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s u m m a r y

The heterogeneity of sedimentary structures at the decimeter scale is crucial to the understanding of
groundwater flow and transport. In a series of two papers, we provide a detailed analysis of a fluvio-
glacial aquifer analog: the Herten site. The geological data along a series of 2D sections in a quarry,
the corresponding GPR measurements, and their sedimentological interpretation are described in the
companion paper. In this paper, we focus on the three-dimensional reconstruction of the heterogeneity.
The resulting numerical model is provided as an electronic supplementary material for further studies.
Furthermore, the geostatistical parameters derived from this analysis and the methodology described
in the paper could be used in the future for the simulation of similar deposits where less data would
be available. To build the 3D model, we propose a hierarchical simulation method which integrates var-
ious geostatistical techniques. First, we model the subdivision of the domain into regions corresponding
to main sedimentological structures (e.g. a sedimentation event). Within these volumes, we use multiple-
point statistics to describe the internal heterogeneity. What is unusual here is that we do not try to use a
complex training image for the multiple-point algorithm accounting for all the non-stationarity and com-
plexity, but instead use a simple conceptual model of heterogeneity (ellipsoidal shapes as a training
image) and constrain the multiple point simulations within the regions by a detailed interpolation of ori-
entation data derived from the 2D sections. This method produces realistic geological structures. The
analysis of the flow and transport properties (hydraulic conductivity and tracer breakthrough curves)
of the resulting model shows that it is closer to the properties estimated directly from the 2D geological
observations rather than those estimated from a model of heterogeneity based on probability of transi-
tions and not including the modeling of the large-scale structures.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction glacial aquifer analog. This model constitutes an important
This paper is the second of a two-part series investigating the
heterogeneity of a fluvio-glacial aquifer analog. The overall motiva-
tion of the work is that a realistic modeling of aquifer heterogene-
ity requires on the one hand accurate data on the expected
sedimentological structures and on the other hand appropriate
modeling techniques.

While the first paper Bayer et al. (2011) in this series describes
the field work and proposes a sedimentological interpretation of
the data, this second part focuses on the modeling aspects and fol-
lows two aims. The first is to build a high resolution three-
dimensional model of the heterogeneity of the Herten fluvio-
ll rights reserved.
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preliminary step for future studies investigating the impact of het-
erogeneity on hydrogeological processes or on the significance of
field experiments.

The second aim of the paper is to propose a hierarchical ap-
proach for the modeling of such environment types. Among the
various existing methods to model heterogeneity reviewed by
Koltermann and Gorelick (1996) and de Marsily et al. (2005),
multiple-point (MP) statistics (Guardiano and Srivastava, 1993;
Strebelle, 2000; Hu and Chugunova, 2008) is appealing because it
provides a simple mean to integrate a conceptual geological model
in a stochastic simulation framework. The conceptual model is pro-
vided as a training image (TI) representing the heterogeneity pat-
terns that the user expects at a given site. For example, the TI
can represent meanders if the user knows that the geological envi-
ronment that he wants to model is made of meanders. Then, when
using MP statistics, one of the most important questions to answer
is how to get the TI? A possibility often cited in the literature is to
directly use the geological maps or sections obtained from analog
studies as TI.
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In practice, only a few attempts to use real geological analogs as
training images have been made so far (Maharaja, 2005; Huysmans
et al., 2008). These works have shown that analogs often display
significant non stationarity (because of the physical nature of the
geological processes that lead to the heterogeneity). Using them di-
rectly as training images produces often unacceptable simulations
(e.g. Boucher, 2009); indeed MP statistics assume that there is a
repetition of the spatial heterogeneity patterns in the TI to build
the MP probability distributions (ergodicity). If the TI is not sta-
tionary, the different patterns are mixed in the probability distri-
butions. Different techniques have been developed to overcome
this limitation. The main idea is to provide not only the TI but also
some additional information (i.e. orientation maps, results of geo-
physical surveys, probability maps) to avoid mixing the patterns
when computing the probability distributions (Boucher, 2009;
Chugunova and Hu, 2008; de Vries et al., 2009; Mariethoz et al.,
2010; Straubhaar et al., 2011). Even if the problem of non stationa-
rity is important, one has to remember that it is not specific to MP
statistics. It affects, in a similar manner, all the standard geostatis-
tical methods based on lower order statistics. However, when only
two-point statistical moments are used, the simulated structures
are not expected to resemble the original ones (because the two-
point moments do not contain enough information to constrain
the shape of the structures, see e.g. Strebelle (2000)) and the non
stationarity is less apparent.

Another issue when trying to use analog data to simulate 3D
heterogeneity with MP statistics is that one needs a 3D training im-
age to simulate the 3D domain. In general, analog observations
Fig. 1. Rasterized six sections Sj (16 by 7 m) of the Herten case study. Fig. 7a provides an e
(Bayer et al., 2011).
only provide 2D training images. It is therefore necessary to devel-
op specific methods that allow using MP statistics in that situation.
If we look at standard geostatistical procedures, the practice in
those cases would be to assume some invariance of the probability
laws by rotation (Chilès and Delfiner, 1999). The covariances or
variograms would be inferred along the available data in the direc-
tions included in the geological section, and the variability in the
perpendicular directions would be assumed to follow the same
laws or to be simply rescaled to account for some anisotropy. Here
similar assumptions could be made, but the current implementa-
tions (both commercial and open source) of MP statistics do not
yet offer these possibilities. When no other technique is available,
the user has to build a 3D training image that is, as far as possible,
compatible with the 2D observations. One can do it for example by
using object based techniques, as proposed by Caers (2005) and
Maharaja (2008), or by using 3D geometrical modeling techniques.
If the geological structures are highly complex and intricate, this
can be very tedious.

To overcome the problem of non stationarity and the problem
of insufficient access to a 3D training image, the approach pro-
posed in this paper consists of subdividing the domain in smaller
regions corresponding to a series of successive sedimentological
units corresponding to the large scale heterogeneity. In these units
(also named regions), the heterogeneity is simpler and one can use
basic but reasonable 3D training images constructed with object
based techniques. In other words, the non stationarity related to
the presence of major sedimentological units is treated by model-
ing a set of regions. The non stationarity of orientations of the
nsemble view. The hydrofacies codes are explained in detail in the companion paper



Fig. 2. A comparison between the simulations obtained with TP/MC, MP statistics with and without auxiliary variables and the proposed hierarchical approach. Figures b–d
are slices parallel to the plane xz of 3D simulations obtained using the six Sj as conditioning data. Figures e and f are obtained with the training image (a) and no conditioning
data. The hydrofacies codes are explained in detail in teh companion paper (Bayer et al., 2011).
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smaller scale heterogeneity within the regions is modeled sepa-
rately by interpolating their orientations. In deltaic reservoirs, a
similar approach has already proven to be very efficient (Khan
et al., 2008).

The paper is structured as follows. First we present the Herten
analog data set. Then we illustrate the limits of current modeling
approaches on this data set in order to justify the need for the pro-
posed approach. The following sections are devoted to the step by
step description of the approach. The paper ends with a presenta-
tion of the results and a discussion. All the MP statistic simulations
are obtained with the algorithm improved multiple-point algo-
rithm using a list approach (IMPALA, Straubhaar et al. (2011)).
The resulting 3D models are provided as electronic supplementary
material downloadable from the web site of the journal or avail-
able upon request to the authors.
2. The Herten dataset

The Herten site is located in the Rhine river valley in southern
Germany, close to the city of Basel (Switzerland). The site was se-
lected because it is one of the best characterized gravel bodies of
this size, and at the same time the heterogeneity and the non-sta-
tionarity of the data set are a challenging benchmark for a simula-
tion technique. Moreover, other studies were performed on the
same dataset, allowing a direct comparison of the results. The data
set contains six parallel geological sections having a dimension of
16 by 7 m (Fig. 1). In the following, we will refer to the six sections
as S1, . . . ,S6. These data were obtained by mapping the geological
facies in successive outcrop sections exposed during the pit exploi-
tation. The distance between each section is 2 m. In the reference
system adopted in this manuscript these sections are parallel to
the plane xz.

Ten different hydrofacies types are mapped within the sections
with a discretization of 5 cm along both x and z direction. For each
hydrofacies, hydraulic conductivity and effective porosity were
measured on a number of samples ranging from 3 to 15. For an
exhaustive description of the mapping procedure, the hydrofacies
coding conventions, as well as the available sedimentary, hydro-
geological and geophysical data sets, the reader is referred to part
1 of the companion paper (Bayer et al., 2011).

In the present paper, we use the hydrofacies data and build a
3D stochastic model within a hierarchical MP statistics frame-
work. The hydrofacies observations from the outcrops (Fig. 1)
are used both as hard conditioning data (268,000 points) to con-
strain the simulation and more generally as a source of informa-
tion to develop the whole methodology. The discretization is
identical to that used by Maji et al. (2006). The simulation domain
X is divided into 9 million (320 � 201 � 140) cubic cells having a
side of 5 cm.

This discretization is selected for three reasons: (1) to reflect the
very high resolution of the data; (2) to allow direct comparison
with previous work on the same site; and (3) to provide a high res-
olution 3D model of the heterogeneity of fluvio-glacial deposits
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that could then be used in the future to investigate how heteroge-
neity can control physical processes in these systems.
3. Motivations for a hierarchical approach

Before entering into the description of the proposed hierarchical
approach, it is important to visualize and understand the impact of
some limits of available approaches for modeling the 3D heteroge-
neity of the Herten site.

Several studies have used the Herten dataset (see companion
paper, Bayer et al., 2011). Among them, the most interesting for
our purposes are the works of Maji (2005) and Maji et al. (2006).
These authors applied a transition–probability–based Markov
chain approach (TP/MC, Carle, 1996), using the software TProgs,
to reconstruct the complete 3D volume and to use it for analyzing
the impact of heterogeneity on DNAPL transport. The TP/MC ap-
proach accounts for the probability of transition from one hydrof-
acies to another with the use of a transition probability matrix.
This matrix is composed of transition probability curves which
are adjusted from the data contained in the available sections;
the 3D simulation is performed using all the sections as condition-
ing data.

Two slices within a 3D simulation obtained with the TP/MC ap-
proach are displayed in Fig. 2c and d. Fig. 2c shows a slice parallel
Fig. 3. A schematic representation of th
and close (0.25 m) to the conditioning data of the first section S1

(Fig. 2a); Fig. 2d is placed in between S1 and S2, at a distance of
one meter from both. These two slices show that the simulation
becomes very noisy when the simulated nodes get further away
from the conditioning data. More precisely, thin continuous layers,
especially in the upper part of the domain, become clearly discon-
nected, and may have substantial influence on the hydraulic
behavior of the whole heterogeneous domain. Even if the transition
probability curves shown by Maji (2005) agree rather well with the
experimental data, it is possible that better results could be ob-
tained with an improved parametrization within TProgs. Actually,
we believe that the main reasons for the problems with the TP/
MC simulations are (1) the high non stationarity of the data set
and (2) the poor information available for the computation of the
probability transition matrix along the direction normal to the
outcrops.

As a remedy, the TP/MC approach could be applied, for example,
in a sequence stratigraphic framework (Weissmann and Fogg,
1999). However, this would be still constrained by the use of sta-
tistical models fitted on experimental curves that are computed
considering only two points at a time. To overcome this last limi-
tation, we investigate MP statistics.

The analog sections are only 2D, thus we cannot use them
directly as training images to simulate a 3D domain with MP
e proposed hierarchical framework.



Fig. 4. The different colors represent the regions Ri identified inside each section Sj from the geological sections displayed in Fig. 1. For a color-region correspondence see
Fig. 7c.

(a) (b)

(c) (d)

Fig. 5. Procedure adopted to identify the regions Ri inside subsets of the section S1.
Lower part of (a) and (b): R19 is created aggregating neighboring cells which contain
small-scale architectural elements. Upper part of (a) and (b): R21, R22, and R23 are
created aggregating homogeneous layers. (c) and (d) Two regions (in this case R9

and R11) are created in order to facilitate the interpolation of their upper limit z.

14 A. Comunian et al. / Journal of Hydrology 405 (2011) 10–23
statistics. However, one of these sections (i.e. S1) can be used as
training image to perform 2D unconditional MP statistics simula-
tions. Fig. 2e is a simulation obtained without taking into ac-
count the non-stationarity of the training image. As shown by
Chugunova and Hu (2008) and Boucher (2009), all the patterns
present in the training image are mixed up in the simulation
and the architectural elements contained in the section are not
reproduced.

To overcome this, one can use auxiliary variables to describe
the trends in the training image and in the simulation domain
(Chugunova and Hu, 2008; Straubhaar et al., 2011). Briefly, an
auxiliary variable can be represented by a continuous field super-
imposed to the training image and which is known in the simu-
lation domain. This field is used to constrain MP statistics: the
patterns which are observed in the training image, only for a gi-
ven value of the auxiliary variable field, are reproduced in the
simulation domain only for the corresponding values of the aux-
iliary variables (with a given tolerance). Here, for example, the
training image (Fig. 2a) contains an evident vertical trend along
the z. The results obtained with the MP statistics using z as aux-
iliary variable (Fig. 2f) are remarkably improved if compared with
the ones obtained without the use of the auxiliary variable
(Fig. 2e). Probably, one could go a step further by using a second
auxiliary variable along the x coordinate (horizontal) to improve
the results. In addition, note that the two 2D MP statistics simu-
lations are obtained without using conditioning data. Even if the
simulation of Fig. 2f is rather good, we still note that the thin in-
ter-bedded layer (with hydrofacies code sGcm, see companion pa-
per, Bayer et al., 2011) on top of the section is duplicated. This
observation reflects the fact that, in general, MP statistics is suit-
able for reproducing repetitive patterns, but not suited to model-
ing single discrete features that should rather be modeled with
other methods.

Finally, the application of MP statistics on the whole 3D do-
main remains a problem because there is still a need for a 3D
training image or for an improved MP statistics methods allow-
ing 3D volumes to be simulated from 2D training images. An
appropriate procedure to overcome this problem is presented
subsequently.

Therefore we propose to dichotomize the problem and to model
the main layers and the small-scale heterogeneity separately. A
first encouraging result of this method is shown in Fig. 2b precisely
at the same location as the one shown in Fig. 2d for the TP/MC
based approach.



Table 1
The orientation angles used to define the five rotation zones (quantiles 20%, 40%,60% and 80%) and the five corresponding rotations (quantiles 10%, 30%, 50%, 70% and 90%)
associated to each region.

Region [ Zone 0 )[ Zone 1 )[ Zone 2 )[ Zone 3 )[ Zone 4 ]

min (�) Q10 (�) Q20 (�) Q30 (�) Q40 (�) Q50 (�) Q60 (�) Q70 (�) Q80 (�) Q90 (�) max (�)

R1 �17.37 �1.27 �0.25 0.33 0.79 1.20 1.57 2.11 3.00 4.50 24.18
R4 �15.93 �9.27 �3.12 0.00 2.19 5.48 6.53 7.59 8.38 9.35 14.94
R5 �28.99 �16.91 �15.27 �12.19 �8.85 �4.89 0.00 0.00 5.07 10.08 16.51
R6 �2.55 0.00 0.00 0.00 0.00 2.55 5.36 8.71 10.64 11.80 13.23
R7 �36.87 7.88 9.37 10.20 12.56 14.23 15.62 17.18 19.41 22.28 31.88
R8 �10.78 4.51 7.29 10.37 13.42 16.19 17.35 19.06 20.48 22.78 30.51
R9 �6.26 �2.47 �2.33 �2.11 �0.91 0.00 0.00 1.10 3.78 7.53 18.05
R10 �0.95 10.82 13.89 15.11 18.50 19.21 20.64 22.87 24.71 26.79 32.75
R13 �18.55 �1.70 0.00 1.53 3.38 5.18 7.44 10.07 13.45 17.23 23.04
R15 �44.54 �0.20 2.43 4.31 5.98 7.81 9.53 11.48 13.81 17.24 44.48
R17 �17.69 �11.26 �9.21 �7.69 �6.50 �6.04 �5.66 �5.22 �4.33 �2.44 4.26
R19 �12.56 �1.96 0.58 2.31 3.69 4.97 6.29 7.72 9.77 13.87 38.00

Table 2
The arithmetic mean of the zi of the regions Ri for each section Sj (in meters; here the
values of z2 are not shifted). The last column contains the shift between the second
section and the mean of the first and the third section. The bold value at the bottom of
the last column is the mean of the column values. The values of z23 coincide with the
upper part of the simulation domain (7 m).

i �zijS1
�zijS2

�zijS3
�zijS4

�zijS5
�zijS6

ð�zijS1
þ �zijS3

Þ=2� �zijS2

1 1.10 1.64 1.03 1.17 1.58 1.54 �0.58
2 1.23 1.76 1.26 1.35 1.69 1.70 �0.51
3 1.23 1.76 1.26 1.35 1.74 1.71 �0.51
4 1.41 1.92 1.37 1.42 1.83 1.82 �0.53
5 1.42 1.94 1.40 1.45 1.86 1.89 �0.53
6 1.72 2.10 1.57 1.66 2.03 2.04 �0.46
7 1.85 2.35 1.85 1.79 2.25 2.23 �0.50
8 2.76 2.69 2.43 2.28 2.64 2.71 �0.10
9 2.78 2.71 2.44 2.29 2.66 2.71 �0.10

10 2.83 2.75 2.50 2.31 2.69 2.75 �0.09
11 2.90 3.02 2.56 2.31 2.69 2.75 �0.28
12 2.99 3.10 2.60 2.31 2.70 2.75 �0.31
13 3.22 3.36 2.83 2.74 3.03 3.02 �0.34
14 3.38 3.44 2.89 2.88 3.03 3.02 �0.30
15 3.68 3.83 3.49 3.45 3.76 3.67 �0.24
16 3.94 4.05 3.70 3.66 4.03 3.93 �0.23
17 4.29 4.51 4.26 4.44 4.92 4.85 �0.23
18 4.29 4.55 4.30 4.44 4.92 4.85 �0.25
19 5.22 5.54 5.44 5.43 5.70 5.69 �0.21
20 5.23 5.54 5.44 5.43 5.70 5.69 �0.20
21 5.74 5.93 5.90 5.95 6.20 6.18 �0.11
22 5.86 6.07 6.10 6.06 6.28 6.32 �0.09

�0.30

(a) (b)

Fig. 6. The variograms adopted to interpolate (a) the top of region R1; (b) cos(2a) and (c)
axis and positive counterclockwise).
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4. The hierarchical simulation framework

Fig. 1 exhibits large-scale structures composed of sub-horizon-
tal layers with internal small-scale heterogeneities. It becomes nat-
ural to adopt a hierarchical approach in order to simulate the two
structures separately.

Fig. 3 describes the major steps of the proposed framework,
which are explained in the following.

The first major step is to recognize the main layered large-scale
structures inside the sections, and extend the large-scale struc-
tures to the 3D simulation domain with this procedure:

1. define the hierarchy among structures and identify in each sec-
tion separate regions Ri

2. infer variogram and interpolate with ordinary Kriging, in the
whole 3D domain, the separation surfaces between two adja-
cent regions

3. create the large-scale layered structure, applying given erosion
rules on the interpolated surfaces.

At the end of this step, the simulation domain is divided into a
number of homogeneous and heterogeneous regions.

The second major step concerns the heterogeneous regions
only. It consists in applying the MP statistics method to simulate,
at small scale, the fine heterogeneous structures:
(c)

sin(2a) for R19. Here a is the orientation of the objects in the plane xz (a = 0 on the x



(a) (b) (c)

Fig. 7. (a) The six sections Sj of the Herten data set and (b) the layered structure obtained after the interpolation of the upper limit of the 23 regions Ri.

Table 3
The geometrical parameters used to simulate with an object based method the
training images required to apply the MP simulation method in the heterogeneous
regions Ri. For all the objects k = 0.5.

Region re min (m) re max (m) rp min (m) rp max (m)

R1 0.55 3.50 0.05 0.35
R4 0.75 3.50 0.05 0.20
R5 0.75 3.50 0.05 0.20
R6 0.75 1.50 0.05 0.10
R7 2.00 5.00 0.05 0.30
R8 1.00 4.00 0.05 0.20
R9 1.50 3.50 0.05 0.15
R10 1.50 3.50 0.05 0.20
R13 1.50 3.50 0.05 0.20
R15 1.50 3.50 0.20 0.75
R17 1.50 5.00 0.10 0.20
R19 3.00 7.50 0.10 0.30

Fig. 9. The 3D training image used to simulate with MP statistics the region R19.
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1. exploratory and morphological analysis of the shapes contained
in each heterogeneous region, in order to get the geometrical
parameters suited for the application of object based simulation
methods

2. simulate suitable 3D training images with an object based
technique

3. interpolate in all the Ri the orientation of the small-scale heter-
ogeneities, in order to create a map to be used as input for the
MP statistics simulation technique

4. simulate internal heterogeneity within each region with the MP
statistic using the conditioning data provided by the outcrops
and the orientation fields

5. assemble the results.

The heterogeneous regions simulated in this second step are
then included in the 3D domain.
Fig. 8. The slices of the three kinds of flattened ellipsoids, used for the boolea
4.1. Subdivide the domain into large scale regions

The first step of the hierarchical framework consists of parti-
tioning the whole domain X in a number of regions Ri such that
X = [iRi and Ri \ Rj = ; when i – j.

The regions Ri are first identified manually inside the sections
Sj (RijS1 ;...;S6 , see Fig. 4). The genetic units defined in the compan-
ion paper (Bayer et al., 2011) are used as guidelines for the def-
inition of the regions, which are identified following one of the
two following rules. The first rule is used when the distribution
of the hydrofacies presents decimeter-scale heterogeneities (see
lower part of Fig. 5a). With this rule, the cells are clustered in
order to form a unique region; this is the case of R19 in
Fig. 5b. The regions defined with this rule are heterogeneous.
n simulation of the TIs, composed by (a) one, (b) two and (c) three facies.



Fig. 10. The hydrofacies proportions computed for each heterogeneous region Ri. For each region, the first bar on the left represents the proportions computed on the
conditioning data, the second the proportions on the training image Ii used for the simulation, the third and the fourth the proportions of two realizations of a conditional MP
simulation.
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The second rule is used when homogeneous large-scale layers or
architectural elements are observed. This is for example the case
of the genetic unit IV (see companion paper, Bayer et al., 2011),
where three homogeneous regions R21, R22 and R23 are identified
(Fig. 5a and b).

A third rule was added in order to facilitate the interpolation
procedure: the identified regions Ri must not overlap. This is illus-
trated in Fig. 5c and d, where following only the two rules pre-
sented before the regions R9 and R11 would have been considered
as a whole; the upper limit z of this last region would not have
been uniquely defined by its x and y coordinates, creating a prob-
lem for the subsequent interpolation procedure.
Adding this last rule, the relation among the upper limits z of
the identified regions is the following:

zijS1 ;...;S6 P zi�1jS1 ;...;S6 for i ¼ 2; . . . ;nR � 1: ð1Þ

In the Eq. (1) nR stands for the number of identified regions Ri; the
vertical z axis is pointing upwards and the index increases from
lower z to higher z.

Eleven homogeneous regions and twelve heterogeneous regions
RijS1 ;...;S6 are identified (in total, nR = 23) following the rules illus-
trated before. The results of this identification procedure are de-
picted in Fig. 4.



Fig. 11. Part of the steps performed to compute an orientation map for region R19 and the section S1: (a) R19 \ S1 (b) the objects inside the matrix are identified; (c) objects are
reduced into their skeleton; (d) the skeletons of distinct objects are labeled (with distinct colors), and polynomials of order two are fitted on the skeletons (red lines); (e) the
orientations are deduced from the derivatives of the polynomials (dark arrows). The bright arrows in (e) are a slice of the 3D interpolation of the orientations.
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A systematic shift of the heights zijS2 , especially for the lower re-
gions (Ri with i 6 7) was identified by preliminary interpolations
(see Table 2). Due to the impossibility of investigating the reason
for this systematic shift in depth, we decided to subtract its mean
value (0.3 m) from all the zijS2 (for more details see Table 2). An-
other possibility would be to ignore the z values provided by the
second section during the interpolation process, for example for
all zijS2 with i 6 7. However, we preferred to apply the shift to all
the zijS2 in order to keep all the data for the interpolation.

Structural analysis is performed on the corrected heights, for
each region, in order to fit a variogram model and interpolate the
zi with ordinary Kriging on X. The variogram model adopted for
z1 is depicted in Fig. 6a.

To avoid overlap among the interpolated surfaces, some erosion
rules are applied according to Eq. (1). The zi interpolated are cor-
rected taking as reference the lower surface, starting from i = 1,
with the following rule:
Fig. 12. The five orientation zones defined to take into account for the non
stationarity in the orientation of the geological structures for region R15.
zi ¼
zi if zi P zi�1

zi�1 if zi < zi�1

�
for i ¼ 2; . . . ;nR � 1; ð2Þ

Fig. 7b represents the layered structure obtained in this first
reconstruction step.
4.2. Small scale: MP statistics

While eleven regions of the layered structure obtained by inter-
polation can be considered homogeneous, the other twelve regions
Ri with i = 1, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 19 have a heterogeneous
internal structure. Their structure is simulated using MP statistics
with an individual training image Ii for each region.

The following sections describe the procedure adopted to gen-
erate the training images required to apply MP statistics. Also,
the steps required to take into account the non stationarity of
Fig. 13. One realization obtained with the hierarchical simulation framework
taking into account the conditioning data.



(a) (b)

Fig. 14. The hydrofacies proportions computed on horizontal slices (parallel to xy plane) of 3D simulations. Slices are computed for each discretization step along the axis z
(140 slices in total). Proportions on slices are computed (a) on the conditioning data and (b) on the 3D simulation of Fig. 13.
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the orientations of the geological structures in MP simulations are
reported. The following procedure is applied to each heteroge-
neous region.
4.2.1. Simulate the missing training images
At the scale of the regions Ri one can recognize geological struc-

tures inside the six 2D sections RijS1;...;6 and deduce some 2D training
images. However, 3D training images are required in order to apply
MP statistics methods.

The missing 3D training images are generated using object-
based techniques, relying on the information provided by the 2D
sections. We suppose that the 3D shapes can be represented as
lenses, as in the case study described by Jussel et al. (1994). The ob-
jects are generated at random locations with a shape defined by:

ðx� xOÞ2 þ ðy� yOÞ
2

r2
e

þ ðz� zO � ½z� zO�krpÞ2

r2
p

¼ 1; k 2 ½0;1�: ð3Þ

Expression (3) represents an ellipsoid flattened by a factor k,
centered in the point (xO, yO, zO) with equatorial radii re and polar
radius rp. The parameters re and rp are varied with uniform laws
Uð½re min; re max�Þ and Uð½rp min; rp max�Þ for each simulated object;
the simulation is stopped when a target proportion is reached.

The values of the parameters re min, re max, rp min, rp max and k
adopted for the boolean simulations are reported in Table 3.

These values are estimated manually by trial and error from the
outcrops instead of using an automated procedure which would
have been required to account for the limited size of the outcrops,
for object truncation due to erosion processes and for the non sta-
tionarity in orientation of the objects. The facies proportions used
as threshold to stop the object simulation procedure are extracted
from the data contained in the outcrops. However, inferred 3D ob-
ject properties from 2D outcrops introduces a bias: for this reason,
even if for each heterogeneous region Ri we try to simulate a train-
ing image with proportions close to those of the outcrops RijS1;...;6 ,
we also accept training images simulated with proportions having
the same order of magnitude of the proportions extracted from the
sections. For each heterogeneous region Ri, the proportions ex-
tracted from the outcrops RijS1;...;6 , the proportions obtained for the
training image Ii, and the proportions obtained from two realiza-
tions of conditional MP simulations are in agreement (Fig. 10).

The boolean simulation code allows the generation of three dif-
ferent types of flattened ellipsoids having a composition of one,
two or three facies (Fig. 8); in fact, we suppose that the shape of
the small-scale geological structures which can be elicited from
the outcrops can be approximated with these types of ellipsoids.
Consequently, the training images for the 12 heterogeneous re-
gions are generated with a combination of the three types, in order
to mirror the compositions observed in the sections Sj (see Fig. 9).

4.2.2. Objects orientation
The non stationarity inherent to the layered structure of the site

at large scale can be taken into account by subdividing the domain
X into smaller regions Ri. However, at the scale of the heteroge-
neous regions Ri, there is another source of non stationarity: the
one related to the orientation of the heterogeneities within the
region. With the MP statistics simulation algorithm IMPALA
(Straubhaar et al., 2011) it is possible to account as well for this
type of non stationarity; inside a simulation domain, different
zones can be defined where individual simulation parameters
can be applied, like a dilatation or a rotation of the training image.
In order to perform MP simulation in each heterogeneous Ri, IMPA-
LA requires a suitable training image and an orientation map for
the objects. This section is devoted to this last map.

In the following examples, and for testing the sets of control
variables of the MP simulation, we focus on region R19; in fact this
region groups a great number of features whose reproduction are a
challenge in the 3D simulations, like, for example, extended con-
tinuous layers.

Fig. 11 depicts the main steps performed in order to detect the
orientations of the objects. The steps are implemented in Matlab
and the figure reports as an example the case of region R19 inside



Fig. 15. The log10 of the components of the equivalent conductivity tensor K. (a) Kxx,
(b) Kxz and (c) Kzz are computed on the six sections of the data set, on five 2D slices
in the 3D simulation obtained with the hierarchical approach and on five 2D slices
obtained with the TP/MC approach.
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section S1. Because we only have access to sections along the out-
crop plane xz, we can only determine orientations on this plane.

For each heterogeneous region RijS1 ;...;S6 the orientations are com-
puted with the following procedure:

� Distinguish the matrix and the objects. For example the hydrof-
acies Gcg,o and sGcg,o can be considered as forming unique
objects inside a matrix of sGcm,b (Fig. 11a and b).
� Apply a morphological operation in order to reduce the objects

into thin shapes (Fig. 11c).
� Label each reduced object using the connectivity rule described

by Haralick and Shapiro (1992) and considering eight neighbor-
ing points (Fig. 11d).
� Fit a polynomial (red lines,1 Fig. 11d) for each labeled object with

a least squares method. Use the derivative of the polynomial to
get the orientation value a in each point of the object skeleton
(dark arrows, Fig. 11e).

4.2.3. Orientation interpolation
To define the 3D orientation maps required by the MP statistics

simulations the punctual values of orientations computed along
1 For interpretation of color in Figs. 1, 2, 4–7, 9–14, 16 and 17, the reader is referred
to the web version of this article.
the skeleton of the small-scale architectural elements have to be
interpolated.

Interpolating local directional data is a challenge (Lajaunie
et al., 1997; Gumiaux et al., 2003). The main problem is that orien-
tation data are circular when they are represented as angles. They
only vary between 0� and 360�, and the value 0� is closer to 350�
than the value 20�, for example. A change of variable must be used
to ensure that the interpolation is made properly. In geostatistics,
several approaches have been designed for the interpolation of ori-
entation data. Lajaunie et al. (1997) and Chilès and Delfiner (1999),
chapter 5.5 observe that orientation data can be represented as the
gradient of a scalar field; starting from this consideration, they pro-
pose using general co-Kriging equations to interpolate the scalar
field and map the orientations. Gumiaux et al. (2003) provide a re-
view of the main methods and also propose a simple solution to
the problem. Instead of directly interpolating the orientation angle
a, they recommend interpolating cos(2a) and sin(2a); then the val-
ues of a on the whole interpolation domain are computed with arc-
tan(sin(2a)/cos(2a))/2. In this work, due to the small range of
variation of the orientation of the object, we apply this last
approach.

Structural analysis is performed on cos(2a) and sin(2a) for each
heterogeneous region Ri. Here we report as examples the vario-
gram models adopted to interpolate with ordinary Kriging cos(2a)
and sin(2a) for R19 (Fig. 6b and d). The bright arrows of Fig. 11e
represent a slice of the orientations interpolated for R19.

For each heterogeneous region Ri, the interpolated orientations
are grouped in five orientation classes, in order to define five zones
in which to apply the MP statistic method with the same training
image but with different orientations. The classification of the ori-
entations is done according to the quantiles: a quantile step of 10%
is computed, and while the 0%, 20%, 40%, 60%, 80% and 100% quan-
tiles are adopted as bounds for the five classification intervals, the
10%, 30%, 50%, 70%, and 90% quantiles are used as the orientations
to characterize each zone. Table 1 contains all the values adopted
for the previous classifications. Fig. 12 represents the five orienta-
tion zones used to apply MP statistics to region R15.

A test performed on R19 using ten orientation classes (quantile
step of 5%) did not improve the simulation result. Therefore, the
classification using five classes is considered sufficient.
4.2.4. MP statistics simulation
Selecting a suitable set of control variables of the MP statistics

simulation is a crucial point. Here we test different sets with a
‘‘trial and error’’ procedure, following the guidelines provided by
Liu (2006) and guided by our experience. A large part of the tests
are performed only on region R19.

An important question is how to evaluate and compare the re-
sults obtained with different sets of variables. In this context the
results of the simulations are evaluated for their ability to repro-
duce, first, the observed hydrofacies proportions, and, second, the
continuity of the structures, which can be deduced from visual
inspection of the sections Sj.

For a detailed explanation of the variables tested and their influ-
ence on the simulated results, refer to Liu (2006) and Straubhaar
et al. (2011); here after we report only a brief overview of the vari-
ables considered in the tests. The first variables inspected are the
number of multi-grid levels and the size of the search neighbor-
hood. With a big search neighborhood it is possible to capture
large-scale features of the training image, but an increased neigh-
borhood requires more RAM and more CPU time. Increasing the
multi-grid level allows the reproduction of large-scale features
with a smaller search neighborhood. Here we test neighborhood
of size 3 � 3 � 3, 5 � 5 � 5 and 7 � 7 � 7 and multi-grid levels
from 1 to 6.



Fig. 16. The relative concentration after 40 h (left column) and 120 h (right column) for the section S1 (a,b), a slice parallel to S1 and located between S1 and S2 (y = 1) within
the 3D simulation obtained with the hierarchical approach (c,d), or obtained with the TP/MC approach (e,f).
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Another control variable of interest for the MP statistics is the
simulation path. Depending on the disposition of the conditioning
data and on the shapes which have to be reproduced, this variable
can influence the simulation result. The simulation paths tested in
this case study are the following: a random path; a path performed
varying the coordinates of the simulation grid in the order x, y and
z (‘‘unilateral’’ path); a path in which the grid nodes closer to the
conditioning data are simulated first.
5. Results and discussion

Fig. 13 illustrates one realization obtained with the hierarchical
simulation framework. Different realizations are obtained with the
same set of control variables, while using a different seed for the
random MP statistics simulations. The control variables used are
5 multi-grid levels along the directions x and y and 1 multi-grid le-
vel along z, a random simulation path and a search neighborhood
of size 5 � 5 � 5. Using this set of variables the realizations ob-
tained reproduce reasonably well the complex structure of the
medium given by the six vertical sections of Fig. 1. Thin layers
are now continuous over most of the domain. Internal heterogene-
ity within a region is constrained within the region. Moreover, the
variation of the hydrofacies proportion computed along the verti-
cal axis z for the simulated domain and the conditional data are
in good agreement (Fig. 14).

These results are closer to the observation and much less noisy
than previous simulations made using transition probability tech-
niques (Fig. 2c and d).
Two numerical flow simulation tests are performed in order to
corroborate the results of the visual comparisons and of the com-
parisons on the proportions.

The first tests are performed under steady-state flow condi-
tions. The values of hydraulic conductivity provided in the com-
panion paper (Bayer et al., 2011) for each hydrofacies are used.
Two sets of linearly varying head boundary conditions are em-
ployed. The first is used to prescribe a hydraulic gradient along
the horizontal direction and the second one to prescribe a hydrau-
lic gradient along the vertical direction. The flow is computed using
the Groundwater finite element code (Cornaton, 2007) and post-
processed to compute the equivalent hydraulic conductivity tensor
K (Rubin and Gómez-Hernández, 1990; Renard et al., 2001) of the
heterogeneous medium. K is computed for the six sections of the
data set, for five 2D slices in the 3D simulation obtained with the
TP/MC approach, and for five 2D slices in the 3D simulation ob-
tained with the hierarchical approach. These slices are parallel to
the planes of the sections and located in between them, that is
for y = 1, 3, 5 and 7 m. Kxx and Kxz are the components of K which
provide indications about the continuity of the lithological layers
observed in the sections along the direction x. We observe that
the values of Kxx and Kxz computed from the hierarchical approach
are closer to the reference than the values computed from the TP/
MC approach (Fig. 15a and b). For the component Kzz, taking into
account the limited range of variations of the estimated values,
we consider that the results from the two simulation techniques
are not significantly different (Fig. 15c).

The second tests are based on transport simulations performed
with the Groundwater code on the same sections. The values of



Fig. 17. Contaminant breakthrough curves for (a) the section S1, (b) a slice on the
3D simulation obtained with the hierarchical approach, parallel to S1 and in
between of S1 and S2, (c) a slice on the 3D simulation obtained with the TP/MC
approach in the same position as the slice (b).
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hydraulic conductivity and porosity provided in the companion pa-
per (Bayer et al., 2011) for each hydrofacies are used, together with
coefficients of longitudinal and vertical dispersivity of respectively
10 cm and 1 cm. The solute transport problem considers a horizon-
tal flux. It is computed by prescribing a fixed head on the two
opposite faces of the section and no flow boundaries on top and
bottom, a concentration of 1 is prescribed at the inlet of the system
at x = 0 m at t = 0 (Fig. 16). The evolution of the average concentra-
tion is recorded at the outflow boundary (Fig. 17). Fig. 17 shows
that the contaminant breakthrough curves for the slices obtained
with the hierarchical approach (Fig. 17b) are closer to the reference
data set (Fig. 17a) than those obtained with the TP/MC approach
(Fig. 17c). The same considerations can be applied to the results
shown in Fig. 16, where the relative concentration at two different
time steps in the section S1 and in one 2D slice parallel to S1 at
y = 1 m is extracted from the 3D simulations obtained with the
hierarchical and the TP/MC approaches.

In general these simulations show that the hierarchical ap-
proach better reproduces the flow and transport properties of the
heterogeneity observed in the outcrops than the TP/MC method.
This is certainly related to the fact that the proposed method pro-
duces more continuous layers in the horizontal direction which
better ensures the continuity of the sedimentary structures.

More generally, the hierarchical approach described in this pa-
per allows the use of MP simulation tools with simple training
images generated using well known boolean simulation tech-
niques. This is an important advantage because the accessibility
of a suitable training image, especially in 3D cases, is often a prob-
lem. At the same time, while the small-scale intricacy is repro-
duced using MP methods, the large-scale structures are modeled
using standard geostatistical methods such as ordinary Kriging.

With the simplification introduced by the hierarchical frame-
work, it is possible to take into account the different aspects of
the non stationarity which characterizes complex sites (like i.e.
the Herten case study). One aspect of the non stationarity is tackled
by splitting the domain in sub-horizontal regions Ri. Another as-
pect of the non stationarity is related to the orientation of the geo-
logical structures contained in the heterogeneous regions Ri. The
hierarchical approach allows one to apply MP statistics algorithms
which can handle this last aspect. Again, within this hierarchical
framework a simple procedure is developed to detect and interpo-
late spatial orientation of the geological structures.

Another problem faced in this study is the choice of the best MP
statistics simulation parameters. A number of tests were per-
formed with different sets of parameters for the region R19. They
show that selecting a big search neighborhood and a high number
of multi-grid levels does not always coincide with a better simula-
tion result: often it is possible to obtain good results at moderate
computational effort burden with a search neighborhood with a ra-
dius of three grid cells and five multi-grid levels. Moreover, since
the continuity of the geological structures is mainly horizontal,
along the direction z one multi-grid level provided satisfactory
results.

In regards to the simulation path, this study, in which condi-
tioning data are not sparse, shows that a simulation path based
on the distance from the simulated point and the conditioning data
is not ideal. The main structures are simulated starting from the
vertical conditional sections, resulting in an artificial lack of conti-
nuity between the two planes. The best results are obtained with a
random simulation path.
6. Conclusions

With this work, we have shown that hybrid or hierarchical
models allow their users to circumvent most difficulties (non sta-
tionarity and lack of a 3D training image) encountered when deal-
ing with multi-scale data such as the Herten site. With the advent
of MP statistics, there was a temptation to think that all types of
geological structures could be modeled with a single tool provided
that an adequate training image is available. It is clear that pro-
gress has been made in that direction, but we also see that it is of-
ten a better strategy to combine different techniques.

One should note that splitting the domain into regions is some-
thing that is done routinely when building 3D geological models.
Here the difference is that we apply the same principle at a small
scale and within a single geological formation to describe different
scales of internal structures within the formation.
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The 3D model of the Herten site is provided as electronic sup-
plementary material that can be used in the future in several ways.

Indeed, the 3D heterogeneity of the model is certainly close to
the one which can be observed in this type of fluvio-glacial aquifers
and at that scale. Therefore, the model could be used to investigate
physical processes that are controlled by this heterogeneity (see
e.g. Maji et al., 2006). A whole range of numerical experiments
could be done.

Another possibility is to use some statistical information that is
derived from the sections (for example the number of regions per
unit thickness, the variograms of the boundaries between the re-
gions, the type of orientation structures, etc.) to extend the dimen-
sion of the 3D model. Indeed, it is possible to simulate successively
an ensemble of random surfaces following the statistical parame-
ters and the erosion rules inferred by the dataset to build an
unconditional partition of a large domain. If borehole data are
available, one could also simulate these surfaces conditional to
the borehole data. The surfaces can be used to define separate re-
gions where one could simulate orientation fields based on the ori-
entation observed in the data set. The orientation fields can then be
used to simulate pertinent geological structures with MP statistics
(with the training images derived as depicted before).

The last point that we want to stress is that analog data sets al-
most always provide only 2D information. This fact clearly empha-
sizes the need to extend the MP statistics framework in order to
allow simulating 3D domains from 2D training images and a set
of reasonable assumptions in the future. The presented procedure
demonstrates a successful first step in this direction.
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