 1D-curvilinear variograms, and an even lower 

variability is observed inside the branches. 

The developed simulation methods permit to reproduce, at least partially, the intricacy of 

the networks with the use of geostatistics. These algorithms allow generating an equivalent radius 

and a width-height ratio closer to actual observations than what is done in previous studies. While 

the input distributions are respected, the input variograms are not currently perfectly reproduced 

when performing unconditional simulations. The 1D-curvilinear SGS method reproduces the 

global variogram but the behaviour on the branches is not respected. On the other hand, the 

Branchwise 1D-curvilinear SGS method is close to reproducing the intrabranch variogram but the 

global and interbranch variograms have lower values. 
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Nonetheless, these results are an important step towards the simulation of realistic conduit 

dimensions. They can be applied for various purposes such as flow simulations within discrete 

conduit networks (e.g., SWMM, Epanet, Modflow-CFP). 
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Appendix A. Karstic networks used during the statistical analysis along with general 

information 

Name Location Number of 

nodes 

Number of 

valueless 

nodes 

Mean 

radius 

Median 

radius 

S. 

Deviation 

radius 

Abisso Chimera Italy (Apuan 

Alps) 

1128 129 2.26 1.37 2.92 

Agas France (Gard) 615 35 1.26 1.02 0.82 

Arphidia 

Robinet 

France 

(Pyrénées-Atlanti

ques) 

1479 54 1.72 1.50 0.83 

Arrestelia France 

(Pyrénées-Atlanti

ques) 

6000 1717 1.68 1.20 1.62 

Aspirateur France (Gard) 269 4 1.81 1.38 1.43 

Autran France (Vaucluse) 1656 142 1.49 1.12 1.49 

Barrage Gardon France (Gard) 703 16 1.20 1.06 0.75 

Baume France (Hérault) 171 49 0.77 0.57 0.59 

Baume 

Galinière 

France (Vaucluse) 50 18 0.63 0.56 0.31 

Baume Salene France (Gard) 213 3 2.19 1.40 2.34 

Bez France (Gard) 190 2 1.65 1.62 0.91 

Bornegre France (Gard) 257 7 0.94 0.95 0.41 

Bret France (Gard) 238 14 1.26 0.93 1.06 
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Brun France (Gard) 649 58 1.66 1.17 1.61 

Buse France (Gard) 55 0 1.79 1.20 1.74 

Calles France (Gard) 123 5 4.81 3.69 4.37 

Cazilhac France (Hérault) 525 16 1.29 0.99 1.14 

Ceberi France 

(Hautes-Pyrénées

) 

618 36 1.69 1.22 1.46 

Cellagua Spain (Cantabrie) 45 1 3.32 2.83 1.71 

Chamois France 

(Alpes-de-Haute-

Provence) 

1190 463 1.74 1.22 1.41 

Chapo Spain (Cantabrie) 163 12 2.60 2.12 2.21 

Charentais 

Heche 

France 

(Hautes-Pyrénées

) 

1978 237 1.54 1.30 0.99 

Cocaliere France (Gard) 276 2 2.49 2.32 1.18 

Cougnet France (Gard) 148 8 1.47 1.11 0.93 

Name Location Number of 

nodes 

Number of 

valueless 

nodes 

Mean 

radius 

Median 

radius 

S. 

Deviation 

radius 

Due Dong Vietnam 76 10 5.02 4.80 2.47 

Eau Relie France (Var) 204 172 1.02 1.00 0.48 

Everest France (Gard) 94 2 1.64 1.33 1.22 

Foussoubie France (Ardèche) 2624 218 1.10 1.00 0.66 

Gardies France (Herault) 143 1 1.26 1.15 0.58 

Garma Ciega Spain (Cantabrie) 586 10 3.78 3.24 2.65 

Lali Italy (Apuan 

Alps) 

419 59 1.97 1.58 1.40 

Malaval France (Lozère) 2262 185 1.62 1.40 1.01 

Mazo Chico Spain (Cantabrie) 1924 77 2.14 1.84 1.22 
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Nam Pakan Vietnam 362 81 1.86 1.51 2.56 

Peyrejal France (Ardèche) 102 4 1.19 1.02 0.71 

Pigette1 France 

(Alpes-de-Haute-

Provence) 

87 16 0.82 0.71 0.54 

Pigette2 France 

(Alpes-de-Haute-

Provence) 

141 31 0.84 0.71 0.50 

Plantayrol France (Hérault) 214 6 1.35 1.08 0.93 

Rubicera Spain (Cantabrie) 384 7 3.07 2.29 2.97 

Saint Benoit France 

(Alpes-de-Haute-

Provence) 

397 56 0.72 0.57 0.50 

Saint Marcel France (Ardèche) 4456 655 1.56 1.22 1.28 

Saint Sebastien France 

(Alpes-de-Haute-

Provence) 

79 26 0.42 0.39 0.21 

Sakany France (Ariège) 1822 145 1.19 0.94 1.08 

Satan France (Gard) 89 0 1.04 0.81 0.81 

Sauvas France (Ardèche) 64 11 2.66 2.24 1.23 

Sergent General France (Hérault) 259 2 1.84 1.69 0.99 

Sieben Hengste Switzerland 15340 196 1.22 0.92 1.09 

Souchon France (Gard) 132 11 1.60 1.42 1.20 

Wakulla United States 474 6 2.09 1.87 1.59 

Name Mean WH Median WH S. Deviation 

WH 

Total Length 

(m) 

Mean distance 

between nodes 

(m) 

Abisso Chimera 0.92 0.50 1.73 9616 8.5 

Agas 1.17 1.00 1.01 4811 7.8 

Arphidia 1.21 1.00 0.48 13250 9.0 
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Robinet 

Arrestelia 0.74 0.50 0.82 58429 9.7 

Aspirateur 1.18 0.72 1.39 1886 7.0 

Autran 0.71 0.25 1.40 9993 6.0 

Barrage Gardon 1.21 0.86 1.30 4294 6.1 

Baume 1.90 1.48 1.47 603 3.5 

Baume 

Galinière 

1.08 0.91 0.94 189 3.8 

Baume Salene 2.47 1.50 3.39 2135 10.0 

Bez 1.02 0.67 1.05 1432 7.5 

Bornegre 1.82 1.61 1.10 1973 7.7 

Bret 1.52 1.19 1.63 1206 5.1 

Brun 1.52 1.00 1.70 6351 9.8 

Buse 1.00 0.83 0.74 379 6.9 

Calles 1.33 1.00 1.32 1404 11.4 

Cazilhac 1.23 1.02 1.00 3231 6.2 

Ceberi 1.08 0.67 1.41 5606 9.1 

Cellagua 0.25 0.13 0.46 324 7.2 

Chamois 1.87 1.26 2.30 12691 10.7 

Chapo 0.40 0.20 0.60 1494 9.2 

Charentais 

Heche 

1.18 0.60 1.70 13329 6.7 

Cocaliere 2.02 1.38 1.96 2427 8.8 

Cougnet 2.42 2.16 1.71 1383 9.3 

Name Mean WH Median WH S. Deviation 

WH 

Total Length 

(m) 

Mean distance 

between nodes 

(m) 

Due Dong 1.40 1.25 0.96 718 9.4 

Eau Relie 0.91 1.00 0.70 673 3.3 

Everest 1.02 0.71 1.28 531 5.7 
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Foussoubie 1.32 1.20 1.08 22950 8.7 

Gardies 1.42 1.04 1.21 1113 7.8 

Garma Ciega 0.53 0.36 0.66 7125 12.2 

Lali 1.51 1.20 1.18 4827 11.5 

Malaval 0.81 0.35 1.59 11961 5.3 

Mazo Chico 0.54 0.17 0.92 11994 6.2 

Nam Pakan 1.84 1.43 1.79 2897 8.0 

Peyrejal 2.11 1.55 1.70 762 7.5 

Pigette1 1.75 1.50 1.17 290 3.3 

Pigette2 1.61 1.19 1.55 456 3.2 

Plantayrol 1.05 0.82 0.91 1947 9.1 

Rubicera 1.43 0.67 2.48 4282 11.2 

Saint Benoit 2.77 2.00 2.24 2125 5.4 

Saint Marcel 2.28 1.67 2.16 47249 10.6 

Saint Sebastien 1.63 1.50 0.76 314 4.0 

Sakany 0.85 0.60 1.05 7528 4.1 

Satan 1.34 1.00 1.30 478 5.4 

Sauvas 0.92 0.40 1.55 546 8.5 

Sergent General 1.11 0.74 1.16 2683 10.4 

Sieben Hengste 0.82 0.35 1.30 82238 5.4 

Souchon 1.12 0.77 1.29 569 4.3 

Wakulla 1.57 1.48 1.05 5440 11.5 

 

Appendix B. Summary of the statistical analysis of the raw data of 40 caves with known 

pattern. 

Pattern Number 

of 

networks 

Median 

number of 

nodes 

Median number 

of valueless 

nodes 

Average 

mean 

radius 

Median 

median 

radius 

Median S. 

Deviation 

radius 

Vadose 16 183.5 8 2.01 1.22 1.51 

Water-Table 10 90 27 2.07 1.35 1.30 
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cave 

Looping 

cave 

9 350 101 1.36 1.00 0.98 

Hypogene 5 87 26 0.70 0.57 0.50 

Be careful, they results are not statistically significant and should thus not be taken as facts. 

Pattern Average 

mean WH 

Median 

median 

WH 

Median S. 

Deviation 

WH 

Median total 

length (m) 

Median average 

distance between 

nodes (m) 

Vadose 0.68 0.45 0.71 912 6.98 

Water-Table 

cave 

2.11 1.56 2.31 1199 9.02 

Looping 

cave 

1.64 1.20 1.48 3601 8.75 

Hypogene 1.59 1.48 1.17 314 3.53 

Be careful, they results are not statistically significant and should thus not be taken as facts. 
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Highlights 

Statistical study of the conduit dimensions of 49 explored karstic networks. 

Analysis of the spatial variability by using 1D-curvilinear variograms. 

Analysis of the conduit dimension hierarchy inside the networks. 

Stochastic simulation of the properties (size and anisotropy) of karstic conduits. 
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