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Geological contacts in lateritic metal deposits (footwall topographies) often delineate the
orebody boundaries. Spatial variations seen in such contacts are frequently higher than those
for the metal grades of the deposit. Therefore, borehole spacing chosen based on the grade
variations cannot adequately capture the geological contact variability. Consequently,
models created using such boreholes cause high volumetric uncertainties in the actual and
targeted ore extraction volumes, which, in turn, lead to high unplanned dilution and ore
losses. In this paper, a method to design optimum ore/mining boundaries for lateritic metal
deposits is presented. The proposed approach minimizes the dilution/ore losses and com-
prises two main steps. First, the uncertainty on the orebody boundary is represented using a
set of stochastic realizations generated with a multiple-point statistics algorithm. Then, the
optimal orebody boundary is determined using an optimization technique inspired by a
model calibration method called Pilot Points. The pilot points represent synthetic elevation
values, and they are used to construct smooth mining boundaries using the multilevel B-
spline technique. The performance of a generated surface is evaluated using the expected
sum of losses in each of the stochastic realizations. The simulated annealing algorithm is
used to iteratively determine the pilot point values which minimize the expected losses. The
results show a significant reduction in the dilution volume as compared to those obtained
from the actual mining operation.

KEY WORDS: Multiple-point statistics, Direct sampling, Bauxite mining, Laterite simulated anneal-
ing, Optimization, Dig limit.

INTRODUCTION

Given a laterite-type bauxite deposit formed
from tropically weathered mafic–ultramafic com-
plexes, the bauxite mineral exists in the soil horizons

(Erten 2012). Therefore, the deposit can be mined
easily by a front-end loader due to the free-flow
characteristics of the loose soil. Being an underlying
geological unit, ferricrete is very likely to dilute the
bauxite ore during mining operations due to poorly
defined geological interface between bauxite and
ferricrete units. Although this dilution can partly be
alleviated by the front-end loader operator, who
subjectively discriminates the bauxite ore from the
ferricrete based on the hardness and color differ-
ences of the geological units at the time of mining, it
still cannot be avoided entirely.
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Ferricrete dilution is the major cause of high
silica content in bauxite ore, as it is tremendously
rich in silica-bearing minerals such as kaolinite and
quartz (Morgan 1995). The contact topography be-
tween the bauxite and ferricrete units is rather
undulating and cannot be modeled satisfactorily by
using an economically viable drilling program, as the
drill spacing is usually determined based on the
continuity and variation in the aluminum grade
(Hartman and Mutmansky 2002; Singh 2007). In
other words, because the peaks and troughs cannot
be sampled adequately, they cannot be inferred
from the geostatistical estimates either (Philip and
Watson 1986). This situation is illustrated in Fig-
ure 1. Failing to model the contact surface accu-
rately introduces a major uncertainty, which may
then lead to: (1) inaccurate calculations of the ore
volume/tonnage and the quantity of the caustic soda
being consumed; and (2) subjective ore extraction
strategies by the front-end loader operators.

There are several ways to reduce the uncer-
tainty in the contact surface and its possible conse-
quences. One of the easiest ones would be to
conduct a dense drilling program to capture the
peaks and troughs of the contact surface. However,
this would dramatically increase the associated costs
making the operation less profitable and even not
feasible at all. Another way to reduce the uncer-
tainty in the contact surface models is the use of

geophysical methods to contribute to the orebody
delineation (Campbell 1994; Fallon et al. 1997).
Among the geophysical methods, ground-penetrat-
ing radar (GPR) has been efficiently used to im-
prove the delineation of ore/waste boundaries in
lateritic ore bodies (Francké and Nobes 2000;
Francke and Parkinson 2000; Francké and Yelf 2003;
Francke and Utsi 2009; Francke 2010, 2012a, b;
Barsottelli-Botelho and Luiz 2011; Dagasan et al.
2018). However, GPR surveys alone cannot replace
the traditional drilling due to their lack of accuracy.
They are most efficiently used as secondary infor-
mation to complement borehole data through geo-
statistical data integration techniques (Erten 2012).
Applications of such data integration presented by
Erten (2012) and Erten et al. (2013, 2015) demon-
strate the benefits of using secondary information on
model precision. However, even though a better
model representing the ore/waste contact surface is
attained, the large spatial variations inherent to the
ore/waste interface limit the mining equipment to
track down a given contact surface accurately.

Due to large spatial variations and the uncer-
tainties inherent to the geological contact, any
excavation surface inevitably causes dilution and ore
losses. Although this problem shows similarity to
dig-limit problems in open-pit mining, which has
been covered by several studies such as Norrena and
Deutsch (2001, 2002), Richmond (2004), Richmond
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Figure 1. The peaks and troughs of the actual ore/waste interface cannot be detected by an economically viable

drilling spacing. This results in an inaccurate estimation of the ore/waste contact (after Erten 2012).
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and Beasley (2004), Isaaks et al. (2014), Ruiseco
et al. (2016), Ruiseco and Kumral (2017) and Sari
and Kumral (2018), the problem with lateritic de-
posits is rather specific due to the nature of free-
digging mining method. Research on finding the
optimum elevation values for a lateritic nickel mine
has been carried out by McLennan et al. (2006), but
the focus was to optimize the dilution and ore losses.
The approach did not put strong emphasis on
equipment selectivity due to low dilution/ore loss
ratio and good equipment selectivity.

The aim of this research is to design optimum
extraction boundaries for lateritic metal deposits
based on a simulated ore/waste interface. The
proposed approach can be used to generate mining
boundaries minimizing the unplanned dilution and
ore loss as well as increasing the mining equip-
ment flexibility. It is inspired by a model calibra-
tion technique, which is frequently used in
hydrogeology, called pilot points. In this technique,
several pilot points are first placed in the area to
be mined out. These pilot points represent syn-
thetic elevation values and act as points control-
ling the shape of proposed extraction boundaries.
The elevation values at the pilot points are itera-
tively modified in order to find a smooth excava-
tion surface minimizing the possible dilution and
ore losses. Multilevel B-spline method (MBS) (Lee
et al. 1997) was used to create a smooth surface by
interpolating the values at the pilot point locations
with a predefined smoothness parameter. The
losses associated with a decision surface are cal-
culated using several hundreds of equiprobable
realizations generated using the direct sampling
(DS) (Mariethoz et al. 2010) multiple-point statis-
tics algorithm. This makes the generated excava-
tion surfaces account for the uncertainties in the
ore/waste interface. The elevation values at the
pilot point locations were iteratively optimized
using the simulated annealing (SA) algorithm
(Kirkpatrick et al. 1983), which uses the sum of
the losses in all the realizations as the objective
function. The pilot point values yielding minimum
losses were then employed to construct the sug-
gested extraction surface.

REVIEW OF UNDERLYING METHODS

The following subsections provide the required
background information to comprehend these

methods, which form the foundations of the
methodology described in section ‘‘Methodology.’’

The Direct Sampling MPS Algorithm

The direct sampling (DS) is a pixel-based MPS
algorithm used to simulate a random function Z(x)
on a simulation grid (SG) (Mariethoz et al. 2010). It
stochastically reproduces the spatial or temporal
patterns in the simulation domain by integrating the
datasets from analogue sites through training images
(TI) (Oriani et al. 2014; Pirot et al. 2014). A TI
serves as a conceptual geological model and contains
spatial structures that are thought to exist in the
simulation area (Guardiano and Srivastava 1992).
The DS uses the spatial patterns in the TI to
stochastically simulate a random function Z(x). The
steps to perform the simulations are as follows:

1. Migrate any available conditioning data to
the SG.

2. Visit a non-informed grid node at x following
a predefined random or regular path.

3. Determine n number of closest informed
nodes at fx1; x2; . . . ; xng.

4. Define the lag vectors L ¼ fh1; h2; . . . ; hng,
where hi ¼ xi � x, to construct the data event
dnðx;LÞ ¼ fZðxþ h1Þ; . . . ;Zðxþ hnÞg.

5. Randomly scan the TI at y locations and
calculate the distance between dnðx;LÞ and
dnðy;LÞ ¼ fZðyþ h1Þ; . . . ;Zðyþ hnÞg until it
falls below a threshold t or a maximum scan
fraction f is reached.

6. Take the pattern as the best match and paste
the central node Z(y) to the grid node at x
location.

7. Repeat the steps 2–6 until all the grid nodes
are informed.

The DS algorithm also makes it possible for
multivariate simulations of m variables, which
are spatially dependent by an unknown function
(Mariethoz et al. 2010). This is basically carried
out by computing the distances between the
joint data events dnðxÞ and dnðyÞ of m variables
in both the SG and the TI, respectively. In this
research, the MPS simulations were carried out
by calling the DS algorithm, which is coded in
C, from R software (Team 2017). The version of
the DS used is called DeeSse (Straubhaar 2016).
Detailed information on the algorithm can be
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found in Mariethoz et al. (2010), Meerschman
et al. (2013) and Straubhaar (2016).

Pilot Point Method (PPM)

The PPM is an inverse modeling technique that
is commonly used to calibrate groundwater models
(Jung 2008). It was first suggested by de Marsily
et al. (1984) and later modified by several re-
searchers (Certes and de Marsily 1991; LaVenue
et al. 1995; RamaRao et al. 1995; Oliver et al. 1996;
Cooley 2000; Alcolea et al. 2006). The primary
motivation of the PPM is to overcome the non-
uniqueness and instability problems of the previous
inverse techniques using a reduced parameter space.
In this method, several calibration points are first
chosen from the model domain where there are no
conductivity measurements taken. These points are
called pilot points and represent synthetic conduc-
tivity values to be iteratively calibrated by mini-
mizing the squared errors between the actual and
observed head values. At every step, the pilot point
values are used to generate the conductivity field
using a geostatistical interpolation technique with a
particular prescribed spatial structure inferred from
the measurements.

In this research, the PPM was tailored to a
mining application. Rather than calibrating the
conductivity field, the method was used to create
optimum mining boundaries. The pilot points lo-
cated within the modeling domain control the shape
of the mining boundaries and were iterated to seek
the pilot point values yielding minimized dilution
and ore losses. The details of our proposed mining
application are explained in the following sections.

Multilevel B-Splines

The MBS method was used to interpolate or
approximate a scattered dataset (Lee et al. 1997).
Given a scattered dataset P ¼ xc; yc; zcð Þf g on a
domain, the method uses zc values at xc; ycð Þ loca-
tions to carry out the approximations. A function
f x; yð Þ approximating the values zc at xc; ycð Þ loca-
tions was sought to interpolate the Z field. To per-
form this, the method utilizes a hierarchy of control
lattices U0;U1; . . . ;Uh overlain the domain . Each of
the control lattices Uk contains a different number of
control points with varying spacing. The spacing
between the control points of a Uk is always halved

for the subsequent control lattice Ukþ1. Therefore,
the initial control lattice U0 becomes the coarsest
and Uh as the finest. Approximation with the
coarsest control lattice U0 comprises the first step of
the MBS method yielding f0 function. Being an ini-
tial smooth approximation, f0 results in a deviation

D1zc ¼ zc � f0ðxc; ycÞ for each point xc; yc; zcð Þ. The
algorithm proceeds by using the next control lattice
U1 to generate a function f1 which approximates the

preceding deviation P1 ¼ xc; yc;D
1zc

� �� �
. A better

approximation with less departure from the original
data points P would then be obtained by the sum of
f0 þ f1. This would result in the deviation

D2zc ¼ zc � f0ðxc; ycÞ � f1ðxc; ycÞ. Therefore, the
deviation for a level k can be calculated as

Dkzc ¼ zc �
Pk�1

i¼0 fiðxc; ycÞ. Since the origin of the
approach creates a surface approximating the points
P, the interpolation is achieved through a sufficiently
small finest control lattice Uh. The introduction of
the adaptive control lattice hierarchy helps to
achieve finer lattices with a reasonable memory
requirement. More information regarding the theory
can be found in Lee et al. (1997). The MBS method
in this research was implemented using the MBA
package created for the R statistics software (Finley
and Banerjee 2010).

Simulated Annealing (SA) Algorithm

Simulated annealing (SA) is one of the
stochastic optimization techniques for solving global
optimization problems (Kirkpatrick et al. 1983;
Xiang et al. 2013). The method finds the global
minimum of an objective function by mimicking the
annealing process of a molten metal. The artificial
temperatures used in the algorithm allows to regu-
late the cooling schedule and to introduce stochas-
ticity. This stochasticity is basically used to avoid the
solution from trapping inside a local minimum by
changing the probability of acceptance throughout
the cooling schedule.

Given an objective function f(x) with the deci-
sion variables x ¼ ðx1; x2; . . . ; xnÞ, the SA algorithm
utilizes the following to attain a global minimum
(Sun and Sun 2015):

1. Set a high initial temperature value T0 and
an initial solution x0 to evaluate the objective
function E0 ¼ f ðx0Þ.

2. Propose a new candidate solution xiþ1:
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� Propose a candidate solution xiþ1 based on
the current one ( xi) through a predefined
visiting distribution.

� Evaluate the energy difference DE ¼
f ðxiþ1Þ � f ðxiÞ to observe the change in the
objective function for the candidate solution.

� Accept the iteration if the candidate solution
reduces the objective function, DE\0.

� If the new candidate yields a greater objective
function value, accept or reject the solution
based on a probability of acceptance criterion.

3. Repeat step 2 for L number of iterations
holding T constant.

4. Reduce the temperature to Tnþ1 based on a
cooling function.

5. Repeat steps 2–4 until the convergence is
achieved.

In this research, generalized simulated anneal-
ing (GSA) method (Tsallis and Stariolo 1996)
was used to optimize the pilot point values. It
makes use of the distorted Cauchy–Lorentz
visiting distribution to seek for an optimum
solution (Tsallis and Stariolo 1996). The GSA
offers different options for the stopping criteria
such as maximum running time, maximum
function calls, maximum iteration number or a
threshold value for the objective function. The
implementation of the GSA was performed
using the GenSA package of the R statistics
software (Xiang et al. 2013). The default SA
parameters of the package were set to solve
complex optimization problems (Xiang et al.
2017). Therefore, these values were used to
optimize the pilot point values in this research.

METHODOLOGY

The methodology of the proposed approach
includes several steps to generate an optimum ore/
waste boundary. The first step is to create an
ensemble of equiprobable realizations representing
the uncertainty on the position of the ore/waste
interface. This step is followed by locating some
pilot points in the simulation grid and fitting a
smooth surface to them. The elevation values of the
pilot points are then iterated and updated using the
SA to seek the combination of the pilot point values

minimizing the total losses in each of the realiza-
tions. These steps are illustrated in Figure 2. More
information about the steps is given in the following
subsections.

Simulations of the Bauxite/Ferricrete Contact

The proposed methodology requires an

ensemble of k conditional realizations R ¼
Rj

��j ¼ 1; 2; . . . ; k
� �

representing the ore/waste

interface generated as a first step. To perform the
simulations, the borehole elevations of the geologi-
cal contact were used as the conditioning data.
Available GPR survey of the area, on the other
hand, was used as the secondary information to
guide the simulations. Creating such realizations
rather than a single estimation plays an important
role in integrating the uncertainty in the designed
excavation surface.

The required simulations in this research were
obtained using the DS MPS algorithm due to the
benefits it provides in modeling the ore/waste
boundaries of lateritic metal deposits. For instance,
it utilizes a TI as a structural model, rather than a
variogram. Therefore, knowledge on the spatial
structures can be inferred from the previously
mined-out areas through the TI concept. Since the
mined-out topographies represent a complete pic-
ture of the geological variations inherent in the
contact, they can provide rich structural information.
In classical geostatistics, such information is derived
from sparse borehole data, which only offer partial
knowledge of the ground truth. An additional ben-
efit of using a TI is that the resulting modeling
framework is rather non-expert friendly as vari-
ogram modeling is not needed. Furthermore, the DS
allows performing multivariate simulations by uti-
lizing the multiple-point dependence between mul-
tiple images. If geophysical data are available, as in
our case, this can be incorporated easily in the
modeling.

Although the use of MPS offers some benefits,
the requirement of a TI to perform the simulations
might sometimes limit its application. For instance,
after the extraction of a bauxite deposit, a mined-out
surface is exposed and this can be used as a TI
through a topographic survey. However, such survey
data may not always be readily available. In such
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cases, the contact simulations can be performed
using standard geostatistical simulation techniques
as well. The DS MPS algorithm has been used in this
research since a mined-out floor survey (TI) was
already available.

Locating Pilot Points

Once a set of realizations for the footwall
topography is generated, the next step involves
locating several pilot points h ¼ hðxlÞjf l ¼
1; 2; . . . ;mg in the mining area. These pilot points
function as synthetic elevation values, which are
used to create an optimum ore/mining boundary
through interpolation.

The process required to set up the pilot points
can be explained in four steps, as illustrated in Fig-
ure 3. The first one of these is to create a grid to
store their values and locations. The resolution of
this grid can be chosen to be the same as the SG.
Once this is done, the next step comprises locating
the pilot points based on a predefined spacing. In
order to better observe the effects of the chosen
spacing on the results in this study, pilot points were
regularly spaced. That is, if the spacing is chosen as
five grid nodes, the pilot points are located at every
5th node of the pilot points grid. After this step, the
initial values of the pilot points (synthetic elevation

values) need to be assigned. This can either be
performed by drawing numbers from a random
number generator or using the simulations. The
random values for the pilot points can be generated
within a defined upper and lower boundaries. Such
boundaries can be determined using the maximum
elevation value of the surface topography and the
minimum elevation value of the contact realizations.
Getting the initial values from the simulations can
simply be achieved by copying the elevation values
from the nodes of a realization, which are co-located
with the pilot points. The final pilot point values, on
the other hand, are decided by the SA algorithm
iteratively and lead to minimized dilution and ore
losses. If the boundaries of the grid do not have at
least one pilot point, additional pilot points are also
placed at the boundaries. These additional points
are required to make the interpolation cover the
whole modeling domain. For example, when locat-
ing the pilot points in Figure 3, no points were
placed in the right, left and bottom boundaries ini-
tially. Therefore, three random locations in each
boundary were chosen to place an additional three
pilot points.

It should be noted that the spacing chosen be-
tween the pilot points affect the smoothness of the
created mining boundaries as well as the dilution/ore
loss amounts. If the spacing between the pilot points
is small, the resulting surface becomes more de-

(a)
Generate an ensemble of k realizations 

using the DeeSse
Surface 

Topography

Realisations for the
footwall contact

Pilot Points

(b)
Locate the pilot points in the simulation 

domain

(c)
Interpolate the pilot points to create a candidate mining 

boundary and iterate the pilot point values

(d)
Find the optimum values for the pilot points yielding 
the mining boundaries which minimize the sum of 

expected losses in each realization
Multilevel B-Spline Surface

Synthetic elevation values

Figure 2. The main steps of the proposed methodology. See text for detailed explanations.
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tailed. Therefore, it is advised to determine this
number based on the equipment flexibility as well. A
surface created using dense pilot points would yield
an uneven surface, which would increase the time
and fuel consumption required to perform the
excavation task.

Smooth Excavation Surface Design

Multilevel B-spline was used as an interpolation
technique to construct the smooth excavation sur-
face. The construction of the surface is mainly

accomplished by interpolating the Z field at each
grid node of the mine area using a number h of pilot
points. The degree of fluctuations that the resulting
surface exhibits is primarily influenced by two fac-
tors. The first one is the number of h levels used in
the MBS interpolation. As this number increases,
the fluctuations of the constructed surface also in-
creases due to better approximations made in the
finer levels. The second factor is related to the
spacing between the pilot points. Small spacing
values between pilot points result in an increased
number of pilot points. This would then lead to
greater variations in the interpolated surface. We

Define the spacings 
between the pilot points 
in terms of grid spacing

Spacing in
X direction

Spacing in
Y direction

Step 2Construct a grid for the 
pilot points. 

Use the simulation grid dimensions

Step 1

Pilot Points Grid

Locate the pilot points based on
the chosen spacings between them

Pilot points
Pilot points at 
the boundaries

Step 3

Simulation Grid

Step 4

A realization 
for the

contact topography

Pilot points grid

Retrieve initial pilot point values 
from one of the realizations

Pilot points placed at 
every 4th grid node

Figure 3. Steps followed to locate the pilot points and assign their initial values in the mining area.
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consider the fluctuations of the resulting surface as
an essential factor for the equipment flexibility.
Being able to adjust this allows one to integrate the
equipment flexibility in the designed excavation
surface.

Loss Calculation-Objective Function

The objective of the optimization is to find the
h ¼ hðxlÞjl ¼ 1; 2; . . . ;mf g pilot point values, which

lead to the decision surface SdðhÞ that minimizes the
sum of expected economical losses in an ensemble of
k realizations:

min
h

Xk

j¼1

LjðhÞ ð1Þ

where LjðhÞ is the loss incurred in the realization Rj

due to the decision surface SdðhÞ. It can be calcu-
lated as follows:

LjðhÞ ¼ pmax
j � pactj ðhÞ ð2Þ

where pmax
j represents the maximum profit that can

potentially be made if all the ore between the sur-
face topography and the ore/waste contact of the jth
realization were extracted. It can be calculated by
multiplying the unit profit P by the extracted vol-
ume:

pmax
j ðhÞ ¼ P

Xn

i¼1

Tmax
i;j ðhÞ �A ð3Þ

where Tmax
i;j represents the maximum bauxite thick-

ness at the ith grid node of the jth realization (see
Fig. 4), A represents the area of a grid cell and n rep-
resents the number of informed grid nodes in the
simulation area. Tmax

i;j can simply be calculated by

subtracting the elevation of the footwall topography

realisations from thoseof the surface topographyZtopo
i :

Tmax
i;j ¼ Z

topo
i � Ri;j ð4Þ

pactj ðhÞ, on the other hand, represents the actual

profit that can be made out of Rj if the mining is

carried out following the boundaries defined by the

decision surface SdðhÞ. Its calculation is performed
by subtracting the cost of dilution from the profit
made out of extracting the ore at each grid node:

pactj ðhÞ ¼ P
Xn

i¼1

Tbau
i;j ðhÞ �A� C

Xn

i¼1

Tdil
i;j ðhÞ �A ð5Þ

where Tbau
i;j represents the mined bauxite (ore)

thickness using the decision surface SdðhÞ, Tdil
i;j rep-

resents the ferricrete (waste) thickness overlying the
decision surface and C represents the unit cost of
dilution. These thicknesses can be calculated as
follows:

Tbau
i;j ðhÞ ¼Z

topo
i �maxðRi;j;minðZtopo

i ; Sdi ðhÞÞÞ ð6Þ

Tdil
i;j ðhÞ ¼Ri;j �minðRi;j;minðZtopo

i ; Sdi ðhÞÞÞ ð7Þ

To sum up, the objective function used for the
optimization was evaluated based on the expected

Topography

Simulated ore/waste contact

Excava�on surface fi�ed to the pilot points

Bauxite unit

Ferricrete unit

bauT

dilT

maxT maxTbauT

Pilot points

Figure 4. Thicknesses used to calculate the losses due to an excavation surface.
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losses incurred due to a decision surface SdðhÞ. Its
calculation was performed in four steps: (1) gener-
ation of an ensemble of realizations (only for once),
(2) generating a set of pilot points, (3) fitting an
MBS surface to the pilot points and (4) evaluating
the loss due to the constructed smooth surface in
each of the stochastic realizations.

Determination of Optimum Values at the Pilot
Points

The pilot point values yielding an excavation
surface that minimizes the expected loss were
determined by the optimization framework of the
SA algorithm. The steps of the optimization frame-
work to design the optimal mining boundaries can
be seen in Figure 5.

Given a set of initial h pilot points (vector of
decision variables), an MBS surface is first fitted to
them, and the sum of losses in all the realizations is
calculated. The SA algorithm then perturbs the pilot
point values using the Cauchy–Lorentz visiting dis-
tribution to evaluate the performance of a new
solution (losses caused by the updated pilot point
values). A change in the pilot point values yielding
an improvement in the objective function (reduction
in the losses) is always accepted. On the other hand,

any change in the pilot point values resulting in a
worse solution (increase in the loss) can be accepted
or rejected based on the probability calculated using
the generalized Metropolis algorithm. The accep-
tance probability depends on the artificial tempera-
ture parameter of the SA. As the temperature set is
high in the initial stages of the optimization process,
the probability of accepting worse solutions is high
as well. Therefore, the solution space is well ex-
plored in the beginning. As the iterations progress,
the probability of accepting a worse solution goes
down since the artificial temperature approaches to
zero. After several thousands of iterations, the SA
converges and finds the hopt pilot point values min-

imizing the losses. Once the optimum pilot point
values are found, they are then used to design an
optimum excavation surface through the MBS
method.

RESULTS AND DISCUSSION

The proposed approach was implemented to
generate optimum mining boundaries for a laterite-
type bauxite deposit. Being an initial step of the
proposed methodology, simulations of the baux-
ite/ferricrete interface were first performed. In order
to achieve this, the elevation variable of the inter-

Interpolate the 
pilot points using the
Mu -level B-Spline

Candidate 
ore boundaries

Realiza onsMPS Simula

Evaluate the
objec ve func
(expected losses)

In  values for the 
pilot points

Start

Calculate 
the energy 
difference

Is the energy 
difference    

lower?

Op mum
Pilot Point 

Values

ΔE

[ ]E L

Is the 
probability of 
acceptance

> random

number

Yes

Accept new 
iteration

No

Yes

Propose new 
pilot point 

values

Is the 
stopping

criterion met?
No

No

Yes

Create the 
optimum mining 

boundaries

Figure 5. Steps used to determine the pilot points yielding optimum mining boundaries.
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face was used as the attribute to be simulated. Due
to the existence of both borehole and GPR data, the
simulations were performed in the form of bivariate
simulations. This was carried out by utilizing the
borehole data as the primary variable to condition
the simulations and GPR data, which are exhaus-
tively sampled throughout the simulation domain, as
the secondary information to guide the simulations.

Both the borehole and GPR data contain the
elevation variable of the bauxite/ferricrete interface.
The borehole elevations were obtained by observing
the elevation values at which the lithology changes
from bauxite to ferricrete. The GPR elevations, on
the other hand, were obtained indirectly from the
original raw GPR measurements. In the first place,
the raw GPR data were acquired in two-way travel
time. Therefore, it initially allowed the determina-
tion of the depth from the surface to the baux-
ite/ferricrete interface. After subtracting the depths
to the interface from the surface elevations, the
GPR elevations for the bauxite/ferricrete were ob-
tained. These elevations were used as the secondary
variable to guide the simulations. The conditioning
data used in the simulations are shown in Figure 6.

A bivariate TI was then constructed to infer the
multiple-point dependence between the borehole
and the GPR data. Its variables comprise an exposed
mined-out surface of a previously extracted mining
area and an extensive GPR survey conducted before
mining. The variables of the constructed TI can be
seen in Figure 7.

The grid used to store the TI dataset consists of
180 nodes in easting (X) and 400 nodes in northing
(Y) directions. On the other hand, the SG is com-
prised of 97 and 214 nodes in both easting and
northing directions, respectively. The single grid size
is defined as 2.38 m 9 2.38 m for both the TI and
the SG grids. Since the original data for the GPR
and the mined-out floor surface were in the form of
point data, they were migrated to the TI grid node
locations. This was performed through the condi-
tional sequential Gaussian simulation (sGs) tech-
nique so as to preserve the original statistical
properties as well as avoiding any smoothing effect.
Using the constructed TI, the DS was used to gen-
erate an ensemble of 200 realizations. The average
of the resulting simulations can be seen in Figure 8.

The pilot points were placed in the simulation
domain based on a defined grid spacing between
them. In order to analyze the effect of spacing on the
losses and the fluctuations of the decision surface,

pilot points spaced 8, 16 and 24 number of grids were
tested. The defined spacings yielded 251, 60 and 26
pilot points, respectively. Plan views of the pilot
point locations in the mining area can be seen in
Figure 9.

In addition to the spacings between the pilot
points, the number of h levels used in the MBS
method also affects the smoothness of the decision
surface. This parameter was chosen as 10 in this
study based on visually inspecting the smoothness of
the resulting surface. Although our choice in this
research was mainly due to the visual inspection, we
suggest that a suitable value of this parameter be
determined in the future to yield a design surface
mimicking the front-end loader equipment selectiv-
ity.

The loss calculations require some unit costs
and profits be defined. These include the profit P of
mining a unit volume of bauxite ore and the cost C
incurring in the case of a unit volume of dilution.
Since the grade distribution does not show a signif-
icant variability throughout the deposit, we simply
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assume that the Al2O3% grades overlying the ore/
waste interface are the same everywhere. A similar
assumption was also made for the SiO2% grades

within the ferricrete unit. Therefore, given that
dilution is approximately 60 times costlier than ore
loss in the mining of such deposits (Erten 2012), we
simply assumed that a unit loss occurring due to
dilution basically costs $60. We also assumed that
the profit made when one unit of ore is mined is $1.
It should be noted that these prices are hypothetical
and might not reflect the reality.

The optimization process begins with assigning
an initial set of values for the pilot points to be
optimized. These values can either be randomly
chosen or pre-specified before the optimization. In
our case, the values were taken from the elevation
values corresponding to the average of 200 realiza-
tions at the pilot point locations. We also defined a
lower and an upper boundary in which the optimum
values of the pilot points are sought. These bound-
aries function as the constraints of the optimization.
The lower boundary was calculated based on the
minimum elevation value of the bauxite/ferricrete
realizations. Maximum elevation constraint, on the
other hand, was the maximum elevation value of the
topography. We defined the maximum iteration
number of the SA as 50,000 and the temperature as
5000. An objective function call during the opti-
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mization process leads to the loss calculation for 200
images, which were of size 97� 214, to calculate the
losses in each of the realizations. Having ran the SA
using the defined setup, it converged and yielded the
optimum pilot point values. The resulting cross
sections of the deposit for a different number of
pilot points are shown in Figures 10 and 11. Plan
views of the generated smooth surfaces are shown in
Figure 12.

The cross sections demonstrate that the opti-
mum surfaces constructed lie above most of the
realizations. This is mainly due to the introduction of
a higher dilution cost compared to that of ore loss.
The proposed approach automatically avoids gen-
erating a surface that causes dilution, as it leads to
greater losses in the objective function. Note that the
position of the decision surface may seem to be high
above the simulations in certain cases, but this can
be since we are only looking at a section while there
are fluctuations in the perpendicular direction that
the decision surface needs to consider to remain
optimal.

The use of a different number of pilot points
has two main consequences. The first one is about

the fluctuations seen in the decision surface gener-
ated. When the number of pilot points used in-
creases, the decision surface exhibits more
fluctuations. Similarly, the use of sparser pilot points
yields decision surfaces that exhibit less fluctuations,
as can be seen in Figure 12. The second consequence
is that the calculated losses decrease when the
number of pilot points increases as shown in Fig-
ure 13. This indicates that there is a trade-off be-
tween the fluctuations and the resulting losses. More
pilot points allow defining a design surface that will
be rougher and more difficult to excavate but will
produce higher revenue.

Following the collection of the borehole and
GPR data, the area was mined out by the front-end
loader operator utilizing the hardness difference
between the ore/waste to track the actual geological
interface. The surface exposed was mapped through
a topographic survey, and the collected survey
points were then used to create the complete image
of the mined-out surface. Point to grid data con-
version has been achieved by the conditional sGs, as
in the construction of the TI. The main idea was
again to prevent any smoothing effect.
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In order to make a comparison, the expected
volumes for the bauxite reserve, mined portion of
the reserve, dilution and ore losses were calculated
using the three optimized boundaries. The ex-
pected reserve volume was calculated by taking
the average of the volume between the surface
topography and 200 contact realizations. For the
mined reserve calculations, the bauxite volume
overlying the optimized surfaces in 200 realizations
were averaged. If the proposed surfaces were be-
low a realization at a grid node, the elevation
differences were multiplied by the area to calcu-
late the dilution volume. The sum of all the dilu-
tion at each grid node yielded the total dilution
amount for a realization. Similarly, if the opti-

mized surfaces were above a realization, they were
considered to cause an ore loss and the associated
volumes were calculated for each of the realiza-
tions. The dilution and ore losses calculated for
200 realizations were then averaged to find the
expected dilution and ore losses for a given deci-
sion surface. In addition, the results of these
optimized surfaces were also compared with the
mined-out surface using the same calculation logic.
The summary of the volume calculations given in
Table 1 demonstrates the benefit of the proposed
method. Concerning the volume calculations, the
bauxite mined using 251 pilot points comprises
77% of the expected bauxite reserve. This is very
similar to the amount of bauxite mined by the

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

20100 20200 20300 20400 20500 20600

21
.0

22
.0

23
.0

(a)

Northing (m)

E
le

va
tio

n 
(m

)

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

20100 20200 20300 20400 20500 20600

21
.0

22
.0

23
.0

(b)

Northing (m)

E
le

va
tio

n 
(m

)

●

●
●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●
● ●

20100 20200 20300 20400 20500 20600

21
.0

22
.0

23
.0

(c)

Northing (m)

E
le

va
tio

n 
(m

)

●

●

● ●

●

●
● ●

●

Bauxite top surface (topo)
Smoothed surface

Average of real. (E−type)
Control Points

 Actual Floor Survey
Realisations

Figure 10. Y–Y cross sections of the optimum surfaces found by using (a) 251 pilot points, (b) 60 pilot points and

(c) 26 pilot points.
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operator, which was 76% of the deposit. However,
although both of the surfaces result in obtaining
the similar amount of bauxite deposit, the dilution
amount resulted using 251 pilot point surface was
0.076% of the total mined volume and significantly
lower than the dilution amount of mined-out sur-
face, which was 2.7%. The percentages described
are also illustrated in Figure 14 in terms of bar-
plots.

SUMMARY AND CONCLUSIONS

In this paper, we presented a new grade control
technique tominimize the risk of operational dilution

andore losses in lateriticmetal deposits.Although the
development was performed on a lateritic metal de-
posit, the method can be applied to any stratified de-
posit to create an ore/waste boundary with a certain
degree of smoothness. The proposed approach ben-
efits from a parameter calibration technique called
‘‘pilot points’’ to create a design surface with multi-
level B-spline method. The optimized pilot point
values are iteratively obtained within the simulated
annealing algorithm to create a new ore/waste
boundary minimizing the risk of dilution and ore
losses. Possible losses of a constructed surface are
calculated using several scenarios of the ore/waste
boundaries generated by themultiple-point statistical
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Figure 12. Plan view of the excavation surface designed using (a) 251 pilot points, (b) 60 pilot points, (c) 26 pilot

points and (d) the actual mined-out surface. The dashed lines show the sections where the cross sections in

Figures 10 and 11 were constructed.

167Pilot Point Optimization of Mining Boundaries for Lateritic Metal Deposits



simulations. We have implemented the proposed
approach on a lateritic bauxite deposit and compared
the resulting losses with the ones calculated using the
actual mining operation.

The major advantage of the proposed method is
the reduction in the economical losses. Implemen-
tation of the method on bauxite has demonstrated

much less losses compared to the actual mining
operation that took place. It was also observed that
the losses resulting from our proposed approach are
affected by the spacing between the pilot points.
Densely spaced pilot points give smaller losses but
increase the fluctuations in the resulting surface.
Another benefit of the proposed approach com-
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Figure 13. Histograms of the losses calculated using the (a) 251 pilot points, (b) 60 pilot points, c 26 pilot points

and (d) the actual mined-out surface.

Table 1. Statistics of the proposed and mined-out surfaces

Expected stats 251 Pilot points 60 Pilot points 26 Pilot points Mined out

Reserve volume ðm3Þ 130,448 130,448 130,448 130,448

Mined reserve ðm3Þ 100,506 86,938 75,324 99,316

Ore loss ðm3Þ 29,942 43,510 55,124 31,131

Ferricrete dilution ðm3Þ 76 86 113 2791

Economical losses $34,502 $48,713 $61,946 $159,104

168 Dagasan, Renard, Straubhaar, Erten, and Topal



prises the integration of the uncertainties in the ore/
waste contact. The losses of a decision surface are
calculated using the equiprobable realizations rep-
resenting the ore/waste interface. Therefore, the
uncertainty in the ore/waste boundary is accounted
for by the design surface. Although the realizations
were generated using multiple-point statistics, the
methodology could also work well with standard
geostatistical simulations, such as Turning Bands.
One should, however, be cautious of the quality of
the simulations used as it significantly affects the
designed surface. High variability in the ore/waste
contact simulations, for instance, tends to result in a
design surface deviating away from the average of
the realizations due to the high penalty associated
with the dilution. This can lead to the underesti-
mation of the mineable reserve volume.

The last benefit is about the adjustable smooth-
ness of the generated surface. The number of h le-
vels of the multilevel B-spline method allows
constructing surfaces with a varying degree of
smoothness. This can help designing surfaces which
are capable of reflecting the mining equipment
selectivity. Although h parameter of the multilevel
B-spline fundamentally controls the smoothness of
the surface, it needs to be calibrated in conjunction
with the pilot point spacing used, as it also plays a
crucial role on the fluctuations seen in the resulting
surface.

The proposed approach reveals several points
to be studied in the future as an improvement. The

first one is the subjectivity introduced when placing
the pilot points. The number and the locations of the
pilot points are chosen based on personal preference
in this study. Therefore, automatic determination of
the number and the location of the pilot points as in
Jiménez et al. (2016) may eliminate the subjectivity
introduced. The second point that can be improved
is related to the degree of smoothness that the
decision surface exhibits. Since there is a trade-off
between the losses and the degree of smoothness of
the decision surface, the optimum degree of
smoothness yielding minimum losses needs to be
specified. This can be achieved by establishing a
relationship between the surface smoothness and the
mining equipment-related losses. Once such rela-
tionship is formulated as a function of the fluctua-
tions of a given surface, this can then be used in the
objective function as an additional term to calculate
the total losses. Lastly, although the computation
time required to perform the optimization was rea-
sonable (6–8 h) using the R software, it can signifi-
cantly be reduced by utilizing parallel computing
and coding in C language.

Instead of using the multilevel B-Spline, alter-
native interpolation techniques, such as kriging, can
be used to generate the excavation surface. The
benefit of kriging would be the possibility to adjust
the smoothness of the surface with the range
parameter of the variogram model. In addition, it
could be possible to infer this range from previously
excavated surfaces. Therefore, the equipment flexi-
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bility can automatically be integrated into the de-
signed surface with the prior knowledge from the
mined-out areas. The implementation of multilevel
B-splines in this research was due to its high-speed
computation (Saveliev et al. 2005). Future research
could investigate the use of kriging for the interpo-
lation and explore its possible advantages.

Due to the fairly continuous nature of Al2O3%
and SiO2% grades throughout the deposit and also
for the sake of simplicity, the grades were consid-
ered constant in this study. Therefore, in order to
squeeze more performance out of the approach and
also to better reflect the reality, a block model of
these attributes can also be constructed to calculate
the losses. Use of such a model would then involve
the loss calculations based on the partial or complete
mining of a specific block.
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Francké, J. C., & Yelf, R. (2003). Applications of GPR for surface
mining. In Proceedings of the 2nd international workshop on
advanced ground penetrating radar, 2003 (pp. 115–119).
IEEE.

Francke, J. (2012a). A review of selected ground penetrating ra-
dar applications to mineral resource evaluations. Journal of
Applied Geophysics, 81, 29–37.

Francke, J., & Utsi, V. (2009). Advances in long-range GPR
systems and their applications to mineral exploration,
geotechnical and static correction problems. first break, 27(7),
85–93.

Guardiano, F., & Srivastava, R. (1992). Borrowing complex
geometries from training images: The extended normal
equations algorithm. In Stanford center for reservoir fore-
casting report. Stanford University.

Hartman, H. L., & Mutmansky, J. M. (2002). Introductory mining
engineering. New York: Wiley.

Isaaks, E., Treloar, I., & Elenbaas, T. (2014). Optimum dig lines
for open pit grade control. In 9th International mining geol-
ogy conference, Adelaide, South Australia.
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