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A B S T R A C T

Hyperspectral classification using artificial neural networks is commonly applied on camera dependent interpolated data, or on the results of a dimensionality
reduction algorithm. While these methods usually produce satisfactory results, they have severe limitations when part of the spectrum is missing, for example when
parts of the image are overexposed or affected by bad pixels. This article presents an input layer based on the Haar transform for artificial neural networks used for
hyperspectral data classification. This input layer is designed to perform efficiently with incomplete data and is independent of the specific bands used by the camera.
This could enable providing pre-trained neural networks, which can be used with a camera with different specifications than the one used for training. This paper
shows that a classifier for mineral identification built using this approach performs better than standard normalization on incomplete spectra, and similarly on
complete spectra. Additionally, it shows that such a classifier matches local spectral features, and therefore that the artificial neural network is matching the spectrum
shape.
1. Introduction

Artificial neural networks (ANN) have been widely used for various
classification problems, including hyperspectral data classification. The
flexibility and the performance of ANNs make them common for
numerous applications such as classifying aerial images (Ratle et al.,
2010; Makantasis et al., 2015; Hu et al., 2015; LiangQi, 2016), food in-
dustry (Gamal ElMasry et al., 2009), bacteria identification (Goodacre
et al., 1998), nitrogen concentration estimation in rice leaves (Yi et al.,
2007). In addition to classification, neural networks can also be used for
unmixing (Plaza et al., 2009).

Hyperspectral images have many bands. The number of these bands
and their center wavelengths depend on the camera model. Usually,
there is a strong correlation between bands, as the spectral features are
commonly wide enough to span over multiple bands. The papers previ-
ously cited rely on dimensionality reduction before the ANN. This has the
advantage of reducing the size of the input data (thus reducing the re-
quirements of the neural network) and of separating the input features.
However, dimensionality reduction has some drawbacks:

� The number of dimensions kept is a choice to be made, which adds
additional hyperparameters.

� Dimensionality reduction is not likely to isolate spectral features. This
means that one coefficient of the output depends on the whole input
spectrum.
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� Dimensionality reduction techniques consist in finding the transform
that can express the diversity of data using fewer variables. As such, a
dimensionality reduction is dependent on the data for which it was
computed and its parameters can be seen as additional hyper-
parameters of the network. Therefore, the network will have reduced
efficiency if additional training or retraining is applied using different
data than those that were used to compute the transform.

Due to the complex acquisition procedure of hyperspectral data, the
data acquired is of imperfect quality. Neural networks are resilient to
noise, but missing data is an issue. Missing data can arise for three
different reasons (see Fig. 1):

� The sensor has bad pixels, which should be masked.
� The sensor is saturated for some bands, either for the sample mea-
surement or for the white reference. As the value of such bands is
capped to the maximum possible output value of the sensor, these
bands should be masked as the data is not reliable.

� Since the training is computationally demanding, pre-trained neural
networks can be distributed. In that case, it can happen that the bands
of the data are not the same as those that were used during the cre-
ation of the ANN, resulting in missing bands.

Handling data with missing bands is challenging in general. Impu-
tation is commonly used to compute the missing values, usually using
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Fig. 1. Synthetic example of missing spectral data.
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interpolation, replacement by the average of the data, or replacement by
the maximum likelihood (Tresp et al., 1994). Interpolation is however
not straightforward for missing spectral ranges, can be computationally
demanding, andmay lead to providing bad quality input data to the ANN.
The other approach available is marginalization, which consists in
ignoring bad values. It cannot be directly used with ANNs as they require
a complete input layer. Imputation and marginalization can be used both
with dimensionality reduction (Dray and Josse, 2015) or for classifica-
tion algorithms (Wagstaff et al., 2004), at the cost of added algorithmic
complexity.

In this article, we present an input preprocessing method based on the
Haar wavelet decomposition. This method is designed to be independent
of the content of the input data set, resilient to missing data, and able to
cope with different image specifications (bands center and spectral
range).

The impact on the learning rate and the accuracy of the method is
compared to standard normalization and is evaluated using a dataset of
73 different minerals. Minerals in this dataset were selected to represent
all the mineral classes and the most common mineral occurrences. The
spectra originate from rock samples, of well characterized, but not
necessarily pure minerals. This ensure the diversity required to correcly
train and test a classifier. This dataset is presented in more detail in
(Fasnacht et al., 2019).

This paper considers only single spectrum classification, as applying
spectral-spatial classification (using convolutional neural networks)
would “smooth” the difference between the various methods compared.

2. Method

2.1. Concepts and notations

ANNs are inspired by biology, but practically they consist in a
composition of linear operators and simple non-linear operators (acti-
vation function). The standard neural network is a sequence of layers,
each of which is a composition of a linear operator with unknown co-
efficients (parameters) and an activation function. These layers link an
input (source data) to an output (the prediction), and can be visualized as
Fig. 2. Example of an artificial neural network, with two hidden layers.
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a graph (Fig. 2). The parameters of all the operators of an ANN have to be
determined during a training phase. This training phase requires a lot of
input data associated with known output (ground truth) and consists in
finding the coefficients which create the optimal correspondence be-
tween the output of the neural network and the ground truth. The
training phase is demanding both in computing power and in the quan-
tity of data, as the operator corresponding to the neural network is highly
unspecific. To reduce the training phase cost, it is possible to retrain only
the last layer(s) of a neural network, if the classes have changed (partial
retraining).

To avoid overfitting a feature, usually, dropouts are applied during
the training phase. This consists of randomly dropping a fraction of the
coefficients in the neural network while compensating on the other co-
efficients (Srivastava et al., 2014). This has the advantage that the
network is “forced” to learn multiple ways to identify the same data.
Dropouts can technically also be applied at the input layer.

Once the training is done, applying the neural network to the data is
usually fast, as it consists of direct computations.

Throughout this document, we will work with vectors including

missing values. For a given vector v!, we define v!f
the vector where

missing values are replaced by 0. We also defined v!m
the mask vector,

where vmi ¼ 1 if the value vi is missing, or 0 otherwise. Moreover, we
define v!� x to be the vector of the point-wise comparison, where each
element is 1 if vi � x and 0 otherwise. This is a convention that is
commonly used by numerical libraries.

There are some discrepancies between what terms are used to
describe neural network layers depending on the context. In this docu-
ment, we will use the following:

� the term layer is used to refer to the set of operators linking the pre-
vious layer data to the current layer data. For example, the first
hidden layer is the operators linking the input layer data to the first
hidden layer data.

� the term layer data corresponds to the actual data vector.
� as a consequence, since normalization can be seen as a part of the
network, we use the term input layer to refer to the operators linking
the raw data to the input layer data of the neural network.

2.2. The Haar inspired input layer (HIIL)

The input layer is inspired by the discrete wavelet transform, using
Haar wavelets. Discrete wavelets transform consists in representing a
function (in the present case, the measured reflectance) as a sum of
orthonormal wavelets. The Haar wavelet, commonly used in image
processing, is a piece-wise constant wavelet which makes it easy to use.
There is abundant literature about Haar wavelets (for example (Radomir
and Falkowski, 2003; Porwik and Lisowska, 2004)), therefore only the
specific variation used in this paper will be presented.

The transformation proposed in this paper requires 4 parameters: the
minimumwavelength λmin, the maximumwavelength λmax, the number of
subdivision levels N, and the required ratio of valid values δ 2 ½0; 1�. For
example, for δ ¼ 0:9, every coefficient computed with less than 90% of
the spectral range covered will be considered invalid. A missing value is
considered as a 0 in the integrals.

We then proceed as follows, where r is the measured reflectance:

1 The first coefficient is the integral of the reflectance:

a0 ←
Z λmax

λmin

rdλ (1)

2 If N � 1, for the first subdivision level we compute:
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a1 ←
Z λminþλmax

2

rdλ�
Z λmax

rdλ (2)
Fig. 4. Example of matrix M with N ¼ 4. The values on the side and in the
center are clearly smaller due to limits of the integral not aligning on a band
limit. Due to the relatively small difference in the colors, it is not possible to see
that the band widths span between 6:2nm and 6:4nm.
λmin
λminþλmax

2

3 If N � 2, for the second subdivision level we compute:

a2 ←
Z λminþλmax

4

λmin

rdλ�
Z λminþλmax

2

λminþλmax
4

rdλ;

a3 ←
Z 3 λminþλmax

4

λminþλmax
2

rdλ�
Z λmax

3 λminþλmax
4

rdλ

(3)

4 Repeat this procedure until the number of subdivision levels has been
reached. The sequence a0…a2N�1 is the output of the transform.

An example of this transform is shown in Fig. 3.
In addition, set ai ¼ 0 for all iwhere less than δ of the spectral range is

covered by actual measurements.
In practice, the reflectance output is a vector r!2 Rk, where k is the

number of bands of the camera. The physical characteristics of the
camera determines for each band the center wavelength and the width of

the band. The widths of the bands can be visualized as a vector d
!2 Rk.

This transformation is a linear operator that can be discretized in a

matrix M 2 R2N�1�k. Each row contains the coefficients required to
obtain an output element ai. The first row is constructed to cover the
whole spectral range covered by the integral. Note that the end of the
range can partially cover the bands, leading to coefficients ~dk � dk and
~dl � dl. The row is structured as follows:

M0 ¼ ½ 0 … 0 ~dk dkþ1 … dl�1
~dl 0 … 0 � (4)

The next row, M1, has both a positive and a negative range. As pre-
viously, the bands at the side can be partially covered by the integral.
Moreover, the central term ~dc is a combination of the positive and
negative integral, so it can be any value between �dc and dc, depending
on where λminþλmax

2 is situated in the band. The row structure is as follows:

M1 ¼ ½ 0 … 0 ~dk dkþ1 … dc�1
~dc � dcþ1 … � dl�1 � ~dl 0 … 0�

(5)

The rest of the matrix is constructed likewise. A visualization can be
seen in Fig. 4.

Additionally, the matrix N is derived from M, in which each element
corresponding to a non-zero element ofM is the inverse of the number of
non-zero elements of the row inM. Therefore, the sum of each line in N is
1, and it can be expressed as follows:
Fig. 3. Example of a Haar transform with N ¼ 2 levels of subdivisions, between
λmin ¼ 1000nm and λmax ¼ 2400nm. The coefficients are a0 ¼ 0:22 � 1400 (red
area), (pink area), a2 ¼ 0:02 �350 (blue area), a3 ¼ 0:14 � 350 (green area).

3

N ¼
>< 0 if Mi;j ¼ 0

(6)
i;j

8

>: 1
#
�
Mi;k 6¼ 08k� otherwise:

For a given reflectance vector r!with missing values, we can then do
the decomposition as follows:

a!¼ �
M � r!f � �ðN � r!m �ð1� δÞÞ (7)

2.3. Evaluation of the efficiency of the Haar-inspired input layer

To test that HIIL is an efficient input layer, the following points need
to be considered:

� the training of the network is efficient
� the accuracy of the network is good
� the network is robust to missing data in the input

To evaluate this, a dataset consisting of 308420482 spectra of 73
different classes was used (Fig. 5). Of these points, 9740544 have at least
one missing band, due to bad pixels of the sensor, or due to saturation.

The dataset was filtered to remove the incomplete spectra, and was
split into three non-overlapping parts:

� the training dataset, containing 85% of the data points,
� the validation dataset, containing 10% of the data points,
� the test dataset, containing 5% of the data points.

Additionally, a second test dataset was created, containing 5% of the
points of the original (non-filtered) dataset, of which 30% of the spectral
data had been additionaly erased, by randomly selecting 30% of the non-
missing bands. Therefore, each spectra in this set simultaneously exhibit
Fig. 5. Example reflectance spectra from the dataset, for 4 different classes. For
each class, 5 random spectra were selected.
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missing data both due to sensor defects and from the random removal,
and is therefore very likely to have small spectral ranges missing. While
this dataset contain some spectra that were the training and validation,
overfitting won’t occur, due to the large amount of spectral data
removed.

For all these steps, we used a neural network consisting of three dense
hidden layers, each consisting of a linear operator, a bias, and a ReLU, of
sizes 1024, 1024, 256. This is a commonly used setup (LeCun et al.,
2015).

Having a too small ANN size can constrain the learning, as there
would not be enough coefficients to fully model the relation between the
input and the output. Therefore, the size of the ANN was chosen to be
large enough, as the goal is the evaluation of the influence of the input
layer. In practice, a smaller network size should be chosen in order to
increase computational efficiency.

The training was performed using an Adam optimizer (King-
maJimmy, 2014). The training data was balanced between classes, and
the accuracy of the classifier on the validation dataset was stored after
each epoch.

As input layers, we used:

� The identity operator, which consists in using directly the raw data as
the input layer. This is known to create optimization problems during
the training phase but is useful as a reference point.

� The standard normalization. For a given reflectance data r, we use as

an input layer: r�meanðrÞ
stdðrÞ .

� HIIL, with two different transform depths N ¼ 6 and N ¼ 8

To avoid over-fitting, dropouts were added at the input layer and each
hidden layer.

For each of the input layers, we evaluated the accuracy after the
classifier after 10000 epochs, for various drop-out parameters.

The goal of HIIL is to be used on data with missing values, so it needs
to be evaluated on the second test dataset. However, since the other input
layers require a full spectrum, we evaluated them with the spectrum
linearly interpolated. This is not an optimal approach, but the more
advanced approaches would require statistics about the input data,
which may not be available. Moreover, this approach is computationally
demanding. We also evaluated HIIL in these conditions, to see how
interpolated values impact the accuracy of the classifier.

The classifier using the HIIL input layer was also evaluated on partial
spectra. The principle consists in choosing a center band, a width of the
interval, and to mark every other band as invalid. The accuracy of the
prediction can then be computed. This can be done for every interval and
every class.
Fig. 6. Accuracy of the ANN on the validation set. The input layer dropout is
disabled, and the dropout after each layer was set to 0.25.
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3. Results

To assess the efficiency of the training, we compared the evolution of
the accuracy on the validation dataset throughout learning (Fig. 6). We
can observe that the identity input layer limits accuracy (it reaches a
plateau), but other input layers yield good results, even if HIIL has a
slower learning rate.

By using the first test set for each input layer while varying the
dropout, we can observe that the results are similar between the HIIL and
the centered and scaled normalization (Table 1). The dropout after the
input layer has an important negative effect on the training, but HIIL is
less sensitive to it.

As we can see in Table 2, the accuracy using the HIIL input layer is
better than when using other input layers, even with the invalid values
replaced by 0.

For partial spectra, the results for calcite, gypsum, and quartz can be
seen in Figs. 7–9 respectively. Observe that classification accuracy is
good as soon as the specific spectral features of the mineral are given to
the classifier. For classes with nearly no specific spectral features like
quartz (Fig. 9), nearly the full spectrum is required in order to classify the
spectrum correctly. Intuitively, this is due to the classifier having to
ensure that each feature of the training dataset is absent.

The impact of the HIIL input layer on computation requirements to
train and use the neural network was negligible.

4. Discussion & conclusions

Complete spectral data was classified correctly 98% of the time.
Spectral data with 30% of the data removed was still classified correctly
70% of the time. We can observe that the input layer dropout increases
the accuracy of the classifier. We also showed that a classifier built using
the HIIL has the ability to find and match local features.

As expected, the presented input layer has low computational re-
quirements, therefore it can be easily applied to practical problems. An
unexpected result is that HIIL performs better if the data is linearly
interpolated to fill holes.

HIIL is focusing on local features instead of global ones, unlike the
methods relying on dimensionality reduction. This creates a clear rela-
tionship between specific spectral regions and neuron activation, which
is more intuitive than to have activation based on a linear transform of
the whole spectrum. Compared to the classical normalization approach,
we showed that it performs similarly if the data contains no missing data,
and performs better with real data with missing bands. It is also much
simpler to implement than alternative approaches.

The high classification accuracy using HIIL is due to the following
reasons:

� The HIIL’s output is 0-centered, which is compatible with the classical
assumptions of ANNs layers (activation functions and dropouts)

� Missing input data generates output similar to dropout at the input
layer. Therefore the network is in similar conditions during the
training and prediction phases.
Table 1
Comparison of the accuracy on the first test set using various input layers, with
layer dropout 0.00, 0.25, 0.50.

Input layer Input dropout ¼
0.0

Input dropout ¼
0.25

Input dropout ¼
0.50

Identity 97.0%, 94.5%,
95.5%

53.0%, 35.6%,
37.6%

6.0%, 16.2%,
20.3%

Centered and
scaled

99.0%, 99.2%,
98.9%

95.3%, 94.3%,
93.3%

64.7%, 80.9%,
87.1%

HIIL (N ¼ 6) 98.6%, 98.6%,
98.0%

97.2%, 96.5%,
95.4%

90.2%, 87.5%,
86.8%

HIIL (N ¼ 8) 98.9%, 99.0%,
98.4%

98.4%, 97.6%,
96.7%

93.2%, 92.3%,
91.6%



Table 2
Comparison of the accuracy on the second test set (with missing values) of the
various input layers, with layer dropout 0.00, 0.25, 0.50.

Input layer Input dropout
¼ 0.0

Input dropout
¼ 0.25

Input dropout
¼ 0.50

Identity (interpolated) 61.6%, 64.7%,
67.5%

31.9%, 28.0%,
31.6%

5.0%, 14.2%,
17.1%

Centered and scaled
(interpolated)

59.2%, 62.9%,
62.0%

57.5%, 57.7%,
58.0%

35.2%, 49.7%,
53.0%

HIIL (N ¼ 6,
interpolated)

57.2%, 60.1%,
61.5%

75.4%, 77.3%,
74.7%

68.9%, 67.2%,
66.7%

HIIL (N ¼ 8,
interpolated)

59.6%, 63.9%,
62.9%

74.6%, 75.5%,
73.9%

71.9%, 72.2%,
71.9%

HIIL (N ¼ 6) 13.4%, 16.9%,
15.6%

64.8%, 65.5%,
64.0%

70.0%, 69.0%,
67.2%

HIIL (N ¼ 8) 16.2%, 18.4%,
19.0%

66.1%, 67.1%,
65.2%

69.2%, 70.4%,
69.6%

Fig. 7. Accuracy of classification of calcite spectra, depending on the spectral
area which is provided to the ANN. For example, we can see that with an in-
terval of 50 bands around band 150, the accuracy of the classifier is around
80%. Observe that as soon as the wavelengths from the farthest part of the
spectra are covered, we get good recognition. This makes sense since this is the
part of the spectrum in which there are variations.

Fig. 8. Accuracy of classification of gypsum spectra, depending on the spectral
area which is provided to the ANN. Similarly to Fig. 7, we can observe that the
relevant part of the spectrum is the lowest wavelengths. This matches our
intuition since it’s the part of the spectrum with distinctive shape.

Fig. 9. Accuracy of classification of quartz spectra, depending on the spectral
area which is provided to the ANN. As quartz has nearly no spectral variations in
the wavelengths considered, nearly all the spectrum is required to have a correct
classification. This can be intuitively understood as matching the absence of
features in the whole spectrum.
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� The input layer data scale is proportional to the spectral range
covered by the integrals. This tends to naturally increase the influence
of large spectral features compared to small ones (which could be
noise), therefore making the ANN focus on general tendency instead
of noise.

� The transform is independent of the input data, as it is applied indi-
vidually on each spectrum.

Finally, the low computational impact of the HIIL is due to the fact
that its linear nature is compatible with the kind of operators used in
ANNs, and therefore benefits from the optimization usually applied in the
ANN software libraries to speed up computations.

The increase of accuracy when HIIL is applied with linearly interpo-
lated data suggests that some information is not captured by the neural
network. This suggests that tuning would be required, for example by
changing the ANN parameters, or by changing δ.

One limitation of this study is that it does not consider the impact of
using this input layer on the size and the complexity required of the ANN.
It was considered not necessary because the computational requirement
was in any case quite low. Moreover, dimensionality reduction tech-
niques were not evaluated, as numerous variant exists. Besides, the
algorithmic complexity of these methods is higher and the ANN re-
quirements are quite different. We also did not consider the re-training
abilities of classifiers using the HIIL, althoughwe expect them to be good.

We have also only considered laboratory hyperspectral measurements
in our tests. Further work is required to assess the robustness of such an
approach when combined with varying athmospheric conditions.

Further studies could be done on using different types of wavelets, or
different transform specifications. One should also compare how this
input layer performs compared to the other approaches when the camera
used to train the network is not the same as the one used for prediction.
Comparing its efficiency using a classifier that also uses spatial features,
such as a convolutional neural network, might also provide interesting
results.

HIIL is likely to be also applicable to other types of continuous data
with missing parts.

To conclude, a classifier for hyperspectral mineral identification built
using the Haar Inspired Input Layer has better accuracy than a classifier
using standard normalization technique on incomplete spectra, and
similar accuracy on complete spectra. As it has lower computational re-
quirements, it should be considered for hyperspectral classification using
artificial neural networks.
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