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Abstract
Karst aquifers are characterized by high-conductivity conduits embedded in a low-conductivity fractured matrix, resulting in
extreme heterogeneity and variable groundwater flow behavior. The conduit network controls groundwater flow, but is often
unmapped, making it difficult to apply numerical models to predict system behavior. This paper presents a multi-model ensemble
method to represent structural and conceptual uncertainty inherent in simulation of systems with limited spatial information, and
to guide data collection. The study tests the new method by applying it to a well-mapped, geologically complex long-term study
site: the Gottesacker alpine karst system (Austria/Germany). The ensemble generation process, linking existing tools, consists of
three steps: creating 3D geologic models using GemPy (a Python package), generating multiple conduit networks constrained by
the geology using the Stochastic Karst Simulator (a MATLAB script), and, finally, running multiple flow simulations through
each network using the Storm Water Management Model (C-based software) to reject nonbehavioral models based on the fit of
the simulated spring discharge to the observed discharge. This approach captures a diversity of plausible system configurations
and behaviors using minimal initial data. The ensemble can then be used to explore the importance of hydraulic flow parameters,
and to guide additional data collection. For the ensemble generated in this study, the network structure was more determinant of
flow behavior than the hydraulic parameters, but multiple different structures yielded similar fits to the observed flow behavior.
This suggests that while modeling multiple network structures is important, additional types of data are needed to discriminate
between networks.
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Introduction

Approximately 16.5% of the global population lives on karst
(Goldscheider et al. 2020). Karst systems form in carbonate

rock when water containing CO2 gradually dissolves a net-
work of conduits through a fractured rock matrix. Conduits
are major pathways for groundwater flow in karst aquifers
(Worthington et al. 2012), and conduit flow is often rapid
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and turbulent, resulting in complex, heterogeneous behavior
very different from porous media (Ford and Williams 2007).
These characteristics make karst aquifers vulnerable to im-
pacts from human activity (Drew and Hötzl 1999) and chal-
lenging to manage (Fleury et al. 2007).

Numerical models are powerful, widely used predictive
tools for groundwater resource management, but the uncer-
tainty associated with model predictions must be taken into
account if they are to be used to support decision-making
(Doherty and Simmons 2013; Ferré 2017). Primary sources
of uncertainty in model predictions are input data, model pa-
rameter values, and model structure (i.e. conceptualization;
Refsgaard et al. 2006). Structural uncertainty is widely
thought to be the primary contributor to prediction uncertainty
(Refsgaard et al. 2006; Gupta et al. 2012; Neuman and
Wierenga 2003). However, traditional modeling approaches
have focused on parameter calibration for a single conceptu-
alization of model structure, which may underestimate uncer-
tainty by inadequately representing the range of plausible
structures (Refsgaard et al. 2006; Bredehoeft 2005; Enemark
et al. 2019). A multi-model approach, using an ensemble of
competing model structures to generate a range of predictions,
has been proposed to address some of these issues (Neuman
and Wierenga 2003; Enemark et al. 2019; Clark et al. 2011),
but has yet to be widely used in karst systems.

Applying numerical models in karst aquifers is challenging
(Scanlon et al. 2003), exacerbating the difficulties associated
with conceptualizing model structure. Existing approaches to
karst modeling can be generally classified as lumped or dis-
tributed (Kovács and Sauter 2007). Lumped models concep-
tualize physical processes at the scale of the whole karst sys-
tem without explicitly modeling spatial variability, based on
the relationship between inflow and outflow time series
(Hartmann et al. 2014). Such models can represent the overall
water balance and dynamics of the system, but not the spatial
variability in hydraulic head, or the directions and rates of
groundwater flow (Scanlon et al. 2003).

Distributed models discretize the model domain and apply
spatially variable hydraulic parameters to each cell. These
models are capable of representing the spatial dimensions of
groundwater flow, but require far more data: spatial informa-
tion about matrix and conduit hydraulic properties, aquifer
geometry, and/or conduit geometry (Hartmann et al. 2014).
This often-prohibitive limitation has restricted the use of spa-
tially distributed models primarily to either synthetic cases, or
well-understood, previously studied systems (Chen and
Goldscheider 2014). However, even in extensively studied
systems, the conduit network is impossible to map fully, be-
cause small-diameter conduits (<0.3 m) are inaccessible and
difficult to detect by geophysical methods (Jaquet and Jeannin
1994); thus, distributed models of real systems are therefore
inherently always incomplete. One relatively new approach to
resolving this difficulty is the development of stochastic

conduit evolution models, which generate probable network
maps of real-world karst systems, based on the geologic set-
ting. These networks can then be used as the basis for distrib-
uted flow and transport models (Borghi et al. 2012). The abil-
ity to quickly generate many networks constrained by the
same geologic context makes it possible to use this technique
for multi-model approaches to simulating karst system behav-
ior, though it has only been used in a limited number of studies
to date (Borghi et al. 2016; Sivelle et al. 2020).

This study builds on the stochastic conduit evolution
modeling approach for distributed karst models. The goals
of the study are:

1. To develop a multi-model ensemble approach for karst
systems, capable of generating many mutually exclusive
and collectively exhaustive plausible models of the same
system, using minimal initial data.

2. To compare the influence of uncertainty in the structure
versus uncertainty in the parameters on the uncertainty of
model predictions.

3. To identify additional data needs to reduce prediction
uncertainty.

Study area: Gottesacker karst system

Location, climate, geologic and hydrogeologic setting

The study area is a 35 km2 catchment located in the Northern
Alps, on the border between Germany and Austria (Fig. 1a),
with elevations ranging from 1,000 to 2,230 m above sea level
(asl). The climate is cool, temperate, and humid, with a mean
annual temperature of 5.7 °C and mean annual precipitation of
1,836 mm. Maximum rainfall occurs in June–August, while
snow accumulates between November and May; Water
Authority Vorarlberg data, 1961–1990).

Hydrogeologically, the catchment consists of a large
karstified zone to the north, with primarily subsurface
flowpaths, and a smaller, nonkarst zone of flysch to the south,
generating surface runoff. The flysch zone consists of several
sandstone, mudstone, and marl formations. Both zones drain
to the Schwarzwasser Valley, which runs northeast and marks
the boundary between karst and nonkarst (Fig. 1b). Two par-
allel flow systems run along the valley axis: a surface stream
that collects water from the flysch zone, and an underground
stream (i.e. a series of karst conduits) that collects water from
the karst zone and infiltration from the surface stream. The
two streams are connected by an estavelle (which is an orifice
that may act either as an outlet or an inlet depending on
groundwater conditions; QE), which demarcates the boundary
between the upper and lower segments of the valley. The
upper segment of the Schwarzwasser Stream receives surface
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inflow generated from the flysch zone and from a rockfall
mass in the uppermost part of the valley, but no contribution
from the karst zone. During low-flow conditions, the estavelle
acts as a swallow hole, so that the streambed is dry until it
receives new inflow from several downstream karst springs,
described in the following. During high-flow conditions, the
estavelle acts as a karst spring, so that the stream below this
point includes a mixture of surface water and karst
groundwater.

The karst aquifer developed in the pure, highly fractured
and karstifiable Cretaceous Schrattenkalk limestone formation
(approximately 100 m thick). The karst aquifer is highly per-
meable. The Schrattenkalk is underlain by the less permeable
Drusberg marl (approximately 250 m thick) acting as an
aquitard (Fig. 1c). The karst zone is heavily folded and frac-
tured, resulting in strong structural geologic control on under-
ground flowpaths. Major flowpaths in the karst aquifer follow
the axes of plunging synclines, draining towards the southeast,
before joining a series of conduits that parallel the

Schwarzwasser stream flowing northeast (Goldscheider
2005). The aquifer discharges at three primary springs flowing
into the Schwarzwasser stream: the estavelle (QE), described
previously, at 1,120 m asl; Aubach Spring (QA), a large, in-
termittent overflow at 1,080 m asl; and Sägebach Spring (QS),
the lowest permanent outlet of the system at 1,035 m asl
(Table 1; Goldscheider 2005).

Previous work: spatially distributed numerical model
of the study site

To test new modeling approaches, a well-accepted reference
model is needed for comparison. Previous work by Chen and
Goldscheider (2014) simulated the study catchment using a
spatially distributed numerical conduit flow model: the Storm
Water Management Model (SWMM; Rossman 2015).
SWMM is described in more detail in section ‘Flow model:
SWMM (EPA)’.
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Fig. 1 Hydrogeology of the Gottesacker karst system. a Location
(modified from European Environment Agency Large Rivers and
Large Lakes basemap 2017). b Simplified hydrogeology. The area is
folded into a series of SE-plunging synclines directing water flow towards
the Schwarzwasser Valley (compiled by C. Fandel based on

Goldscheider 2005 and Chen et al. 2018). c Simplified stratigraphic col-
umn. The major karst unit is the Schrattenkalk limestone, bounded above
and below by low-permeability formations (compiled by C. Fandel based
on Goldscheider 2002 and Goldscheider and Neukum 2010). d
Simplified geologic cross-section (modified from Goldscheider 2005)
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The conduit network map and the subcatchment bound-
aries used for the reference model were drawn based on ex-
tensive pre-existing geologic (Wagner 1950), speleological
(Höhlenverein Sonthofen 2006), and hydrogeologic mapping,
including numerous tracer tests (Goldscheider 2005; Goeppert
and Goldscheider 2008). Flow inputs to the conduit model
were generated by coupling it to a reservoir model
representing recharge, storage and transfer of water in the
epikarst and unsaturated zone, based on meteorological data
from nearby weather stations. Spring discharge during the
study period was recorded by four temporary monitoring sta-
tions (Chen and Goldscheider 2014). Extensive parameter es-
timation, sensitivity analyses, and calibration improved this

model (Chen et al. 2017, 2018), and the final version is used
in this study as a reference (Fig. 2).

Model ensemble generation

The first goal of this study is to generate an ensemble of
models that are structurally diverse, representing multiple pos-
sible geologic interpretations and conduit networks, yet still
plausible based on the hydrogeologic setting. Flow modeling
is used to reject nonbehavioral structures. This approach al-
lows the user to choose which aspects of the conceptual model
of the system should be varied in generating the structural
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Fig. 2 Reference model developed by Chen et al. 2018. The conduit network was drawn based on a combination of tracer test data, geologic constraints,
and hydrogeologic reasoning. Subcatchments were delineated along elevation bands

Table 1 Major springs included
in this study (after Goldscheider
2005, Goeppert and Goldscheider
2008, and Chen and Goldscheider
2014)

Spring Abbreviation Elevation (m asl) Observed discharge (m3/s)

Minimum Maximum

The estavelle QE 1,120 –0.5 4

Aubach QA 1,080 0 8

Sägebach QS 1,035 0.17 3.5
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model ensemble. The total runtime for the entire ensemble,
including rejection of nonbehavioral models and parameter
exploration, was approximately 2 weeks, run serially on a
Lenovo 910 laptop. Each geologic model run took approxi-
mately 10 min, conduit network evolution runs took between
1 and 5 min each, and flow model runs took between 2 and
10 min each. Model runtimes could be significantly decreased
by parallelization.

Data

For this study, the bulk of data used in previous modeling
work was set aside to mimic the more common scenario of a
minimally studied catchment. These data (tracer tests, cave
maps, and approximate conduit maps) were reserved for fu-
ture analysis and validation of the methodology. Datasets used
in this study were limited to existing geologic and topographic
maps, meteorological data, and spring discharge time series.
Five overlapping geologic maps (including representative
point strike and dip measurements, surface fracture traces,
and representative cross-sections) were digitized and com-
piled in ArcMap (released by Environmental Systems
Research Institute 2017) into one detailed map covering the
entire catchment (Goldscheider 2005 and related maps; Chen
et al. 2018; see the electronic supplementary material (ESM))
Topographic data were obtained as digital elevation model
(DEM) raster files, with 50 m × 50 m pixels, from the State
of Vorarlberg Digital Atlas. Meteorological data (hourly pre-
cipitation, air temperature, relative humidity) were recorded
by Chen et al. (2018) fromNovember 2013 to October 2014 at
nine weather stations across the catchment, and were interpo-
lated at a 100 × 100m grid resolution. Discharge was recorded
hourly for the same time period at the three major outlets of
the system (QE, QA, QS; Chen et al. 2018).

Inflows to the karst system were calculated according to
Chen et al. (2018). The meteorological data were fed to a
lumped linear reservoir model representing water storage
and drainage through the epikarst (Hartmann et al. 2012),
paired with the HBV snow routine to account for snow accu-
mulation and melt (Hock 1999). The output is a 100 × 100 m
grid of fast and slow recharge time series across the entire
catchment, which is then used as input for the groundwater
flow model.

Geologic model

The first step in generating a structurally diverse model en-
semble is to create a set of plausible three-dimensional (3D)
geologic models within which the karst networks will evolve.
In mountain catchments, it is generally accepted that the often-
complex geologic setting can largely control the system’s flow
behavior (Goldscheider 2011; Rogger et al. 2013), yet the
exact shape of the contact surfaces between units is difficult

to fully map, particularly in the subsurface. Representing the
geologic structure of the site is therefore extremely important,
particularly the shape of the lower boundary of the karstifiable
unit, as this is where conduits often form.

The ensemble generator presented in this paper models the
geology using an implicit approach (Lajaunie et al. 1997),
with the open-source Python package GemPy (de la Varga
et al. 2019; see ESM).

First, the stratigraphic sequence of the site was grouped
into four major hydrogeologic units, in ascending order from
oldest to youngest: a group of underlying low-permeability
units, the low-permeability Drusberg marl, the Schrattenkalk
limestone aquifer, and a low-permeability cover consisting of
the Garschella sandstone and younger units (Fig. 1c). Next,
point strike and dip orientation measurements for these units
were located on the geologic map and the coordinates (X, Y,
Z) were extracted from the DEM. Additional points were
hand-picked from the map and from cross-sections to con-
strain the contact interfaces between units. Then, the model
grid was defined based on the DEM, with a resolution of 251
columns × 200 rows × 52 layers, for a total of 2,610,400 cells.
The horizontal cell length and width were taken from the
50 m × 50 m DEM, while the vertical cell height was manu-
ally selected to be approximately one-quarter of the thickness
of the aquifer, or 27.5m. The vertical resolution can be refined
for more accuracy, but this significantly increases the compu-
tation time. The geologic model intentionally extends beyond
the catchment boundaries to avoid edge effects, and was sub-
sequently cropped.

GemPy interpolates the shape of the contact surfaces be-
tween units based on the stratigraphic sequence, and the ori-
entation and interface data points. The resulting 3D model is
exported as a GSLIB file recording which unit is present in
each grid cell. To capture uncertainty with respect to the con-
tacts, the elevation of the input data points could be perturbed,
yielding multiple realizations of the geologic setting.
However, this paper focuses on variations in the karst conduit
network in a single realization of the geologic model (Fig. 3).

Conduit network model: SKS

Generating plausible conduit network maps within the aquifer
requires a computationally efficient karst evolution model.
The ensemble generator in this study uses the Stochastic
Karst Simulator (SKS), which models conduit evolution at a
watershed scale, constrained by hydrogeologic knowledge,
without solving the physical and chemical equations driving
speleogenesis (Borghi et al. 2012). Conduit evolution is in-
stead simulated based on the assumption that water will follow
a minimum-effort path within the boundaries of the
karstifiable units, computed using a fast-marching algorithm
(Sethian 1996). This approach is sufficiently fast to allow the
generation ofmany equiprobable, hydrogeologically plausible
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realizations (Borghi et al. 2012). This tool has been combined
with parameter estimation to identify properties of the conduit
network such as hydraulic conductivity of the matrix, number
of major conduits, and conduit radius, for a small number of
synthetic and real systems (Borghi et al. 2016, Sivelle et al.
2020).

The SKS includes three stochastic components: a discrete
fracture network simulator (Borghi et al. 2015), an inlet point
generator, and a randomization of the karstification impacting
the hierarchy of the resulting cave conduit systems. Conduit
network realizations within the same geologic setting differ

from one another as a function of hydrogeologic parameters in
SKS such as the ratio between matrix and fracture conductiv-
ity (Table 1). It is therefore possible to generate many different
conduit networks for the same geologic setting. For this study,
a subset of the available parameters was chosen to vary, and
100 SKS realizations were run, each using a different combi-
nation of parameter values selected randomly from a range
(Fig. 4a,b). The parameter ranges were defined based on a
combination of the recommended range provided in the SKS
documentation and published fracture maps and orientations
for the study site (Goldscheider 2002; Cramer 1959), but the
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Fig. 3 a Simplified three-layer geologic model created with GemPy. b
Cross-section of the GemPy model. c Expected schematic cross-section
based on field mapping (Fig. 1d). Cross-sections are not to scale (the

expected cross-section is schematic and the GemPy cross-section is in
units of model cell indices)
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ranges were also expanded to add variability to the models.
The inlets to the system can be assigned as fixed locations
(based on hydrogeologic observations such as known dolines
or vertical shafts), random points within a defined spatial ex-
tent (if the actual inlet locations cannot be observed), or a
combination of fixed and random locations (to account for
both observed inlets and potential unknown inlets). For this
site, lines of dolines and vertical shafts were observed along
major synclinal axes. Based on these observations, in the ref-
erence model, every node along the branches of the network
(which follow the synclinal axes) is treated as an inlet captur-
ing runoff and infiltration from the area drained by that node,
for a total of 20 inlet nodes. During the conduit network gen-
eration process for this study, to achieve a diverse ensemble of
networks and avoid overly imprinting the SKS-generated net-
works with the reference network, the number of fixed inlet
locations known from the reference model was varied in each
run, but no random inlets were added. The runs with fewest
inlets included only the fixed inlets corresponding to the end-
points of the reference network’s branches (“top5” in Table 2),
while the runs with the most inlets included the uppermost 3
nodes of the reference network’s branches (“top13” in
Table 2).

For each realization, SKS outputs a list of nodes and con-
duits making up the network, with one node in each model
grid cell containing a conduit. This high-resolution network is
then simplified by removing intermediate nodes along the
conduits, using karstnet, a Python package for the statistical

analysis of karst networks based on graph theory (Collon et al.
2017; Fig. 5; see ESM). The outlets of the system are then
identified as the nodes located closest to the true (X, Y, Z)
coordinates of the springs. To enable flow modeling, a new
node is added at the true spring coordinates and a new conduit
is created connecting the spring to the closest SKS-generated
node.

Flow model: SWMM (EPA)

Groundwater flow through each proposed conduit network
was simulated using the Storm Water Management Model
(SWMM) from the United States Environmental Protection
Agency (Rossman 2015). SWMM has been used in several
previous studies to simulate karst systems, with good results
(Campbell and Sullivan 2002, Peterson and Wicks 2006, and
Vuilleumier et al. 2019, among others), and performed well in
previous efforts to model the site used in this study (Chen and
Goldscheider 2014; Chen et al. 2017, 2018). Choosing the
same flow model used in the reference model also enables
easier comparison between model predictions from this study
and from the reference model.

he SWMM is a dynamic rainfall-runoff and conduit flow
model, that routes surface runoff into and through a series of
linear subsurface conduit segments. However, it should be
noted that SWMM is not designed to simulate contaminant
transport, and it does not consider conduit–matrix exchanges,
so it would not be suitable for systems with high conduit–

Table 2 Parameters being varied
across iterations of the SKS (see
Borghi et al. 2016 for complete
documentation)

Parameter Description Range of values

FMAfra Multiplier indicating how much faster the fast-marching algorithm
can travel through fractures than through matrix

1.2, 1.5, 2, 3, 5,

8, 10, 12, 15, 20

fixedInlets Set of fixed inlets to start walkers from for the fast-marching
algorithm, selected from the upper nodes of the base model

top 5, top 9, top 13

nfrac Total number of fractures to generate 50, 100, 200, 400, 600,

700, 900, 1,000, 1,500,
2,000

minLen Minimum fracture length (m) 1, 2, 5, 10, 15, 25, 50,
100, 150, 300

maxLen Maximum fracture length (m) 350, 400, 500, 600, 700,

800, 900, 1,000, 2,000,
5,000

minStrike Minimum fracture strike (azimuth) for each family. The number of
items in each set indicates the number of fracture families

(35,105), (35,105,70),
(120,110,145,35)

maxStrike Maximum fracture strike for each family. The number of fracture
families must match the number of families in minStrike

(45,115), (45,115,80),
(130,120,155,45)

minDip Minimum fracture dip (degrees below horizontal) for each family.
The number of families must match minStrike.

(80,80), (80,80,80),
(80,80,80,80)

maxDip Maximum fracture dip (degrees below horizontal) for each family.
The number of families must match minStrike

(90,90), (90,90,90),
(100,100,100,100)

fracFactor Relative proportion of total fractures from each family. The number of
families must match minStrike

(8,2), (6,3,1),
(5,3,1.5,0.5)
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matrix exchange rates (Peterson and Wicks 2006). For the
Gottesacker karst system, although gradient inversion has
been observed during high-flow events (Goldscheider 2005),
the conduits generally drain the matrix. This is particularly
true in the elevated parts of the system, where most of the
karstified rock volume belongs to the unsaturated zone. In this
setting, the conduits follow the troughs of the synclines, and
lateral inflow can be observed from the “matrix” to the “con-
duits”, mostly with open-channel flow conditions in the con-
duits. This is different than the classical conceptual model of
“conduit–matrix exchange”, where both zones are fully satu-
rated, and the exchange can be described by means of hydrau-
lic head difference between matrix and conduits and an em-
pirical exchange coefficient.

For this study, although conventional conduit–matrix ex-
changes are not represented, inflow from the matrix to the con-
duits is inherently implemented in the model structure of
SWMM, where subcatchments contribute flow towards a net-
work of conduits. This approach is well-adapted to the hydraulic
setting and karst aquifer configuration for this study site.

Flow through the conduits is represented by solving the
Saint Venant equations (Eqs. 1 and 2), governing conservation
of mass and momentum for the unsteady flow of water
through a conduit network (Rossman 2015). When the con-
duit is unpressurized, Manning’s equation is used to compute
the friction slope, but when the conduit becomes pressurized,
the Darcy-Weisbach equation is used instead (Rossman
2015). The Saint Venant equations are solved in the flow
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0 2
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Fig. 4 A single realization of a conduit network generated by SKS given
the geologic constraints as defined by the GemPy model. Overlying and
underlying layers have been removed to show only the karstifiable
limestone. Inset: A heatmap of 100 proposed conduit networks

generated by SKS. Darker lines indicate areas where many different
realizations placed a conduit in the same location. Lighter lines indicate
areas where fewer realizations placed a conduit
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generated conduit network before
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routing model by converting them into an explicit set of finite
difference formulas that compute the flow in each conduit and
the head at each junction for each time step. The parameters
required for each conduit are the length, diameter, elevations
for entering and exiting conduits, and roughness.

∂A
∂t

þ ∂Q
∂x

¼ 0 ð1Þ

∂Q
∂t

þ
∂

Q2

A

� �

∂x
þ gA

∂H
∂x

þ gAS f þ gAhL ¼ 0 ð2Þ

Equations (1) and (2) represent Saint Venant equations for flow
through a conduit, where x is the distance along the conduit (m), A
is the cross-sectional area (m2), Q is the flow rate (m3/s), H is the
hydraulic head of water in the conduit (m asl), Sf is the friction
slope (calculated from Eqs. 3 or 4), hL is the local energy loss per
unit length, and g is the acceleration due to gravity (m/s2).

For this study, a Pythonmodule was developed to automate
the process of converting SKS-generated conduit networks to
a SWMM format, distributing recharge inflows across
subcatchments within the system, assigning hydraulic param-
eters to the conduits, running the SWMM model, and retriev-
ing and visualizing model outputs (see ESM).

For each SKS-generated conduit network in the ensem-
ble, the node coordinates and the conduit connections be-
tween nodes are imported from text files to Python ob-
jects. Then, because the node locations are different for
each network, the boundaries of the surface subcatchment
drained by each node must be redrawn. This is done using
a pre-existing Python package, pysheds, which computes
the surface flow direction of each grid cell based on the
DEM, and thus determines which grid cells drain to spec-
ified pour points (i.e., conduit network nodes; see ESM).
The slow and fast distributed recharge timeseries data for
each cell are then summed by subcatchment and convert-
ed to node “inflow” and “baseflow” timeseries (in the
terminology of SWMM). Conceptually, this is a simpli-
fied representation of the epikarst collecting and funneling
precipitation inputs into vertical shafts leading to the sub-
surface system.

Hydraulic parameters can then be assigned to each
node and conduit in Python. The module developed for
this study uses all of the preceding information to write a
SWMM input file, runs SWMM, and then extracts the
spring discharge timeseries at all three system outlets
from the SWMM output file. All parameters and outputs
for each run are stored as both Python objects and csv
files. An additional function calculates basic statistics for
each spring’s outflow timeseries: Nash-Sutcliffe efficien-
cy, root mean square error, volume error, maximum, min-
imum, and mean discharge, and the percentage of time
that each spring’s discharge is below a fixed threshold.

Parameter exploration

Full parameter optimization of all hydraulic parameters for
each conduit network is too computationally expensive in
the context of an ensemble modeling approach. Therefore,
for this study, a minimalist parameter exploration strategy
was adopted. All parameters except the conduit diameter were
held constant, with values selected based on the upper and
lower bounds used in the reference model, which themselves
were selected based on common ranges for this type of karst
system (Chen et al. 2018). A simple sensitivity analysis was
first done on the reference model, to confirm that it was not
highly sensitive to parameters other than conduit diameter.
Diameter was found to be far more determinant of the spring
discharge pattern than roughness, the only other parameter not
already provided by SKS. The exact value of the conduit
diameters was found to have far less importance than the lo-
cation of conduit restrictions: conduits closer to the system
outlets were more sensitive to restriction than conduits farther
from the system outlets. Therefore, only two diameter values
were considered: large (4.0 m) and small (1.0 m).

To limit the computation time for flow modeling in
SWMM, a subset of ten conduit networks was first selected
among the 100 SKS realizations, with the goal of representing
the maximum diversity of possible networks. Diversity was
based on how different each network was from the others,
according to its outflow behavior.

To select the subensemble, each of the 100 networks was allo-
cated four initial flow simulations, each with conduit diameter
restrictions in different locations. To determine where to restrict
the diameters, a hierarchical conduit order (similar to Horton or-
dering for surface streams) was calculated as the subcatchment
area drained by that conduit over the total catchment area
(Borghi et al. 2016). Since higher-order conduits, closer to the
system outlets, are more sensitive to restrictions, the four initial
flow simulations explore only the effect of restrictions in high-
order conduits. For each network, the following four restriction
scenarioswere applied: (1) the highest-order 25%of conduits were
restricted, (2) only the conduit immediately connected to QE was
restricted, (3) only the conduit connected toQAwas restricted, and
(4) only the conduit connected to QS was restricted.

The worst-performing 10% of conduit networks were
rejected based on the combined results of this first round of
flow simulations. For each spring, the root mean square error
(RMSE) was summed across all four initial flow simulations.
Then, the conduit networks with the highest summed RMSE
were dropped from the ensemble: 4% were dropped for QE,
3% for QA and QS (to prevent the behavior at any one spring
from dominating the outcome), totaling a 10% rejection rate
and resulting in a remaining ensemble of 90 conduit networks.

k-means clustering (Kriegel et al. 2017) was then used to
select a reduced ensemble of the ten most-different networks,
using spring discharge timeseries statistics as parameters:
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maximum, minimum, and mean discharge, and percentage of
time that each spring’s discharge is below a fixed threshold
(see ESM for a full explanation of k-means clustering
methods).

For this study, each conduit network in the reduced ensem-
ble of tenmost-different SKS-generated networks was allocated
an initial set of 20 SWMMruns, with different conduit diameter
sets for each run. These 20 SWMM runs were then reduced to a
subset of ten runs for analysis, first by rejecting the worst-
performing 10% as nonbehavioral, then by selecting the ten
runs with the lowest flow continuity errors, to form the final
ensemble of 100models (10 SKS networks × 10 SWMM runs).

All conduits were initially assigned large diameters
(4.0 m), and a probability-weighted random set of con-
duits to restrict to 1.0 m diameter was sampled, without
replacement, for each flow simulation. The probability of
a conduit being selected for restriction was based propor-
tionally on its order. The conduit diameters were sampled
only from a binary distribution, and not from a Gaussian
distribution. The goal of this strategy is not to optimize
the conduit hydraulic parameters or to perform an in-
depth analysis of the parameter uncertainty, but simply
to represent a rough estimate of the uncertainty in spring
discharge originating from parameter uncertainty, as op-
posed to uncertainty in the structure of the conduit net-
work. Future work will explore alternative strategies for
efficiently representing and minimizing parameter uncer-
tainty, such as Monte Carlo Tree Search (Silver et al.
2016), or genetic algorithms (Karpouzos et al. 2001).

After rejecting nonbehavioral models and reducing the
size of the ensemble, 100 models remain for analysis,
each of which yields timeseries of predicted discharge at
the three major springs in the karst system (Fig. 6). For
comparison, the reference network was also allocated 20
SWMM runs with different parameter sets, using the same
process as for the SKS-generated networks.

To enable further comparisons across the ensemble, a
global error metric was calculated for each model, sum-
marizing the overall goodness of fit between the model-
predicted spring discharge and the observed spring dis-
charge. The global error was calculated as the sum of
the RMSE for each of the three springs, divided by the
mean observed discharge at that spring (Eq. 3). This
metric is only meaningful in terms of relative value,
but it is useful to compare overall model fit across the
ensemble.

∑
RMSEQE

QobsQE
þ RMSEQA

QobsQA
þ RMSEQS

QobsQS
ð3Þ

Equation (3) shows the global error for each model in the
ensemble. RMSE is the root mean square error at each of the

three springs (QE: the estavelle, QA: Aubach Spring, QS:
Sägebach Spring). Qobs is the mean observed discharge at
each spring.

Results

Geologic model

The geologic model generated by GemPy generally resembles
the expected geologic structure as determined by previous
field mapping (Figs. 1 and 3). The most apparent difference
is that the upper contact between the Schrattenkalk limestone
and the overlying Garschella sandstone, which in reality co-
incides with the land surface over much of the model extent,
often appears several meters below the land surface in the
GemPy model. However, the general shape of the
Schrattenkalk unit, and particularly its lower boundary, resem-
ble the expected structure as visualized in cross-section (Fig.
3c). Because conduits tend to form along the lower boundary
of a karst unit, this boundary is more important than the upper
boundary. The small vertical underestimation of the location
of the Garschella-Schrattenkalk contact is therefore not
concerning for the purposes of this study.

Conduit network models

The initial ensemble of 100 SKS-generated conduit networks
(Fig. 7) include networks that, subjectively, appear visually
diverse and different from one another with respect to their
overall configuration, their degree of branching, and their total
number of conduits. However, almost none of these proposed
networks visually resemble the reference network, such that
they are not collectively exhaustive of conceptual space. The
general structure of three or four branching conduits
connecting almost perpendicularly to a main collector conduit
along the axis of the Schwarzwasser Valley does exist in many
of the SKS-generated networks, but the upper conduits rarely
follow the synclinal fold axes as had been expected. Many of
the proposed networks also bypass the Mahdtal Valley drain-
age axis (the northmost syncline) almost entirely, although
there is clear and repeated tracer evidence for this connection
(Goeppert and Goldscheider 2008). The only SKS network
that closely resembles the reference network is No. 90 (Fig.
7, rightmost group of columns, row 90); however, this net-
work was not selected by the clustering algorithm for inclu-
sion in the subensemble.

Flow predictions

Many networks that are visually dissimilar from each other
performed equally well in predicting discharge timeseries with
a good overall fit to the observed discharge. Additionally,
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many networks that were visually dissimilar from the refer-
ence network perform equally well or better (Figs. 7 and 8a).

The networks in the initial ensemble appear sensitive to
structure but less sensitive to differences in parameter values.
This can be observed visually in Fig. 7: rows where one of the
SWMM runs in that row are highlighted as having a high
global error (darker colors) generally include multiple high-
error runs, rather than the high-error runs being scattered
across different networks. However, even on networks where
most of the parameter sets perform poorly, the parameter set
where all the lower conduits are restricted results in much
lower error (note the absence of any highlighted runs in the
“lower” columns). These results suggest that for this initial
ensemble, while the network structure contributes significant-
ly to the differences in performance across models, some com-
binations of hydraulic parameters can also consistently affect
model performance.

With only four parameter sets per network in the initial en-
semble, a more quantitative sensitivity assessment would not be
reliable; however, for the subensemble of ten SKS networks,
with ten behavioral SWMM runs per network, a more detailed
analysis is possible. The range of error values in the first round of
four SWMM runs generally bracketed the range of error values
in the ten runs on the subensemble (Fig. 8b). This validates the
assumption that the first-round SWMM runs were representative
of a wide enough range of behaviors to use in selecting the
subensemble. The subensemble, though it does not include any
networks that visually resemble the reference network, does in-
deed represent a diversity of means and variances in global error
values, as well as appearing subjectively visually diverse in terms

of general network configuration, number of conduits, and de-
gree of branching (Fig. 8c).

Across the 100 models in the subensemble, plus the 10
uncalibrated SWMM runs on the reference network, the orig-
inal, calibrated reference model had the lowest global error, as
expected. However, all of the uncalibrated runs on the refer-
ence network had global error values within 15% of the refer-
ence model, suggesting that extensive calibration is not nec-
essary to achieve an acceptable performance. Unexpectedly,
for six out of the ten SKS-generated networks, at least one
parameter set performed almost as well (global error values
within 15%) as the calibrated reference model, and many per-
formed as well or better than the uncalibrated SWMM runs on
the reference network (Figs. 8b and 9). Even conduit network
structures that are far from the reference (such as No. 91 or
No. 86, which, respectively, lack connections known to exist
from tracer tests, or include a large number of conduits that
cross over structural anticlines to connect in straight east–west
lines to the springs) were able, with minimal parameter selec-
tion, to yield passably good predictions of spring discharge
behavior that were quite similar to predictions yielded by the
same process on the reference network (Fig. 9). These struc-
tures are therefore not mutually exclusive in terms of flow
behavior. Based on the performance of the SKS-generated
conduit network that yielded the lowest-error prediction of
spring discharge after testing only ten essentially randomly
selected parameter sets, if that same network were subjected
to further parameter optimization and calibration, it seems
likely that it would be able to predict spring discharge behav-
ior nearly as well as the reference model, despite having a very
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Fig. 6 Predicted spring discharge timeseries for 100 different models at
each of the three springs in the system: a QE (the estavelle), b QA
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jected to the same SWMM parameter assignment process as the SKS
networks, yielding ten runs (gold). The fully calibrated reference model
(brown) and the observed discharge timeseries (black) are also shown
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different structure. This suggests that the global spring dis-
charge behavior is insufficient to discriminate between con-
duit network structures.

Returning to the model ensemble as a whole, there
do not appear to be any detectable patterns governing
which parameter sets or which networks perform better
than others (Fig. 10). There do not appear to be cate-
gories of conduits more or less sensitive to restrictions,
nor do there appear to be particular network configura-
tions that yield higher or lower global errors. Certain
networks are insensitive to parameter values, performing
similarly under all conduit restriction conditions, while
others are highly sensitive to parameter values. Some

SWMM runs with restrictions in the lower conduits per-
form well, while other perform poorly, and vice-versa.

The only visible trend is that models with a higher percentage
of restricted conduit segments tend to perform better (Fig. 11).
This may be related to the binary nature of the diameter values
used in this study, where conduits were assigned to be either
wide or narrow, rather than being assigned diameter values se-
lected from a distribution. Chen and Goldscheider (2014) indi-
cate that the Gottesacker system also has variable conduit diam-
eters along the principal drainage axis, and is uniquely sensitive
to restrictions in these sections of the network, which may also
contribute to the impact of conduit diameter in spring discharge
predictions in this study. However, many models with few
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restricted conduits still perform as well as models with many
restricted conduits. A high percentage of restricted conduits is
therefore not a requirement for good performance. It should also
be noted that Fig. 11 does not indicate which conduits are re-
stricted. It is therefore possible that in the SKS-generated net-
works, spring discharge is only sensitive to restrictions in certain
conduits, such that if only those conduits are restricted, the per-
centage of restricted conduits is low, but the model performance
is good. Increasing the percentage of restricted conduits might
then result in better performance only in that it increases the
likelihood that the sensitive conduits are selected for restriction.
However, even within this subset of more-sensitive conduits,
there may not be a single unique combination of diameters that
yields a best fit. Additionally, it is difficult to compare restriction
locations across networks since conduit indexing is unique to
each network. Because the conduit configuration is different in
each network, parameter sets cannot easily be compared across
networks, and the specific conduits that are most sensitive to
restriction will be different in each network.

The lack of discernible patterns and the good performance
of networks very different from the reference network support
earlier findings by Borghi et al. (2016) that flow predictions
are not sufficient to identify a unique network structure.
However, although flow predictions are not discriminatory
between network structures, they are more sensitive to the
network structure than to the hydraulic parameters (in this
study, the distribution of conduit diameters). This can be seen
by comparing the mean distance between flow models within

a network to the mean distance between flow models across
networks. The distance between any pair of flow models (i, j)
is calculated as the sum of squared differences (SSD) between
the flow values predicted at each timestep (Eq. 4). The mean
distance between models within a network is then the mean of
the SSDs for every possible combination of pairs (n choose k)
of flow runs within that network. The mean distance between
models across different networks is the mean over all net-
works of the means of the SSDs for every possible pair of
flow runs across every possible pair of networks (see ESM
for a more complete explanation of SSD calculations). These
calculations can be performed for each of the springs in the
system, as well as for the sum of the SSDs at all three springs.

Sum of Squared Differences SSDð Þ

¼ ∑
t

Qi tð Þ−Qj tð Þ
� �2

ð4Þ

Equation 4 finds the distance between two models, calcu-
lated as the sum of squared differences (SSD), where Qi(t) is
the spring discharge predicted by model i at time t, andQj(t) is
the spring discharge predicted by model j at time t.

The mean distance between all flow runs on a single net-
work can be thought of as the overall dissimilarity from one
another of predictions generated by different parameter sets on
that network, i.e., the importance of the parameters in deter-
mining spring discharge behavior. Themean distance between
networks can be thought of as the importance of the network
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Fig. 8 a Initial conduit network ensemble performance, sorted by
increasing variance. The worst-performing 10% of models were rejected
as nonbehavioral (empty circles). A subensemble (blue) of ten behavior-
ally diverse conduit networks was selected by k-means clustering based
on spring discharge timeseries metrics for four first-round SWMM runs.
Many of the networks in the initial ensemble performed similarly to the
reference model (gold). b Subensemble performance. Ten behavioral

SWMM runs for each of the ten networks selected for the subensemble
(light blue circles), as well as the initial four SWMM runs from the first
round (dark blue circles). Several of the networks in the subensemble
yielded one or more SWMM runs with global error values within the
same range as the reference model (gold; i.e. between the minimum-
and maximum-error SWMM runs on the reference model). c Conduit
network maps for each of the networks in the subensemble
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structure in determining spring discharge behavior. If the
mean distance between networks is larger than the mean dis-
tances within each network, that would suggest that the net-
work structure has a larger influence on spring discharge pre-
dictions than the parameter values. For the subensemble of
networks considered in this study, the distance between net-
works is larger than the distance within networks in every case
except for one network (No. 83), where the distance
between models within the network is larger at the
Sägebach spring only (Fig. 12). This suggests that, as
expected based on previous work highlighting the im-
pact of model structure on prediction uncertainty
(Refsgaard et al. 2006; Enemark et al. 2019), the con-
duit network structure is more determinant of spring
discharge behavior than the hydraulic parameters (in this
case, the conduit diameter).

Discussion

Limitations

The ensemble approach to karst modeling demonstrated in
this study provides a way to represent structural and concep-
tual uncertainty when the location of the conduits is unknown,
by generating multiple competing hypotheses as to the net-
work configuration. It is flexible in the choice of which con-
ceptual aspects to vary, and how many computational re-
sources to devote to parameter estimation. The bulk of the
model code is open-source (with the exception of the 3D ver-
sion of SKS; an open-source 2D version, pyKasso, is in prog-
ress (see ESM).

However, this approach can still be improved. For the flow
models, epikarst routing is not considered, despite its
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Fig. 9 Predicted and observed spring discharge timeseries at the three
major springs in the system (a–c), focused on the month of August to
show detailed comparison. The reference model matches the observed
spring discharge patterns closely. The best model in the entire ensemble
of 100 is also able to follow the general pattern of peaks and recessions,

and is similar to the best flowmodel on the reference network, although it
tends to underpredict baseflow, particularly at the lower two springs.
However, the network configuration of the SKS-generated model (d) is
very different from that of the reference model (e)
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importance for recharge processes and spring discharge
curves. The groundwater flow processes modeled using
SWMM are based on the assumption of perfectly circular
conduit cross-sections, with only two possible diameter
values: wide (4 m) and narrow (1 m). Conduit–matrix ex-
changes are not taken into account, limiting this approach to
conduit-dominated systems. Additionally, the system inflow
is subject to error because it is calculated based on automati-
cally delineated subcatchments for each network, determined
by a combination of surface topography and network node
locations. This automatic process occasionally results in gaps
where cells on the border between two subcatchments are not
assigned to either catchment, and any precipitation falling on
those cells is then not included in the system inflow.

For the conduit models, the conduit network subensemble
used for the bulk of the analysis in this study is not exhaustive:
it does not fully sample the conceptual space, as evidenced by
the lack of any proposed networks resembling the reference
network. This is due in part to the nature of the SKS conduit
generation algorithm, which uses only the distance through
the medium to the spring, computed using a fast-marching
algorithm, and assuming a certain base level. Because it is
assumed that water can flow anywhere when the reservoir is

saturated, this distance neither accounts for gravity nor for real
flow conditions, especially in the unsaturated zone. Finally,
the network simplification (Fig. 5), which is necessary to re-
duce computation time, may oversimplify the conduit network
configuration and obscure the original network proposed by
SKS. Despite these conceptual gaps, many of the models in
the ensemble were able to predict spring discharge behavior
quite well.

Interpretation of results

The model ensemble generated for this study did not contain
any conduit networks resembling the reference network. It
was therefore not exhaustive. Many conduit networks in the
ensemble that did not resemble each other or the reference
network predicted the spring discharge behavior almost as
well as the calibrated reference model, and as well or better
than uncalibrated SWMM runs using the reference network.
The networks in the ensemble were therefore also not mutu-
ally exclusive: spring discharge behavior was insufficient to
discriminate between conduit network structures; however,
the flow behavior is still useful as a low-cost first-pass filter
to reject nonbehavioral models. Additionally, the conduit
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network structure did control model predictions of spring dis-
charge behavior more than the flow parameters (i.e. the con-
duit radius).

These results support previous work indicating that, be-
cause model structure is a major contributor to prediction un-
certainty (Bredehoeft 2005), approaches using multiple com-
peting model structures are particularly desirable when a
good understanding of prediction uncertainty is desired
(Neuman and Wierenga 2003). It is not necessarily re-
quired to identify a single “best” network structure in
order to benefit from a multi-model approach: simply
acknowledging and incorporating structural uncertainty
into the generation and interpretation of model predic-
tions is useful in and of itself when making decisions
based on those predictions.

Three main questions for further reflection arise from these
results:

1. What information and/or processes were used in creating
the reference network structure that were not available to
SKS as it generated possible network structures (resulting
in networks that did not resemble the reference network)?

2. What, if any, different types of additional data might be
able to discriminate between model structures where flow
data could not?

3. What lessons can be drawn for water resource manage-
ment from this ensemble modeling approach?

One of the initial goals of this study was to generate an
ensemble of models that were collectively exhaustive,
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many models with few conduit restrictions also have low error values.
Having 50% or more of conduits restricted increased the likelihood of
fitting the data, but was neither sufficient nor necessary to do so (some
models with few restrictions perform well and vice-versa)
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resulting in an ensemble that includes at least one structure
that is close to the “true” structure. If this is not the case, as
occurred for the model ensemble in this study, the ensemble
can be narrowed down to a subset of more probable networks,
and then repopulated using those networks as “seeds,” per-
haps over the course of multiple iterations. In the initial en-
semble of 100 in this study, only a single network (No. 90)
resembled the reference network, and it was not selected as
part of the subensemble of ten that was used for the bulk of the
analysis. Two reasons for this appear possible: either the
GemPy-SKS network generation process is lacking key infor-
mation that went into creating the reference network, or the
reference network is lacking information that is reflected in
the networks proposed by SKS. The reference network is the
result of the integration of large amounts of quantitative and
qualitative information after many years of fieldwork and re-
search on this particular karst system, so that although the
precise location and properties of the conduits are uncertain,
there is a very high degree of certainty that the general con-
figuration of the network is correct. What, then, is missing
from the GemPy-SKS network generation process, resulting
in an ensemble with so little resemblance to the reference
network?

The GemPy geologic model used as an input to SKS indi-
cates only which formation is present in each model cell. It
does not include any information as to the orientation of that
formation in each cell, or the presence/absence of faults. Other
data that was not included but is available includes tracer test
results indicating known connections, speleological maps for
known portions of the conduit network, and more qualitative
information such as the presence of dolines aligned along
synclinal fold axes in the upper part of the catchment. All of
this information was used in the creation of the reference net-
work. A first approach to integrating this information into the
SKS-GemPy conduit network generation process could be to
test adding each type of data individually, in order of increas-
ing costliness of acquisition, regenerating an ensemble of net-
works at each step. This would allow for the identification of
not only which types of data result in the most noticeable
changes in the composition of the ensemble, but also which
types of data provide the most information per unit cost. A
first step could be to replace the SKS fast-marching algorithm
with a flow simulation accounting for gravity, which is more
computationally intensive and requires additional boundary
condition information, but would provide more control over
the conduit generation (Borghi et al. 2012).

Another goal of this study was to identify what additional
data would be most useful in discriminating between models
in the ensemble. Previous work by Borghi et al. (2016) sug-
gests that solute transport predictions are significantly more
discriminatory of conduit network structure than flow predic-
tions. This is likely because solute transport is much more
dependent on particle flow paths, whereas similar flow

behaviors can result from many different flow paths.
However, it is likely that multiple different structures will fit
tracer data as well as flow data (Borghi et al. 2016; Sivelle
et al. 2020). Although tracer test data will not identify a single
“best” structure, integrating tracer test data will still reduce
prediction uncertainty, particularly uncertainty in predictions
of solute transport, by enabling the rejection of some struc-
tures in the ensemble. Tracer test results are therefore the
logical next data to include if contaminant transport is a pre-
diction of interest to the model end users. Because SWMM is
not designed to model solute transport, simulating tracer tests
on the networks in the existing ensemble would require trans-
lating them into a different modeling tool such as
MODFLOW-CFPv2 (Reimann and Hill 2009; Reimann
et al. 2013), which can be coupled to UMT3D to solve solute
transport (Hu and Xu 2016), or FEFLOW (Trefry andMuffels
2007). However, a more qualitative use of existing tracer test
data would be possible without running a complete transport
simulation. Because much of the available tracer test data does
not include continuous discharge measurements, the calcula-
tion of tracer recoveries involves some degree of uncertainty,
but underground connections can clearly be identified and
transit times, flow velocities and dispersion can be calculated.
Many networks could be rejected by considering the networks
as directed graphs and testing whether the points with connec-
tions demonstrated by tracer test data are also connected in
those networks. Networks where demonstrated connections
are missing, or where connections that have been demonstrat-
ed to be absent are present, would be rejected. Additionally,
the available flow data could be considered more carefully.
Rather than simply comparing the global fit across the entire
available timeseries at all three springs, a more detailed anal-
ysis could focus on each individual spring, and on flow be-
havior under specific conditions (high, low, or intermediate
flows). If the predictions of interest are the behavior of a spe-
cific spring under specific conditions, then such an analysis
could be more discriminatory, without the need for any addi-
tional data collection.

The model ensemble simulations in this study, although
they are based on minimal input data, can still provide useful
information for practical water resource management applica-
tions in karst systems. The primary lessons to be learned are
that:

1. Themodeling approach and type of data collection chosen
for any system should be dependent on the predictions of
interest to the users and managers of that system. If the
prediction of interest is the spring discharge only,
attempting to define the conduit network structure in de-
tail may not be necessary, and can in fact lead to a mis-
leading sense of certainty about the structure, because
many different conduit networks can yield similar dis-
charge predictions. In this case, a simple lumped model
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or an artificial neural network model, neither of which
consider physical processes, may be more appropriate be-
cause they are much easier to calibrate and can reproduce
rainfall–discharge relationships quite well (Hartmann
et al. 2014) Depending on the purpose of the model, the
value of the insights as to the system’s internal processes
and functioning that are achieved by a distributed model
that represents the conduit network configuration may not
be proportional to the increase in effort/cost to create such
a model, and may simultaneously falsely increase users’
confidence in model predictions. However, if the predic-
tion of interest is where the conduits are located, or how
the system functions internally, expending the effort to
build a distributed model exploring the range of possible
conduit network structures is necessary. The ensemble
modeling approach in this study is also modular. If the
prediction of interest is how the system will respond to
contamination events, a flowmodel capable of simulating
transport could be substituted for SWMMwithout chang-
ing the overall approach. Additional data of types other
than spring discharge and geologic maps would then also
be needed.

2. To adequately represent uncertainty in model predictions
when the network structure is unknown, devoting compu-
tational resources to testingmultiple model structuresmay
be as important as or more important than testing a large
number of parameter sets.

Conclusions

This paper proposed a multi-model approach to explore the
contributions of structural uncertainty to prediction uncertain-
ty in unmapped conduit networks, and to guide further data
collection for maximum informativeness. The new approach
was tested by applying it to a well-understood study site.

In this approach, projections of flow behavior are based on
an ensemble of many competing conduit network maps, each
of which is minimally calibrated for hydraulic parameters,
using a simple binary distribution (wide conduit diameter or
narrow conduit diameter). This stands in contrast to the more
common tactic of creating a single, thoroughly calibrated
“best estimate” of the conduit network map.

Flow predictions were then used to reject nonbehavioral
structures and to discriminate between different proposed
structures. The range of simulated flow behaviors represents
the range of uncertainty associated with the model ensemble,
providing multiple possible narratives for the system function-
ing that can be used in planning by decision-makers. The
ensemble can also guide further data collection to ensure that
a wide range of conceptual space is represented, to discrimi-
nate between models that disagree with one another, and to

reduce uncertainty with respect to predictions of interest to
users and managers of the specific system being modeled.

In this study, none of the conduit networks in the ensemble
resembled the “true” network (as represented by a reference
network developed based on extensive field observations).
However, many networks, which were also all different from
one another, yielded similar predictions of flow behavior. This
supports the conclusion that proposing a single network struc-
ture may misleadingly minimize the structural uncertainty as-
sociated with model predictions of the system behavior.
Additionally, the differences between multiple flow simula-
tions on the same network were almost always smaller than
the mean difference between flow simulations across net-
works, suggesting that the conduit network structure has a
larger influence than the hydraulic parameters in controlling
flow behavior. The results of this initial modeling effort can
now guide future work to sample structural space more broad-
ly and discriminate between different network structures. This
will require integrating additional information that is available
but was intentionally withheld such as tracer test data, orien-
tation data for geologic units, a more nuanced conceptualiza-
tion of the conduit evolution process, and discharge behavior
at individual springs in response to specific high, intermediate,
or low flow conditions.

Finally, the ability of multiple different structures to repro-
duce observed discharge patterns suggests that modelers and
water resource managers should be in conversation about the
purpose of the modeling during the model construction pro-
cess, before allocating data collection andmodeling resources.
Constructing an ensemble from minimal available data, while
computationally intensive, remains much faster than tradition-
al model building techniques, particularly when allocating on-
ly minimal resources to parameter estimation. This may help
modelers keep multiple competing conceptualizations of the
system in mind at once, rather than becoming attached to a
single “best” conceptualization (since multiple other concep-
tualizations may be equally able to reproduce the system’s
behavior). This approach then enables a more complete exam-
ination of sources of uncertainty, factoring in both structure
and parameters. Analyses similar to those performed in this
study can be repeated for the same ensemble, but with differ-
ent predictions of interest (in this case, perhaps the system’s
response to a contamination event), to determine whether
some of the structures in the ensemble project system behav-
iors that would be concerning to end users. Additional data
collection efforts can then be targeted towards data that is
more discriminatory between the different proposed model
conceptualizations, and that specifically discriminates be-
tween models that predict concerning behaviors and models
that do not.
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