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simulation: a test on alluvial sediments
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Abstract The hydrodispersive properties of porous
sediments are strongly influenced by the heterogeneity
at fine scales, which can be modeled by geostatistical
simulations. In order to improve the assessment of the
properties of three different geostatistical simulation
methods (Sequential indicator simulation, SISIM; Transition
probability geostatistical simulation, T-PROGS; Multiple
point simulation, MPS) a comparison test at different scales
was performed for a well-exposed aquifer analogue. In the
analysed volume (approximately 30,000m®) four operative
hydrofacies have been recognised: very fine sand and silt,
sand, gravelly sand and open framework gravel. Several
equiprobable realizations were computed with SISIM, MPS
and T-PROGS for a test volume of approximately 400m> and
for the entire volume, and the different outcomes were
compared with visual inspection and connectivity analysis of
the very or poorly permeable structures. The comparison of
the different simulations shows that the geological model is
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best reproduced when the simulations are realised separately
for each highest rank depositional element and subsequently
merged. Moreover, the three methods yield different images
of the volume; in particular MPS is efficient in mapping the
geometries of the most represented hydrofacies, whereas
SISIM and T-PROGS can account for the distribution of the
less represented facies.

Keywords Alluvial sediments - Aquifer characterization -
Geostatistics - Hydrofacies - Heterogeneity

Introduction

Progress towards improved characterization and modeling of
porous groundwater reservoirs requires the integration of
several different methods and involves the use of multiple
data-sets, consisting of both descriptive “soft” geological data
and “hard” sedimentological and hydrological parameters.
Hard data are usually available in correspondence of wells
and are often distributed in space by stratigraphic correlations
and geostatistical interpolations. This paper focuses on the
modeling of the hydrofacies distribution in a mixed-bedload/
suspended-load alluvial aquifer analogue, using different
geostatistical techniques calibrated on the direct observation
of the lithofacies/hydrofacies distribution and sedimentary
architecture on outcrops. Different geostatistical simulation
methods are available to achieve such a goal (Deutsch 2002).

In this study, lithofacies distribution was simulated by
three pixel-based simulation methods which are commonly
used for water and oil reservoir modeling: sequential
indicator simulation (SISIM; Goovaerts 1997; Deutsch and
Journel 1998), transition probability geostatistical simulation
(T-PROGS; Carle and Fogg 1996; Ritzi 2000; Lee et al.
2007) and multiple point simulation (MPS; Strebelle 2002;
Liu et al. 2005). Pixel-based algorithms for facies modeling
are fast and allow direct hard-data conditioning,
avoiding iterative time-consuming approaches. These
techniques permit simulation of the different facies in
the form of coded indicator-type variables, where each
value corresponds to a given facies.

Traditional geostatistical methods such as SISIM and
T-PROGS, are based on random function models, chosen
according to the geometrical affinity of their outcomes
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with the geological architecture under investigation. The
model parameters (e.g., facies proportion, object density,
variogram, etc.) are inferred from available quantitative
data, and the model realizations are generated and
conditioned to these data. This approach is effective in
practice provided that the structure of the random function
model captures the geometrical features. Although this
approach has been successfully applied to many cases, it
is not always possible to build a random function model
which represents some complex geological architectures,
for instance, in a meandering channel system. MPS was
proposed by Guardiano and Srivastava (1993) for modeling
subsurface heterogeneity. The first efficient implementation
of the method was developed by Strebelle (2002) and it
started to be an active research topic in recent years. Unlike
traditional geostatistical simulations based on analytical
random function models, MPS does not utilize such an
explicit definition of a random function. It makes direct use
of empirical multivariate distributions inferred from training
images. MPS is applicable to any geological environment,
provided that (1) a training image representative of the
geological heterogeneity is available and (2) the essential
features of this training image can be expressed by statistics
defined on a configuration involving few points (Hu and
Chugunova 2008). Some authors (Ortiz and Deutsch 2004;
Ortiz and Emery 2005; Bastante et al. 2008) proposed to
include multiple point statistics into sequential indicator
approaches. In particular, Ortiz and Deutsch (2004) and
Bastante et al. (2008) tested such an approach for
applications to mining resource evaluation and showed
how the introduction of multiple-point statistics could
improve the results. Comparison of the applications of
sequential indicator simulations and MPS approaches
to map the secondary porosity of carbonate rocks,
starting from computer tomography images, suggested
that the geometry of the edges is more rounded and
more similar to the actual images for MPS than for
SISIM (Casar-Gonzalez 2001). The comparison between
truncated pluri-Gaussian simulations, sequential indicator
simulations and multiple point simulations of a channel-fill
turbidite sandstone analog (Falivene et al. 2006) in the
Eocene Ainsa basin (northeast Spain) shows that variance
based methods fail to capture the undulations of facies levels.
On the other hand, multiple-point models do capture and
reproduce more continuous and undulating hetherolithic and
mud beds, but not as accurately as was done by object-based
modeling methods, which provide the more realistic results
for this test. Also Scheibe and Murray (1998) compare
sequential Gaussian simulation with sequential indicator
simulation and a Markov chain approach and conclude that it
is important to recognize the differences between the
simulation methods in order to choose the proper one taking
into account both the geological structure to be modeled and
the kind of predictions for which the model will be used.
Such comparisons have often considered the connec-
tivity of the very or poorly permeable structures (Alabert
et al. 1992; Zinn and Harvey 2003), an important feature
when characterizing aquifers and reservoirs with respect to
their flow properties. He et al. (2009) compare SISIM and
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T-PROGS to model clay content in soils and report better
results for T-PROGS, as regards both the reproduction of
minor classes and connectivity. An example of comparison
of connectivity obtained with Gaussian and indicator-based
non-Gaussian models is given by Journel and Alabert
(1989). Failing to capture subsurface connectivity may bias
the forecasts of any underground fluid flow and transport
modeling project (Goémez-Hernandez and Wen 1998;
Knudby and Carrera 2005; Klise et al. 2009). This concept
has been seldom treated systematically and only a few
authors have used connectivity in order to compare results of
different flow and transport models (Alabert et al. 1992; Zinn
and Harvey 2003; Knudby and Carrera 2005); recently,
some authors used the connectivity information to constrain
the stochastic simulations (Renard and Caers 2008). An
alternative approach to pixel-based methods is given by
object-based methods, which are not considered in this
paper: these two approaches have been compared with each
other by, for example, Journel et al. (1998); Seifert and
Jensen (2000), and Falivene et al. (2006).

The aim of this work is to compare the performances of
SISIM, T-PROGS and MPS when applied to complex
alluvial sediments, like point-bar/channel systems, and at
different scales. The test was conducted on an aquifer
analogue which was exposed in a sand-gravel quarry dug
in the Lambro Valley (northern Italy, just south of the
Milan conurbation). Here the analysis is focused on the
characterization of hydrofacies heterogeneity. This is part
of a research project described by dell’Arciprete (2010)
and summarized by dell’ Arciprete et al. (2010c), which
includes also the assessment of the effects that fine-scale
heterogeneity has on flow and transport properties by
numerical experiments. A preliminary comparison between
SISIM and T-PROGS for the whole volume is given by
dell’Arciprete et al. (2010a), whereas a preliminary
comparison among the three simulation methods can
be found in dell’Arciprete et al. (2010c). Within this
framework, the specific goal of this paper is to provide
a quite broad and thorough description of the tests
performed with the three simulation methods in order
to improve the understanding of the strengths and the
weaknesses of SISIM, T-PROGS and MPS at different
scales and with a varying ratio between the numbers of
the conditioning data and of the simulated grid cells.

In the next section the case study and the methods are
briefly summarized. After this, a description of the data set
used for the geostatistical simulations is provided, before
the presentation of the principal results and the relative
discussion.

Case study and methods

The geological environment of the study site is a
Holocene point-bar—channel system of the Lambro River,
a left tributary of the Po River that flows south of Milan
(Ttaly) encased in a terraced valley. The sediments belong
to an intermediate terrace located between the present-day
river course and the last glacial maximum alluvial plain.
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The aquifer analogue was exposed in a sand-gravel open-
air quarry, the so called “Ca’ de Geri quarry site”, located
in Sant’Angelo Lodigiano, south of Milan (Fig. 1).

This area was chosen because a large exposure of
sediments belonging to two different phases of the
river’s evolution could be studied. The sediments were
progressively removed during quarrying, so it was
possible to study the internal architecture of the point-bar and
channel system, by the analysis of different outcrops. In the
same area, before the removal of the sandy-gravel material,
geophysical surveys were conducted in order to support the
reconstruction of the external geometry of the sedimentary
bodies (Mele 2004; Bersezio et al. 2007). The analyzed
volume is approximately 30,000 m® (47 mx75 mx8.6 m),
covering a horizontal surface of about 3,500 m?.

The quarry site exposed three superimposed deposi-
tional units formed by sands, gravels and subordinate silt
and clay, which could be attributed to an historical age, as
it was proved by the findings of Roman to Middle Age
and Renaissance Age artifacts (bricks, tiles, ceramics),
imbricated within dunes and bars (dell’Arciprete 2005;
Bersezio et al. 2007). Two units correspond to the exposed
parts of two composite point bars and channels with minor
channel fills on top. They were named respectively unit A
(the lower, with Roman-Middle Age findings) and unit B
(the upper, with Renaissance Age findings). Unit A shows
the lateral transition from a composite point bar to main
channel fill, and unit B is mostly represented by a
composite point bar, with chute channel scour and fills
on top. A younger channel (unit C, bounded by the
erosion surface 3 and partly anthropogenic) eroded part of
unit B. Together with units A and B, unit C is cut by the
modern and present-day courses of the Lambro River.

The simulation methods require conditioning data,
which, for this case study, are taken from the vertical
facies maps of five almost orthogonal quarry faces. For
modeling purposes a classification was adopted that is
based on four hydrofacies that were defined after
permeametric analyses on samples (dell’Arciprete et al.
2010a, 2010b): least permeable hydrofacies (F+fS refers
to very fine sand (fS) and silt-clay (F) from topmost
channel-fill, silt/clay plugs, drapes and balls), poorly
permeable hydrofacies (S refers to sand from point-bar
and channel fill bedforms), permeable hydrofacies (SG+
GS is sandy gravel, SG, and gravelly sand, GS, from point

bars) and most permeable hydrofacies (G is open
framework gravels from the lower parts of the lateral
accreted units). F+fS may be referred to as F for short,
and SG+GS may be referred to as SG for short.

The geostatistical simulations were performed on three
different domains (Fig. 2):

1. A test volume (11.4 mx11.4 mx2.85 m) discretized
with small (0.2 mx0.2 mx0.05 m) cells or fine grid.
This test volume was chosen in an area where many
conditioning data, belonging to two orthogonal quarry
faces, were available covering part of the three units A,
B and C (Fig. 2);

2. The entire volume (46 mx74 mx8.4 m) discretized
with large (0.4 m=0.4 mx0.1 m) cells or coarse grid,;

3. The entire volume discretized with fine grid
(0.2 mx0.2 mx0.05 m).

Notice that the Cartesian coordinates x, y and z
correspond to west—east, south-north and bottom-up
directions, respectively.

In order to evaluate efficiency and pitfalls of the
different techniques, at different operative scales, the
entire volume was reconstructed in two different ways:
(1) simulating the undivided entire volume; (2) simulating
separately the units, then merging the simulations through
the « boundary that separates units A and B, which was
obtained after kriging of the data points from logging and
a ground penetrating radar survey.

The size of the cells was chosen in order to capture the
heterogeneities at the hydrofacies scale. This size allows
the simulations to be elaborated, allocating a reasonable
computation time using a PC or a workstation. A short
description of some properties of the simulation methods
is given in the following.

Sequential indicator simulation (SISIM)

SISIM is based on the indicator variograms for the
different facies and has been applied at different scales
in a variety of depositional settings such as alluvial
(Journel et al. 1998; Seifert and Jensen 1999; Zappa et
al. 2006; Felletti et al. 2006; Falivene et al. 2007), deltaic
(Cabello et al. 2007), aeolian (Sweet et al. 1996), and
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Fig. 1 Location map of a the study area in Italy and b the case study site
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Fig. 2 Domain of the geostatistical simulation. Discretization of
the facies maps after hydrofacies classification, and location of the

test volume, are shown

deep-marine “turbiditic” settings (Journel and Gomez-
Hernandez 1993; Falivene et al. 2007).

There are legitimate criticisms against SISIM: (1) the
models can appear very patchy and unstructured; (2)
indicator variograms use two-point statistical measures only;
(3) SISIM often leads to uncontrolled and geologically
unrealistic transitions between the simulated categories; (4)
the cross correlation between multiple categories is not
explicitly controlled. Despite these criticisms, there are many
good reasons to consider SISIM: (1) the required statistical
parameters are easy to infer from limited data sets; (2) the
simulation results are reasonable in settings where large-
scale curvilinear features are absent; (3) the algorithm is
robust and provides a straightforward way to transfer
uncertainty in categories through the resulting numerical
models. Semivariogram computation and SISIM were
performed using GSLib (Deutsch and Journel 1998).

Transition probability geostatistical simulation
(T-PROGS)

T-PROGS is based on the probabilities of transitions from
one facies to another and on the modeling of such
probabilities with Markov chains (Fogg et al. 1998; Carle
et al. 1998). It has been applied to model facies
distribution in braided rivers (Felletti et al. 2006), in
alluvial fans (Fogg et al. 1998; Carle et al. 1998;
Weissmann et al. 1999; Weissmann and Fogg 1999;
Fleckenstein et al. 2006) and in glaciofluvial depositional
systems (Proce et al. 2004). Other methods profit from the
use of the Markov chain approach within the Bayesian-
maximum entropy view (Christakos 1990; Bogaert 2002)
as proposed, for example, by Allard et al. (2011) and by
Zhang and Li (2007).

All the steps for simulations, including visualization,
are implemented with the T-PROGS library of FORTRAN
programs. Transition probability matrices are generated
using GAMEAS (Carle 1999), a modification of the
GSLIB (Deutsch and Journel 1998) code GAMV for
estimating spatial statistics from irregularly spaced data.
Transition probabilities in the horizontal plane are
assumed isotropic; separate transition probabilities are
determined for the vertical direction. Markov chain models
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are generated using MCMOD (Carle 1999). Finally, simula-
tion is performed with TSIM (Carle 1999).

Multiple point simulation (MPS)

MPS has been proposed and developed quite recently
(Caers 2001; Strebelle 2002; Liu et al. 2004; Straubhaar et
al. 2011) and it has been used to reconstruct turbiditic
reservoirs using three-dimensional (3D) training images
and conditioning data from boreholes and geophysical
prospecting (Strebelle et al. 2003); also 3D reconstructions
starting from 2D training images at the pore scale have
been proposed by Okabe and Blunt (2005).

At each grid node, the conditional probability density
function (PDF) of the facies is obtained by considering
hard data, previously simulated nodes and training images.
The training image provides a conceptual description of
the geological heterogeneity. It is analyzed within a
template of fixed dimension; all the possible patterns
embedded in that template are counted. This allows one to
evaluate the conditional probability that a given facies is
found at the node to be simulated from the conditioning
data and the previously simulated nodes.

Multiple-point geostatistics should represent an
improvement with respect to the classical variogram-
based geostatistical methods because it characterizes
the spatial structure by considering more than two data
points (spatial configurations of several points are
searched for in this method, whereas variograms
account for correlation between pairs of points only),
enabling the reproduction of complex patterns.

A difficulty of the MPS approach is in providing
adequate training images that correspond to conceptual
representations of the heterogeneity to be reproduced. The
images depict the patterns of geological heterogeneities
deemed relevant to the application under study. The
training images do not carry any locally accurate
information on the real structure; they merely reflect a
prior geological/structural concept. Thus, a training image
can be an unconditional realization generated by an
object-based algorithm, or a simulated realization of an
analogous field, or simply a geologist’s sketch processed
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Fig. 3 Facies proportions computed in the conditioning faces for
the whole volume and for units A and B separately
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with computer-aided design tools and properly digitized
(Strebelle 2002). In this study the discretized vertical
facies maps were used as training images. This poses a
problem because these images include non stationarity and
are only two dimensional while MPS requires a 3D
training image to generate a 3D simulation (see discussion
in Comunian et al. 2010). Different techniques are
currently under development to overcome that difficulty.
Here, MPS was performed with a customized version of
the code IMPALA (Straubhaar et al. 2011). More
precisely, the simulations use two perpendicular training
images. The conditional probability density distributions
computed from these two images in two different
directions are combined following the same principle as
Okabe and Blunt (2005) but instead of using a linear
combination of the individual PDFs, a multiplicative
formula proposed by Bordley (1982) was used. In that
formula, a weight of 0.5 was given to both PDFs extracted
from the two perpendicular training images; moreover,
facies proportions are not explicitly introduced in the
simulation.

To compare the results obtained by the different
geostatistical techniques, connectivity indicators have
been used. Several definitions of connectivity can be
given (Vassena et al. 2009). In this study, two indicators of
facies connectivity are computed: total and intrinsic
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connectivity. They are based on the probability that pairs
of connected points belong to a subset, characterized by a
given property, e.g. texture or hydraulic conductivity, as
proposed in Vassena et al. (2009). In particular the total
connectivity of a facies is the probability that two, non
coincident, points of the domain belonging to the given
facies are connected; the intrinsic connectivity is the
probability that two points are connected, conditioned on
the fact that both belong to the given facies. Total
connectivity depends not only on the intrinsic connectivity
of the given facies, but also on the facies proportion, whereas
intrinsic connectivity is largely independent of the facies
proportion, as shown by simple examples in the appendix of
Vassena et al. (2009). These indicators share some properties
of the connectivity functions proposed by Allard et al.
(1993); Allard (1994) and Western et al. (2001), but they do
not depend upon the separation lag between the points.

Table 1 Input and output facies proportions in the test volume. The
output proportions for the three simulation methods are expressed as
mean+standard deviation over the ensemble of 50 realizations

Input parameters SISIM T-PROGS MPS
F 18% 6.6%+1.3% 17.9%+0.2% 0.5%+0.2%
S 29% 30.6%+3.7% 29.2%+0.2% 48.4%+4.8%
SG 43 % 49.4%=+3.5% 42.9%+0.3% 39.5%+3.9%
G 10% 13.4%+1.0% 10.0%+0.1% 11.6%+1.8%
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Dataset for the geostatistical simulation

The dataset used to compute the geostatistical simulations
consists of:

1. Facies proportions computed on the vertical facies
maps at different hierarchic levels (Fig. 3). In particular
different facies proportions are used to simulate either
units A and B separately or the whole volume. Note
that the facies F is more abundant in the entire volume
than in units A and B, because unit C is rich of fine
sediments.

2. Vertical facies maps discretized with both small (0.2 mx
0.2 mx%0.05 m) and large (0.4 mx0.4 mx0.1 m) cells.

3. Directional variograms for SISIM simulation, computed
along the three space coordinates, for units A and B
separately and for the whole volume, with both small and
large cells. For the simulations of the test volume different
variograms are computed, using data from the portions of
the facies maps inside the test volume.

4. Transition probabilities for T-PROGS simulation,
computed along the three space coordinates, for units
A and B separately and for the whole volume, with
both small and large cells.

5. The almost perpendicular facies maps were used as 2D
training images for MPS simulations. The training
images consist of two geological sections derived from
the field observations. A template of 7x7 pixels was
used in each direction, as well as four levels of multi-
grid. The non stationarity displayed in the training
images and in the simulation domain has not been
treated explicitly.

Variogram models and transition probabilities are fitted
to the experimental variograms and transitional probability
curves, which were obtained separately for the three
Cartesian coordinates. Some details (experimental and
model variograms for SISIM, transition rate for T-
PROGS, training images for MPS, etc.) are given in the
electronic supplementary material (ESM).

Fifty simulations for each method (SISIM, T-PROGS
and MPS) were performed on the test volume, which
consists of 185,193 (57x57x57) cells; a portion of
discretized facies maps inside the test volume (19,380
cells) was used as conditioning data. On the entire volume
(coarse grid), 10 simulations were performed for each
simulation method. For this volume, which consists of
1,787,100 (115%185x84) cells, all the discretized facies
maps (i.e. 30,116 cells) were used as conditioning data.
On the entire volume (fine grid) one simulation for each
method was performed in order to limit computing times
for facies modeling. In a first attempt, the undivided
volume (236x373%x172=15,140,816 cells) was simulated
using all the discretized facies maps (120,868 cells) as
conditioning data. A second simulation was obtained by
simulating the separate units A and B (with respectively
78,435 and 28,372 cells as conditioning data), and then by
cutting and merging the two simulated fields across the
kriged o« boundary between units A and B.

To achieve the goals of this work it is important to
validate the results, i.e., to check whether the simulation

SISIM . SISIM |SISIM SISIM
: 0 §
=3 [‘175 = i ';-?55 ;::5 < : [(1:.:5
’ 05 ) i |05 | -0.5 § 05
0.25 025 0.25 ) 0.25
\ 0.0 0.0 0.0 0.0
(@) N probF>0.5||(b) probS>0.5 | (c) probSG>0.5 || (d) probG>0.5
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Fig. 6 Probability of finding each facies for the test volume with SISIM: a facies F, b facies S, ¢ facies SG, d facies G, and with MPS, e
facies F, f facies S, g facies SG, h facies G. The drawn regions correspond to the zones where the probability is greater than 0.5
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results reproduced the statistical parameters of the real
distribution of the hydrofacies; however, even more
important is the assessment of similarities and differences
among the results of the three simulation methods. The
comparisons between the geological model and the
simulation results and among different simulation methods
are performed in four different ways:

1. Visual inspection of the simulated volumes

2. 3D representation of the probability of occurrence of
each facies

3. Comparative image analysis of the vertical facies maps
and of sections cut through the simulated volumes at
increasing separation from the conditioning data

4. Connectivity analysis

Discussion of the results

Test volume

For each simulation method, one realization is randomly
selected out of the 50 simulations obtained for the test
volume and is shown in Fig. 4. The mean and the standard
deviation of facies proportions for the 50 simulations are
reported in Table 1. The facies proportions in the simulated
volumes are different from the proportions used as input
parameter, because of the averaging effect between the

Fig. 7 Equiprobable simulation number 1 of 10, computed in
the entire volume (0.4 mx0.4 mx0.1 m cells) with a SISIM b
T-PROGS and ¢ MPS

Hydrogeology Journal

Table 2 Input and output facies proportions in the entire volume,
coarse grid. The output proportions for the three simulation methods
are expressed as mean+standard deviation over the ensemble of 10
realizations

Input parameters SISIM T-PROGS MPS

F 6% 6.8%+1.2% 6.8%+1.0% 2.6%%0.2%
S  61% 52.7%=+3.1% 59.8%+1.1% 67.4%=+1.4%
SG 28% 32.9%+2.5% 28.1%+1.0% 27.7%=+1.4%
G 5% 7.6%+1.1% 53%+03% 2.3%%0.2%

conditions imposed by different parameters (conditioning
data, proportions, variograms, etc). For SISIM, the final
proportions are highly dependent on the relative positions of
conditioning data and of the points randomly chosen to be
simulated first. If these points are located next to the
experimental data of a specific category, the proportion of
simulated values of that category tends to increase rapidly,
finally exceeding the global proportion, and it very rarely
returns to the objective. This effect becomes more significant
as the ranges of the indicator variograms increase and it
mostly affects the categories with low global proportions
(Soares 1998). In the case of MPS the training images
represent the strongest constrain.

Total and intrinsic connectivity indicators computed in the
test volume are displayed in the graph of Fig. 5. From the
computation of the connectivity indicators, it can be observed
that: (1) for MPS the total connectivity for facies S is higher
than for facies SG, instead for SISIM the total connectivity
for S facies is lower than for SG facies; (2) for MPS the
intrinsic connectivity of S facies is close to the intrinsic
connectivity of SG facies; (3) the intrinsic connectivity for G
facies is less than 0.1 for SISIM simulations.

From the 50 equiprobable simulations of the test volume,
the probability of occurrence for each facies was computed
(Fig. 6). At this scale the following results can be highlighted.

1. It was almost impossible to find a Markov chain model
fitting the transition probability statistics computed on

0.5
0.4 }
: Legend
AG
0.3
T SG
L3 S
4 [ ] F
0.2
0.1
008 . ‘
SISIM MPS T-PROGS

Fig 8 Total connectivity computed in the entire volume simulated
with SISIM, MPS and T-PROGS with coarse grid
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On the other hand, the same simulations cannot take
into account the geometry and distribution of the F
hydrofacies bodies. In order to improve the assess-
ment of this minor facies, some tests were
performed by changing the weights assigned to the
PDFs of the two faces. However, since the F facies
is present only in one of the orthogonal training
images, it was necessary to assign a very small
weight to the PDF of the other image in the
probability aggregation formula; but in that case
the F facies proportion was largely overestimated.

. SISIM reproduces S, SG and G hydrofacies bodies that

are less persistent than those generated by MPS; on the
other hand all the simulated hydrofacies have a good
and realistic spatial continuity (Fig. 6).

Fig. 9 Intrinsic connectivity computed in the entire volume Entire volume, coarse grid
simulated with SISIM, MPS and T-PROGS with coarse grid Figure 7 shows randomly selected examples of the realiza-

tions obtained on the entire volume, with the coarse grid, for

each simulation method. The mean and the standard
the conditioning faces of the test volume. At this deviations of facies proportions for the 10 simulations are
scale, in fact, there are few repetitions of the reported in Table 2. Notice that the proportions of F and G
hydrofacies bodies (that mimic the sedimentary facies for the simulations with MPS are significantly lower
architectural elements), so that transition probability than the input data, because this method reproduces the less
statistics are inadequate and therefore T-PROGS abundant facies only partially.

simulations are unsatisfactory for all facies at this

Total and intrinsic connectivity indicators are displayed

scale (Fig. 4). in the graphs of Figs. 8 and 9. From the 10 equiprobable

2. MPS reproduces laterally persistent hydrofacies bodies simulations of the entire volume simulated with the coarse
for the S, SG and G facies, which are the most grid, the probability of occurrence for each facies was
abundant in the conditioning faces used to derive computed (Fig. 10). At this scale the following results can
the training images. As a consequence, the MPS be highlighted.

technique reproduces well connected volumes of the
high permeability hydrofacies (SG and G), which 1.
could represent the preferential flow paths in the
considered region of the aquifer analogue (Fig. 5).

T-PROGS simulations generate a background of S
hydrofacies voxels, whereas the other hydrofacies are
sparse through the whole volume. In contrast, MPS

SISIM 100] |SISIM SISIM 100 [ SISIM -
[0.?5 [o.rs F-o_vs
. o050 —0.50¢ 0.
(@ N (b) (c) (d)
T-PROGS T-PROGS T-PROGS T-PROGS ::m
.s"’;l'_rs;': ‘ 0.00
(e) (f) (9) (h)
MPS 'UJO MPS 1.00| MPS MPS
(i) probF>0.5 ||() probS>0.5 || (m) probSG>0.5 ||(n) probG>0.5

Fig. 10 Probability of finding each facies for the entire volume (coarse grid) with SISIM a facies F, b facies S, ¢ facies SG, d facies G,
with T-PROGS, e facies F, f facies S, g facies SG, h facies G, and with MPS, i facies F, 1 facies S, m facies SG, n facies G. The drawn

regions correspond to the zones where the probability is greater than 0.5
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Fig. 11 a Training image face 3, discretized with coarse grid; b section cut into the MPS simulated volume (coarse grid, realization 4); ¢
location of face 3 (A—A’) and section B-B’ (shown in b). From these pictures the similarity between the shape of the S and SG hydrofacies

bodies in the simulated volume and in the training image are evident

simulations yield well connected volumes of SG hydrof-

acies bodies that alternate with the S hydrofacies bodies,

in agreement with the conditioning data-set (Fig. 11).
. MPS simulations can take into account the least
represented hydrofacies (F and G, Fig. 7) only
partially; nonetheless they can reproduce realistic shape
and size of the most abundant S and SG hydrofacies.
The most represented hydrofacies are reproduced by
MPS simulations in the whole volume as bodies whose
shape and size are very similar to those appearing in
the training images (Fig. 11).
T-PROGS simulations yield a more connected pattern of
the poorly permeable F hydrofacies, than the very
permeable G hydrofacies. Both S and G hydrofacies are
loosely connected in SISIM realizations (Figs. 8 and 9).

[\

et

Entire volume, fine grid
Two simulations of the entire volume with the fine grid
were obtained with each method, simulating either the
whole undivided volume or the units A and B separately
(unit C was not considered here, because of the very poor
available observation). The results are shown in Fig. 12.
In Table 3 facies proportions derived from the simulations
are reported.

Total and intrinsic connectivity indicators were com-
puted in the entire volume with the fine grid, for moving

blocks (57x57%57 cells, corresponding to 11.4 mx
11.4 mx2.85 m); the results are displayed in Fig. 13. On
the entire volume simulated with the fine grid, the
following results can be highlighted.

1. Visual inspection and comparison with the facies maps
and field observations show that SISIM and T-PROGS
yielded unrealistic results for the undivided volume of
units A and B. The realizations obtained with the
separate simulation of the two units were by far more
realistic (Fig. 12). In contrast, MPS yields more
realistic simulations for the undivided volume than
for the merge of the separate simulations of A and B.
MPS takes into account the differences between the
two units that are evident in the training images of the
entire volume, and works better over large volumes
than on small ones.

2. Image analysis shows that all the techniques underesti-
mate spatial continuity and size of the low-rank geological
elements (bodies composed of one hydrofacies) in the
case of the simulations realized separately for A and B.

3. The connectivity analysis performed on the volume
simulated with SISIM for units A and B separately was
considered. In this case, the S hydrofacies is more
abundant in unit A than in unit B. Nonetheless it looks
to be well connected among the whole volume (high
total connectivity in unit A, high intrinsic connectivity
in both units A and B). In contrast, the SG hydrofacies

Legend

B G
SG

S
E

(d)

(e)

(f)

Fig. 12 Simulations of the undivided entire volume (0.2 m>0.2 mx0.05 m cells) computed with a SISIM, b T-PROGS and ¢ MPS.
Simulations of units A and B computed separately using d SISIM, e T-PROGS and f MPS
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Table 3 Facies proportions of the entire volume, fine grid, simulated
by SISIM, T-PROGS and MPS, for undivided volume and unit
A-+unit B

Undivided volume Input parameters SISIM T-PROGS MPS
F 6% 7.1% 6.8% 2.8%
S 61% 58.7% 59.3% 49.5%
SG 28% 28.8% 28.8% 43.5%
G 5% 54% 5.1% 4.2%
Unit A+unit B
unit A unit B

F 5.0% 0.0%  3.5% 3.8% 3.1%
S 80.0% 22.0% 56.8% 57.4% 50.1%
SG 13.0% 67.0% 33.1% 32.8% 44.8%
G 2.0% 11.0% 6.6%  6.0% 2.0%

is more abundant in unit B than in unit A where it
shows a low connection degree. In the entire volume
case, some areas of well connected F and G hydrofa-
cies have been observed. However, the total connec-
tivity is low (Fig. 13).

4. The distribution of hydrofacies G (open framework
gravels along the lower part of the inclined bed-sets of
the composite bars) and F (meter-sized lenses of very
fine sand and mud at the top of minor channel elements
and decimeter-size mud clasts at their base) is not
reproduced by T-PROGS simulations, which yield a
scattered pattern of small clusters, sparse in a back-
ground occupied by facies S and SG. MPS yields better
results for background hydrofacies than for the least
abundant ones (Fig. 12). Simulations by SISIM
reproduced rather efficiently the size, shape, distribution
and orientation (sloping features of lateral and frontal
accreted elements) of these low-hierarchy elements
(dell’ Arciprete et al. 2010b, dell’ Arciprete 2010).

5. The geological model shows non-stationary transition
from SG and G hydrofacies association to S hydrofa-
cies, and less abundant F hydrofacies moving towards
the western and southern part of the volume, where the
composite point-bar to channel-fill transitions occur.
This trend is only partially reproduced by simulations.
Visual inspection of the simulated volumes reveals
periodical repetitions of the most permeable hydrofa-
cies G, at a separation distance that is a multiple of the
variogram range for SISIM and of the minimum of

transition probability for T-PROGS. MPS yields a sort
of repetition of S and SG bodies, imitating their shape
in the training images. In summary, the simulation
approaches used in this work do not account for the
non-stationary architecture of composite bars and
channels, and therefore do not properly reproduce the
real spatial trends of these sedimentary structures and
the number of connections.

6. SISIM and T-PROGS do not reproduce the low-rank
components of the architectural complexity, like minor
channels, erosion bases, etc. This problem affects many
pixel-oriented methods of simulation and, in this case,
it seems to arise from the fact that the semivariogram
and correlation matrix are a bivariate measure (two-
point autocorrelation), and therefore any non-linear
correlation structure (e.g., curved surfaces) cannot
be reproduced. MPS, in contrast, can reproduce the
shape of the curved structures, but fails to reproduce their
internal features at this scale. Moreover, vertical tenden-
cies at the scale of the bed-sets and bed-set groups (in the
range from 2 to 4 m), which are evident in the cross-
variogram and in the off-diagonal vertical transition-
probability plots of the facies maps, are partially lost in
the 3D simulation. The representation of such non-
stationary periodicities is still an open issue and cannot
be resolved using “classical stationary” semivariogram or
Markov chain models (Felletti et al. 2006).

A critical parameter in conditional simulations is the
ratio between the number of conditioning data and the
number of simulated cells. For the test volume this ratio is
equal to 0.105; in this case, MPS and SISIM produce
satisfactory simulations, whereas the differences between
the simulations performed over the entire volume with the
coarse grid (ratio equal to 0.017) and the fine grid (ratio
equal to 0.008) show that the use of small cells does not
significantly improve the results. In contrast, with MPS
the shape and the size of S and SG hydrofacies bodies are
partly lost. Differently, T-PROGS needs a significant
number of object repetitions and gives unsatisfactory
results for the test volume and for the unit B when
simulated as a stand-alone body.

Simulations of the undivided volume are less realistic
than simulations obtained separately for units A and B,

.41025 '08
00128 L
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i
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Fig. 13 a Total and b intrinsic connectivity computed in the SISIM simulated volume for moving blocks of 57x57x57 cells
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because these units are characterized by very different
statistical properties (frequency and correlation of hydrofa-
cies). In order to obtain realistic simulations it is necessary
that statistical properties do not vary significantly throughout
the studied domain (Falivene et al. 2007).

Conclusions

Three different pixel-oriented methods were applied to
simulate hydrofacies distribution in a point-bar—channel
aquifer analogue: SISIM, based on the facies correlation
length derived from the variograms; T-PROGS, based on
the transition probabilities, which take into account the
juxtaposition of the different facies; MPS, based on the
training images. Note that the MPS approach used here is
not conventional since it is based on the use of 2D training
images and a recombination of partial probability density
functions, while the traditional approach uses a full 3D
training image. Consequently the conclusions drawn on
the MPS method may not be general. Still, this work
emphasizes the difficulties related to the selection of a
training image when using MPS in real field applications.
From their distinctive characteristics the methods were
expected to properly reproduce different features of the
sedimentary heterogeneity: the length of the hydrofacies
bodies for SISIM, the transition between hydrofacies
(a proxy of their connectivity) for T-PROGS and the
shape of the hydrofacies bodies for MPS.

The results of the distinct simulations show the
different features of the analyzed volume effectively
reproduced by each method. MPS can take into
account the shape and size of the most abundant
hydrofacies bodies, which must occur at least in two
orthogonal training images, whereas SISIM and T-
PROGS can reproduce efficiently the distribution of
the less abundant facies.

To obtain realistic realizations with T-PROGS some
repetitions of the analyzed hydrofacies bodies along the
directions of the Cartesian axes are necessary. Otherwise
transition probability statistics cannot be estimated with a
sufficient accuracy, as it occurred in the simulations of the
test volume.

The simulation methods, specifically SISIM and T-
PROGS, yield more realistic results if units A and B are
modeled separately, because stochastic simulations work
better if the statistical properties of the simulated bodies
are homogeneous (Falivene et al. 2007).

The geological model shows a well-defined trend along
the NE direction, with a transition from prevailing gravels
to fine-grained sediments (fine sands). The simulation
methods used in this study take into account this non-
stationary behavior only indirectly, since it is introduced
through the data of the conditioning faces. The methods
reproduce stationary volumes in such a way that the
characteristics of the random repetitions of the hydrofacies
bodies depend on the simulation method and on the
parameters that characterize the underlying geostatistical
model. In fact, the separation between hydrofacies bodies

Hydrogeology Journal

varies over multiples of the variogram ranges (for SISIM)
or of the minimum transition probability (for T-PROGS).
In the MPS simulations, the shapes of these bodies are
similar to those appearing in the training images. The
increasing abundance of the gravelly hydrofacies G in the
upper part of the volume is better reproduced by MPS
simulations, whereas it can be reproduced by SISIM and
T-PROGS only if units A and B are simulated separately.

For an efficient pixel-oriented conditional simulation, a
significant number of conditioning data is needed. The
simulations of the entire volume with coarse grid, for
example, are more realistic than the simulations of the
entire volume with fine grid, even if the database has a
better accuracy than the discretization grids. This fact is an
effect of the ratio between the number of the conditioning
data and the number of simulated cells, which is much
greater for the coarse grid than for the small grid (1.7% vs.
0.8%). With the coarse grid simulations, however, the
features of the low hierarchic level are lost.
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