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Abstract
Subsurface characterization using inverse techniques constitutes one of the fundamental elements of hydrogeological modeling

applications. Available methods to solve inverse problems rely on a forward operator that predicts state variables for a given set
of subsurface parameters. As the number of model parameters to be estimated increases, forward operations incur a significant
computational demand. In this paper, we investigate the use of conditional generative adversarial networks (cGAN) as an emulator
for the forward operator in the context of a hydrogeological inverse problem. We particularly investigate if the cGAN can be
used to replace the forward operator used in the adaptive importance sampling method posterior population expansion (PoPEx)
with reasonable accuracy and feasible computation requirement. The cGAN model trained on channelized geological structures has
shown that the cGAN is able to reproduce the state variables corresponding to a certain parameter field. Hence, its integration in
PoPEx yielded satisfactory results. In terms of the computational demand, the use of cGAN as a surrogate forward model reduces
the required computational time up to 80% for the problem defined in the study. However, the training time required to create a
model seems to be the major drawback of the method.

Introduction
Reconstruction of subsurface heterogeneities is a cru-

cial step to make reliable predictions from groundwater
flow modeling. Due to the lack of direct observations,
inversion techniques are often required to identify the
unknown parameters of the system using the observed
state data. In hydrogeology, many approaches and solu-
tions to the inverse problem have been proposed. Several
review papers (Carrera 1988; de Marsily et al. 2000; Zhou
et al. 2014; Linde et al. 2015) cover these methods in
detail. An important aspect is that it is well known, since
the work of Hadamard (1902), that inverse problems are
generally ill-posed when they are framed in a determin-
istic manner: the solution may be nonunique, it may not
exist, or it may be unstable. When the inverse problem
is framed in a probabilistic manner (Tarantola and Valette
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1982; Mosegaard and Tarantola 1995), these issues are
not relevant any more. The aim is not to find a unique
solution, but instead to obtain the probability distribu-
tion of the parameter values that is compatible with the
observed state variables, the known physics, and the prior
information about the parameters. In addition, the compu-
tational burden required to solve the inverse problem can
be considered as a stumbling block. Most inverse mod-
eling techniques are iterative and require a large number
of forward model runs. Improvements to solve inverse
problems often seek to address the above-mentioned
issues.

Deep learning (DL) has gained momentum in recent
years and could help to solve the inverse problem
efficiently. Applications have shown the power of this
technique in various fields (Collobert and Weston 2008;
Hinton et al. 2012; Xu et al. 2014; He et al. 2016). It
has lately been adopted in the geoscience community
as well. As described by Marçais and De Dreuzy
(2017), the main motivations to use DL techniques
comprise mitigating computational costs, model reduction,
category classification and uncertainty quantification.
As such, several studies explored adopting DL in
geosciences for low dimensional parametrisation (Laloy
et al. 2017), inversion (Chan and Elsheikh 2017; Mosser
et al. 2019), porous media reconstruction (Mosser et al.
2017, 2018a, 2018b) and generating realistic geological
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models honoring physical measurements (Dupont et al.
2018). Particular implementations for hydrogeological
problems include emulating computationnally expensive
reactive transport models (Laloy and Jacques 2018),
bidirectional mappings between the parameter space-
model state space (Sun 2018) and surrogate modeling
(Tripathy and Bilionis 2018; Zhu and Zabaras 2018; Mo
et al. 2019a, 2019b).

The purpose of this paper is to investigate the
feasibility of using a conditional generative adversarial
network (cGAN) as a surrogate model for the forward
operator in a hydrogeological probabilistic inversion
problem. In distinction from previous surrogate modeling
studies using DL (Tripathy and Bilionis 2018; Yang et al.
2018; Zhu and Zabaras 2018; Zhu et al. 2019; Mo et al.
2019a, 2019b), we assess the practical integration of
a DL algorithm in the posterior population expansion
(PoPEx) algorithm (Jäggli et al. 2018) to perform the
inversion in a probabilistic manner. PoPEx is based on
the principle of an adaptive importance sampling strategy
(Bugallo et al. 2017) but designed specifically for the
categorical inverse problem. PoPEx aims at identifying an
ensemble of categorical fields representing, for example,
the rock types—such as channels and lenses—within an
aquifer such that the resulting models would reproduce
the observations of state variables within an acceptable
error range. In previous papers (Jäggli et al. 2017, 2018),
it was shown that PoPEx was faster than other Markov
Chain Monte Carlo methods to solve the inverse problem
in the categorical case. However, as in most inversion
algorithms, PoPEx needs a forward operator to compute
the state values based on a given parameter field. This is
the most time consuming part in the inversion procedure.
In this paper, we evaluate the possibility to emulate and
replace the forward operator with a cGAN. We propose
a structure for the cGAN and evaluate the quality of the
results when used in the inversion procedure. The tests are
made using PoPEx, but the results are more general since
the cGAN method could be used in many other inverse
approaches.

The rest of the paper is organized as follows. Section
“Methods” provides an overview of the inverse problem
formulation, adaptive importance sampling algorithm and
the cGAN methods. Section “Numerical Experiment”
presents the problem setup used in the study and along
with the cGAN architecture used. Details about the cGAN
training, predictions and the use of the surrogate model in
the inversion are given in Section “Results.” The paper is
concluded in Section “Discussion and Conclusion” with a
discussion.

Methods

Inverse Problem Formulation
This section introduces the probabilistic inverse prob-

lem formulation following Tarantola (2005). The gen-
eral aim is to identify the aquifer parameters from a
set of state variable observations dobs (e.g., hydraulic

heads, contamination concentration, or discharge rates)
and associated measurement errors. In a probabilistic
framework, solving the inverse problem means identifying
the posterior probability distribution of the model param-
eters. Using the terminology of Tarantola (2005), a model
m = {m1, m2, . . . , mn} is a finite set of parameters which
fully describes the physical system of interest. It can be,
for example, a map of hydraulic conductivities.

In this paper, we consider the case of a categorical
inverse problem: a model m represents a map in which
each cell mi can only take s possible different values
corresponding for example to different rock types. This
problem is difficult because most of the inverse methods,
relying on partial derivatives or covariances, cannot han-
dle discrete parameters properly (Linde et al. 2015). These
models (or maps) can be generated using any geostatistical
technique able to simulate categorical values. Each model
is then a realization of a complex multidimensional and
categorical prior probability distribution denoted ρ(m).

Given a model m, the flow response is computed
using a forward operator g that solves the partial
differential equations describing groundwater flow. This
mapping allows to forecast the model responses d = g(m)
at the observation locations. The calculated values d
are used to assess how well a given model m is able
to reproduce the observed data dobs . This is quantified
through the likelihood function L(m) that is constructed
by assuming a given distribution of errors.

The solution of the inverse problem is then expressed
by characterizing the posterior probability σ (m) as
follows:

σ(m) = cρ(m)L(m). (1)

In the above equation, c denotes a normalization
constant. Neither ρ(m) nor L(m) have a fully analytic
expression and therefore most methods rely on Monte
Carlo techniques (Mosegaard and Tarantola 1995).

Posterior Population Expansion
A detailed presentation of PoPEx is given in Jäggli

et al. (2018). Here, we summarize the approach. The
method is a modified adaptive importance sampler
(Bugallo et al. 2017). The models mi are generated from
a proposal probability distribution and weighted according
to their importance (see Section “Posterior Prediction”).
The proposal distribution is adjusted during the itera-
tions and tends toward the target posterior distribution
σ (m).

In practice, the algorithm iteratively expands a set
of models Mk = {m1, . . . , mk }. For each model, the
mean-square error between the predicted gi (mj ) and the
reference values dobs

i is computed

MSE(mj ) = 1

nobs

nobs∑
i

[gi(mj ) − dobs
i ]2. (2)

nobs represents the number of observation points and
σ the standard deviation of the observation errors. The
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likelihood is expressed as a function of the mean square
error

L(mj ) = Cexp

[
−MSE(mj )

2σ 2

]
, (3)

with the constant C being unknown. This is why, at
each iteration, PoPEx uses (and update) a normalized
likelihood:

L̃(mj ) = L(mj )

k∑
r=1

L(mr )

, j = 1, . . . , k. (4)

To generate a new model mk + 1, PoPEx performs a
geostatistical simulation with nk conditioning data points.
Three steps are involved.

First, the number of conditioning points nk is drawn
from a uniform distribution over {0, 1, . . . , nmax}, where
nmax is the maximum number of conditioning points
specified by the user.

In the second step, PoPEx identifies the locations and
parameter values (rock types or facies) that correspond
to high likelihood values. This is done by comparing
two probability distribution maps. The first is denoted
Q = {q1, . . . , qs}, with s the number of facies and
qi the probability map for the facies i . It describes the
prior information based only on the geological data and
geostatistical model. The second, P k = {pk

1, . . . , pk
s }, is

updated at each iteration k . It corresponds to the facies
probability maps weighted by the normalized likelihood
L̃(mj ). To identify in a probabilistic manner the link
between the flow data and the facies, PoPEx computes
the Kullback-Leibler divergence (KLD):

D(P k||Q) =
s∑

i=1

pk
i log

(
pk

i

qi

)
. (5)

In every location, the KLD map shows how different
the two distributions are. PoPEx will then place randomly
the nk conditioning data but with a higher probability in
regions of high values of the KLD. At those locations,
the facies values are then drawn randomly from the local
Pk pdf.

The third and last step is the conditional geostatistical
simulation. In this paper, PoPEx uses DeeSse (Straubhaar
2019), an efficient implementation of the Direct Sampling
multiple-points statistic (MPS) method (Mariethoz et al.
2010; Mariethoz and Caers 2016).

Posterior Prediction
The parameters of a groundwater flow model are gen-

erally identified because the model is needed to make
a prediction f (m) of a quantity of interest (e.g., con-
taminant travel time, drawdown in a place of interest,
maximum sustainable pumping rate, etc.). In a probabilis-
tic framework, the aim is to estimate the expected value
μ = Eσ [f (m)] of that prediction. PoPEx, being an impor-
tance sampling technique, estimates μ using a weighted

average:

μ ≈
N∑

k=1

w̃kf (mk). (6)

N is the number of models in the ensemble, w̃k is the
weight for model k . By assuming that the conditioning
points are sufficiently distant to be considered independent
(nmax must be small enough), Jäggli et al. (2018) show
that it is possible to express the weights from the Q and
Pk maps as follows:

wk = L(mk)

nk∏
j=1

qr(j)(xj )

pr(j)(xj )
, (7)

where r(j ) returns the category of the pixel at location
xj. Since the weights can be extremely small (weight
degeneracy problem), PoPEx raises them to an exponent
α chosen such that the number of effective samples

ne =

(
N∑
i

wα
i

)2

N∑
i

(wα
i
)2

is at least higher than a value specified

by the user. The weights are then normalized w̃k = wα
k

N∑
j

wα
j

.

This is an approximation that converges to the exact result
if the number of samples is sufficiently large.

Conditional Generative Adversarial Network
GANs were put forward by Goodfellow et al. (2014)

and are able to learn an implicit description of the
underlying probability distributions of the images in a
training data set. The architecture of the GAN comprises
two convolutional neural networks: a discriminator D and
a generator G . In the original application, the generator is
responsible for synthesizing realistic images G(z) based
on a latent variable z . The discriminator is responsible
for distinguishing the generated images G(z) from the
images of the training set x ∼ pdata . To be more specific,
the discriminator computes the probability of a synthetic
image G(z) coming from the training data distribution
x ∼ pdata . While the generator strives for synthesizing
more realistic images, the discriminator aims at better
identifying the generated images as fake.

In this study, we adopted the pix2pix version of the
cGAN (Isola et al. 2017), it can map an input image x
into an output image y , G : x → y . The objective function
used for the cGAN that was utilized in this study is as
follows:

LcGAN(G,D) = Ex‖1 − D(x,G(x))‖2

+Ex,y‖D(x, y)‖2, (8)

where the aim is to minimize G and maximize D . x rep-
resents the input images and y denotes the corresponding
output images. The discriminator is trained to label the
real images as 1 and the synthesized images as 0. Hence,
if the discriminator performs well, it will output 0 for the
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the synthesized images and 1 for the real ones. Therefore,
the overall loss function will have a high value (maxi-
mization objective of the discriminator). Similarly, if the
generator is good, the discriminator will label the syn-
thesized images G(x ) close to 1, which minimizes the
loss function. The ultimate goal is to train a generator
which produces very realistic images and the discrimina-
tor becomes unable to distinguish it from the real ones,
producing values close to 0.5. In addition to the loss func-
tion defined above, the cGAN we used also includes an
L1 type loss comparing the similarity of the generated
image with the ground truth. This term ensures the low-
frequency correctness of the generated images.

LL1(G) = Ex,y |G(x) − y|. (9)

The final objective function then becomes:

G∗ = arg min
G

arg max
D

LcGAN(G,D) + λLL1(G), (10)

where λ assigns a weight for the L1 term (low frequency
loss).

Numerical Experiment
The general aim of the numerical experiment pre-

sented in this paper is to investigate the feasibility of using
the conditional GAN as a substitute for the flow simu-
lation to accelerate the solution of the inverse problem
using PoPEx. In this context, it is important to consider
a synthetic reality case in which the underground is fully
known. This allows testing thoroughly the quality of the
results obtained with the proposed methodology. In a prac-
tical application, the map of the hydraulic conductivity
field will never be known exhaustively and it would not be
possible to test if the methodology properly identifies the
position of the channel and the corresponding uncertainty.

The methodology is illustrated in Figure 1. It
includes setting up an inverse problem which consists
of identifying the position and uncertainty of highly
conductive channels from a set of groundwater head
measurements around a pumping well. Three inverse
methods are applied. One is the most accurate but less
efficient (importance sampler based on prior distribution),
it provides the reference solution. Then, we apply the
standard PoPEx algorithm that uses the flow simulation
to evaluate the likelihood. Finally, we apply PoPEx using
cGAN to replace the flow simulation. We then compare
the accuracy of the results and numerical efficiency.

The detailed explanations for setting up this experi-
ment are presented in the following subsections.

Problem Setting
The experiment was conducted on a two-dimensional

heterogeneous aquifer comprising permeable channels in a
less permeable matrix. The spatial structures of the aquifer
were simulated using the multiple-point statistical (MPS)
simulation tool DeeSse (Straubhaar 2019). The training

image (TI) used for the simulations is shown in Figure 2
(Strebelle 2002). The DeeSse parameters are provided in
Table 1. The size of the TI is 250 × 250 grid cells and
each cell has a dimension of 1 m in each direction. The
two different colors represent two different facies with
different uniform hydraulic conductivity (K ) values. As
for the channels, the hydraulic conductivity value was
set to 10−2 m/s whereas the matrix was two orders of
magnitude less permeable 10−4 m/s. The simulation grid
comprises 128 grid cells in the x and y directions, and
1 grid cell in the vertical direction. The thickness of the
aquifer is constant and equal to 1 m. Constant head values
were applied on the left and right boundaries as 1 m and
0 m, respectively, whereas the upper and lower boundaries
had no flow boundary conditions. A pumping well was
placed in the centre to extract 3 L/s.

A reference parameter field was generated using
an arbitrary seed and was considered to be the true
field. Thirteen measurement locations were determined
to extract the hydraulic head values for performing
likelihood estimations for the inverse problem. A random
Gaussian noise with σ = 0.05 m was added to the
extracted hydraulic head values. The reference parameter
field along with its corresponding water heads can be seen
in Figure 3.

The cGAN was then used to emulate the forward
operator that was used to compute the likelihood of a
given realization for the parameter field. For training
the adversarial network, 600 MPS realizations were
performed and the flow simulations for each of the
geologies were created using flopy interface of the
Modflow software (Bakker et al. 2016). Some examples
of the parameter fields and corresponding flow responses
can be seen in Figure 4.

cGAN Architecture and Implementation
The generator utilized the U-Net architecture with

skip connections (Reed et al. 2016). It comprised an
encoder (downsampling) and a decoder (upsampling)
parts. Given n total number of layers, the skip connections
concatenates the i th layers with those of n − 1. This
structure allows the passing of low-level information
between the input and output across the net.

The convolutions performed in both the generator and
the discriminator used a 4 × 4 spatial filter with a stride
of 2. The spatial filters are matrices comprising weights
and are used to detect/extract features through multipli-
cation operations. The stride corresponds to the step that
is used when sliding the filter. The resulting convolved
images become the feature maps. Following this step, the
feature maps are normalized and the activation function is
applied to introduce nonlinearity. In this study, the batch
normalization was performed with a momentum value
of 0.8. As for the activation function, the the Rectifier
Linear Unit (ReLU) operation (Nair and Hinton 2010)
for the encoder was carried out using Leaky ReLU (Maas
et al. 2013) with a slope value of 0.2. The decoder did
not have a slope value for the leaky ReLU operations.
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Figure 1. General overview of the methodology. A channelized training image was used to create a reference true-unknown
field and its corresponding flow response. Same training image was then used to create realizations using a different seed
value. The created realizations and their corresponding responses were used to train the cGAN model. The trained model
was then incorporated in PoPEx to perform the inversion.

Figure 2. The TI used to simulate the aquifer parameters.

The output layer of the decoder was applied a hyperbolic
tangent activation function.

The discriminator used was a Markovian discrimina-
tor which computed the texture/style loss. The convolu-
tions were performed using a 4 × 4 spatial filter with a
stride of 2. The convolution process returned an N × N
patch to compute the goodness of the generated images.
The target for the real images was an 8 × 8 patch with
values of one at each pixel. Whereas, the target for the
generated images was an 8 × 8 patch with values of zero
at each pixel. The parameters of the discriminator were

Table 1
DeeSse Parameters Used for the Model Generation

Parameter Value

Search radius 40
Number of neighboring nodes 30
Distance threshold 0.02
Maximal scan fraction 0.25
Number of postprocessing paths 1

optimized to minimize the difference between the target
and the predicted patches. The architecture of the G and
D can be seen in Figure 5.

The implementation of the methodology was per-
formed using the Keras DL library in Python. The sizes
of the input and output images (hydraulic conductivity
fields and pressure heads, respectively) were 128 × 128.
500 image pairs were used for training and 100 images
were used for testing. Prior to the training, min-max nor-
malization was applied for the training dataset the and
values of the images were scaled between 0 and 1. The
adam optimization solver was used with a learning rate of
0.0002 and a forgetting rate of 0.5. The number of epochs
was 200 and 50 images were used in the minibatches.
The λ coefficient for the low frequency loss was set as
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Figure 3. (a) Reference parameter field that was considered
as ground truth and (b) its corresponding flow response.

100. The training was performed using two Nvidia Tesla
K40c GPUs.

Results

cGAN Application
To visually check the performance of the trained

network, two randomly chosen parameter fields from the
test dataset were considered, as can be seen in Figure 6.
The results in Figure 6 give a quick insight on the
performance of the cGAN implementation. The results
indicate that the generated images are rather similar to
their originals and appear to be slightly noisy, as compared
to their originals.

Since the trained model is aiming to replace the
forward operator within an inversion process in this study,
quantitative assessment of the performances were also
carried out. Within PoPEx, the likelihood estimation is
performed based on the error between the observed and
the simulated heads. Therefore, MSE and the coefficient
of determination (R2) values of the generated pressure
fields against the actual head maps were used to assess
the cGAN performance. About 100 test images that were
not included in the training set were used to perform the
predictions using the trained cGAN model. The predicted

head maps were then used to compute the associated
coefficient of determination scores (R2). The mean of the
R2 score was 0.97. This also indicates that the trained
cGAN model appears to perform well.

As with many DL algorithms, it takes a fair amount
of time to train a model. For 200 epochs, a minibatch
size of 50, and 500 TIs in total, the training times
were about 5.5 h for the 128 × 128 cells problem, and
17.3 h for the 256 × 256 cells problem. We have further
investigated if there would be a potential avenue to reduce
the computation time at a cost of reasonable accuracy
loss. Our investigation consisted of changing the number
of epochs and TIs used and observing the errors in terms
of MSE.

The MSE obtained for different number of epochs
and TIs used during training are shown in Figure 7. The
MSE observed with 200 epochs and 500 training dataset
size was found as 0.009. Whereas, mean and standard
deviations of the proxy errors were 0.018 and 0.028,
respectively. These values indicate that the errors are
small when compared to the assumed data error used in
the likelihood.

The scatterplots of the actual flow simulations against
the predicted ones for different epochs and the training
sizes are shown in Figures 8 and 9. Since the response of
the flow simulations are different depending on whether
the well intersects a channel or not, we provide both
cases. The results show that as the number of epochs
increases from 100 to 300, the error decreases. However,
the MSE starts to significantly increase from 0.009 to
0.10 after epoch number 300. This behavior could be
due to two reasons. First, the discriminator could become
relatively more powerful than the generator with an
increasing number of epochs. Hence, the generator faces
difficulty in fooling the discriminator. One solution would
be to modify the learning rates of the discriminator.
Secondly, the discriminator might have undergone an
overfitting issue. A possible solution to avoid this could be
adding Gaussian noise to the input images. Nevertheless,
since we have already obtained sufficient accuracies
with epoch numbers less than 300, we have not further
investigated this.

In the light of the above information, to lower the
CPU cost, the model can also be trained using a reduced
number of epochs such as 100 at a cost of reasonable
accuracy loss. As for the number of TIs, the error
decreases with the increasing number of TIs, as expected.
Similarly, the training time can be reduced using a reduced
training size of 300 to 400 by sacrificing reasonable
accuracy.

A test was performed to compare the processing
power demand of the cGAN model with the Modflow
engine. In order to have a fair comparison between the
two, we have performed a single CPU estimation of
500 head fields and repeated it 10 times. In addition,
we have created a similar setup with 256 × 256 grid
resolutions. Similarly, we have trained the cGAN with 500
image pairs and performed the predictions. This allowed
us to see the effect of the number of parameters in
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Figure 4. Some examples from the dataset used to train the cGAN model. Realization 1 and its corresponding flow response
demonstrate the case in which the well intersects highly permeable channels. Whereas the realization 2 and its corresponding
flow response represent the cases in which the well intersects the low permeability matrix.

Figure 5. General overview of the architecture for the generator and discriminator. The discriminator here evaluates the
validity of the generated image using the output patch generated.
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Figure 6. Validation images to visually check the prediction
performance of the trained adversarial network: (a) flow
simulation and the cGAN prediction for the given realization
(well location intersects the matrix) and (b) flow simulation
and the cGAN prediction for the given realization (well
location intersects the channel).

the conductivity field on both the cGAN and Modflow
simulations. The CPU used was i7-8750H and the GPU
used for the predictions was GeForce GTX 1050. The
results in Figure 10 demonstrate that cGAN required
less computational power as compared to Modflow in
both resolutions. Considering the tests done on single
CPUs, we have observed 51% and 30% reduction in
the computation times for the 128 × 128 and 256 × 256
resolutions, respectively. The same test done on the
GPU, revealed a significant improvement. Use of GPU
demonstrated an 83% computational reduction for the
128 × 128 resolution and 79% reduction for the 256 × 256
resolutions.

There is 105 s time difference between Modflow and
GPU processing times to compute 500 flow simulations.

PoPEx Results
To test the performance of the GAN-flow emulator,

we used it as the forward operator in the PoPEx procedure.
We then compared the PoPEx solution using the cGAN
forward emulator with two alternatives: the reference
sampler and the PoPEx solution with Modflow forward
simulator. Figure 11 shows the posterior probability maps
of the channel for the three set-ups. The prior probability
map for the channel is uniform over the entire domain
with the value of 0.72.

Figure 7. Mean squared error between the actual and the
cGAN predicted head maps based on (a) different number
of epochs and (b) different training dataset size.

To compute the reference solution, we applied the
importance sampling method using the prior distribution
as the proposal distribution (Cary and Chapman 1988). In
that case, the probability map is obtained using Equation 6
with the weights being simply the normalized likelihood
values (Jäggli et al. 2018). This method is not the most
efficient but since we applied it for a large number of
models (300,000) and because the problem is of relatively
small size, we ensure high accuracy of the result.

Model generation in all the cases was done by the
DeeSse algorithm with the same parameter set defined in
Table 1, which was also used for training of the GAN-
flow emulator. The PoPEx solutions (both with GAN-
flow and with Modflow) are based on 10,000 iterations,
the minimal number of models used for prediction is
l0 = 100 and maximal number of conditioning points
guiding simulations is 20.

The results given in Figure 11 show that both PoPEx
solutions correctly reproduced the channelized structure of
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Figure 8. Scatterplot of the actual head values against the cGAN predictions for different epochs and training set sizes. Plots
belong to the flow simulations in which the pumping well intersects the matrix.

Figure 9. Scatterplot of the actual head values against the cGAN predictions for different epochs and training set sizes. Plots
belong to the flow simulations in which the pumping well intersects the channels.

the probability map. The quality of the PoPEx with GAN-
flow solution is visually comparable to that of PoPEx with
Modflow, only slight underestimation of the uncertainty
of having a channel (stronger contrasts), is visible on the
right side of the image.

To quantify the error of the PoPEx solution with
respect to the prior sampling solution, we used the Jensen-
Shannon divergence. Considering the posterior solution
μ̂, the Jensen-Shannon divergence with respect to the
reference prior sampling solution μex is given by:

J (μ̂||μex ) = 1

2
[D(μ̂|| μ) + D(μex || μ)], (11)

where D(· ||·) is the Kullback-Leibler divergence as
defined in Equation 5 and μ = 1

2 (μ̂ + μex ). The errors
for the PoPEx solutions μ̂ using GAN-flow and Modflow
as a function of the number of iterations is plotted in
Figure 12.

For the solution obtained after 10,000 iterations, we
obtained the following values of the averaged Jensen-
Shannon divergence: 0.007 for Modflow and 0.021
for GAN-flow. The maps of errors given by Jensen-
Shannon divergence for both flow simulators are plotted in
Figure 13. The convergence plot (Figure 12) demonstrates
that GAN-flow error goes down systematically with the
Modflow error. Even if the GAN-flow error is slightly
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Figure 10. Average processing time required for running the
forward operator on 500 flow problems as a function of the
number of parameters in the input parameter field.

bigger than the Modflow error, both convergence rates
compare well with the theoretical rate of k

−1/2
it (where k it

is the number of iterations) predicted by the Central Limit
Theorem (Durrett 2019).

Discussion and Conclusion
We have implemented cGAN to emulate the forward

operator used in a hydrogeological inverse problem. The
model was trained using a dataset comprising (1) 500
hydraulic conductivity fields that were created using
MPS simulations and (2) corresponding flow simulations
obtained using Modflow. Having trained the cGAN, it
was then used to emulate the forward operator of the
PoPEx algorithm to compute the likelihoods. Prediction
performances were assessed using a separate test dataset
containing 100 parameter fields and corresponding flow
simulations.

The results show that the cGAN is capable of
mapping from a given hydraulic conductivity field to the
corresponding flow simulations. Although the generated
pressure maps are slightly noisy as compared to their
referenced ones, there exists a high correlation between
the predicted and actual head values. These errors were
sufficiently small to have little impact on the results
of the probabilistic inversion. The probability maps
obtained using the cGAN were very close to the ones
obtained using the exact forward solution. As compared
to the PoPEx solution, the cGAN produced slightly less
contrast at some locations. Nevertheless, this experiment
demonstrated the capability of the cGAN to be used in
the inversion successfully with less computational demand
than the Modflow engine.

The use of cGAN is of course not limited to PoPEx.
Any inverse method that uses repeatedly the forward
model to evaluate the misfit could benefit from this
technique. The gain will be the highest for inverse
methods that make intensive use of the forward model
such as Markov chain Monte Carlo methods (Mosegaard

Figure 11. Comparison of posterior facies probability maps
for channel, obtained using: (a) the reference technique
(300,000 iterations), (b) PoPEx with Modflow forward
(10,000 iterations), and (c) PoPEx with GAN-flow forward
(10,000 iterations).

and Tarantola 1995), Particle or Ensemble Kalman Filters
(Evensen 2018).

However, there are several drawbacks. First, as
in most DL algorithms, training a model requires the
creation of a training dataset. For complex geologies
with numerous grid cells, this could take significant
time. For such cases, a smaller sized dataset containing
a smaller number of training instances can be still
be used to perform reasonable predictions at the cost
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Figure 12. Comparison of the error of the inverse problem
solution with respect to the prior sampling solution as a
function of the number of PoPEx iterations k it for the two
different forward simulators. Error is defined by average
Jensen-Shannon divergence.

Figure 13. Maps of pixel-wise errors of PoPEx solution
obtained after 10,000 iterations: (a) using Modflow and (b)
using GAN-flow.

of some accuracy loss. Second, training of GANs can
require significant time. To compensate for the training
times, in the example that was treated in this paper, we
require roughly 100,000 iterations of PoPEx. In other
words, the use of cGAN becomes advantageous only
after around a hundred thousand iterations. Considering
that PoPEx can provide an accurate solution already after
10,000 iterations, we observe that the required number of
iterations to compensate the training is quite large. This
may hinder its use in practical applications. One solution
could be to find some ways to simplify the generator
network architecture to have fewer layers and to ensure
faster training. This will probably reduce the quality of the
approximation (Mallat 2016). However, for the specific
application discussed in this paper, we do not necessarily
need to predict the complete hydraulic head field. A
simpler surrogate model could be sufficient to predict
the likelihood with enough accuracy and be much faster.
Another solution could be the use of transfer learning
(Pan and Yang 2009). A pretrained model on a similar
problem can be used to retrieve the initial parameters of
the network architecture. The subsequent training would
then involve fine-tuning of the parameters in a shorter
period of training time for the specific application (Ng
et al. 2015). These techniques have been shown to be very
efficient.

To conclude, this paper shows the strength of the
cGAN method in general but also highlights some
practical limitations that are not frequently discussed in
the literature concerning the application of these methods
for groundwater modeling. It emphasizes the need to
conduct further research in this field.
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Laloy, E., R. Hérault, J. Lee, D. Jacques, and N. Linde. 2017.
Inversion using a new low-dimensional representation of
complex binary geological media based on a deep neural
network. Advances in Water Resources 110: 387–405.

Laloy, E. and D. Jacques. Emulation of CPU-demanding reactive
transport models: comparison of gaussian processes, poly-
nomial chaos expansion and deep neural networks. arXiv
preprint arXiv:1809.07305 , 2018.

Linde, N., P. Renard, T. Mukerji, and J. Caers. 2015.
Geological realism in hydrogeological and geophysical
inverse modeling: A review. Advances in Water Resources
86, no. A: 86–101.

Maas, A.L., A.Y. Hannun, and A.Y. Ng. 2013. Rectifier
nonlinearities improve neural network acoustic models. In
Proceedings of the ICML, Georgia, USA: PMLR, Atlanta,
Vol. 30, 3.

Mallat, S.. Understanding deep convolutional networks. Philo-
sophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences , Royal Society, 374
(2065): 20150203, 2016. https://doi.org/10.1098/rsta.2015.
0203.

Marçais, J., and J.-R. De Dreuzy. 2017. Prospective interest of
deep learning for hydrological inference. Groundwater 55,
no. 5: 688–692.

Mariethoz, G., and J. Caers. 2016. Multiple-Point Geostatistics:
Stochastic Modeling with Training Images . Chichester, UK:
John Wiley & Sons, Ltd. ISBN 978-1-118-66295-3 978-1-
118-66275-5.

Mariethoz, G., P. Renard, and J. Straubhaar. 2010. The direct
sampling method to perform multiple-point geostatistical
simulations. Water Resources Research 46: W11536.

Mo, S., N. Zabaras, X. Shi, and J. Wu. 2019a. Deep autoregres-
sive neural networks for high-dimensional inverse problems
in groundwater contaminant source identification. Water
Resources Research 55, no. 5: 3856–3881.

Mo, S., Y. Zhu, N. Zabaras, X. Shi, and J. Wu. 2019b. Deep
convolutional encoder-decoder networks for uncertainty
quantification of dynamic multiphase flow in heterogeneous
media. Water Resources Research 55, no. 1: 703–728.

Mosegaard, K., and A. Tarantola. 1995. Monte Carlo sampling
of solutions to inverse problems. Journal of Geophysical
Research: Solid Earth 100, no. B7: 12431–12447.

Mosser, L., O. Dubrule, and M. J. Blunt. Deepflow: History
matching in the space of deep generative models. arXiv
preprint arXiv:1905.05749 , 2019.

Mosser, L., O. Dubrule, and M. J. Blunt. Conditioning of three-
dimensional generative adversarial networks for pore and
reservoir-scale models. arXiv preprint arXiv:1802.05622 ,
2018a.

Mosser, L., O. Dubrule, and M.J. Blunt. 2018b. Stochastic recon-
struction of an oolitic limestone by generative adversarial
networks. Transport in Porous Media 125, no. 1: 81–103.

Mosser, L., O. Dubrule, and M.J. Blunt. 2017. Reconstruction of
three-dimensional porous media using generative adversar-
ial neural networks. Physical Review E 96, no. 4: 043309.

Nair, V., and G.E. Hinton. 2010. Rectified linear units improve
restricted Boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
Madison, WI, United States: Omnipress, 807–814.

Ng, H.-W., V.D. Nguyen, V. Vonikakis, and S. Winkler. 2015.
Deep learning for emotion recognition on small datasets
using transfer learning. In Proceedings of the 2015 ACM
on international conference on multimodal interaction,
443–449. New York: ACM.

Pan, S.J., and Q. Yang. 2009. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering
22, no. 10: 1345–1359.

Reed, S.E., Z. Akata, S. Mohan, S. Tenka, B. Schiele, and
H. Lee. 2016. Learning what and where to draw. Advances
in Neural Information Processing Systems 29: 217–225.

Straubhaar, J.. DeeSse user’s guide. Technical report, Centre
for Hydrogeology and Geothermics (CHYN), University of
Neuchâtel, Switzerland, 2019.

Strebelle, S. 2002. Conditional simulation of complex geological
structures using multiple-point statistics. Mathematical
Geology 34, no. 1: 1–21.

Sun, A.Y. 2018. Discovering state-parameter mappings in
subsurface models using generative adversarial networks.
Geophysical Research Letters 45, no. 20: 11–137.

NGWA.org Y. Dagasan et al. Groundwater 58, no. 6: 938–950 949

https://doi.org/10.1007/s10596-018-9731-y
https://doi.org/10.1007/s10596-018-9731-y
https://doi.org/10.1002/2016WR019550
https://doi.org/10.1002/2016WR019550
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1098/rsta.2015.0203


Tarantola, A. 2005. Inverse problem theory and methods for
model parameter estimation . Philadelphia, Pennsylvania:
Society for Industrial and Applied Mathematics.

Tarantola, A., and B. Valette. 1982. Inverse problems = quest
for information. Journal of Geophysics 50: 159–170.

Tripathy, R.K., and I. Bilionis. 2018. Deep uq: Learning
deep neural network surrogate models for high dimen-
sional uncertainty quantification. Journal of Computational
Physics 375: 565–588.

Xu, Y., T. Mo, Q. Feng, P. Zhong, M. Lai, I. Eric, and
C. Chang. Deep learning of feature representation with
multiple instance learning for medical image analysis. In
2014 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 1626–1630. New
York: IEEE, 2014.

Yang, L., D. Zhang, and G. E. Karniadakis. Physics-informed
generative adversarial networks for stochastic differential
equations. arXiv preprint arXiv:1811.02033 , 2018.
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