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A B S T R A C T

Statistical metrics can be used to analyse the morphology of natural or simulated karst systems; they allow
describing, comparing, and quantifying their geometry and topology. In this paper, we present and dis-
cuss a set of such metrics. We study their properties and their usefulness based on a set of more than 30
karstic networks mapped by speleologists. The data set includes some of the largest explored cave systems
in the world and represents a broad range of geological and speleogenetic conditions allowing us to test the
proposed metrics, their variability, and their usefulness for the discrimination of different morphologies.
All the proposed metrics require that the topographical survey of the caves are first converted to graphs
consisting of vertices and edges. This data preprocessing includes several quality check operations and
some corrections to ensure that the karst is represented as accurately as possible. The statistical parame-
ters relating to the geometry of the system are then directly computed on the graphs, while the topological
parameters are computed on a reduced version of the network focusing only on its structure.
Among the tested metrics, we include some that were previously proposed such as tortuosity or the
Howard’s coefficients. We also investigate the possibility to use new metrics derived from graph theory. In
total, 21 metrics are introduced, discussed in detail, and compared on the basis of our data set. This work
shows that orientation analysis and, in particular, the entropy of the orientation data can help to detect the
existence of inception features. The statistics on branch length are useful to describe the extension of the
conduits within the network. Rather surprisingly, the tortuosity does not vary very significantly. It could be
heavily influenced by the survey methodology. The degree of interconnectivity of the network, related to the
presence of maze patterns, can be measured using different metrics such as the Howard’s parameters, global
cyclic coefficient, or the average vertex degree. The average vertex degree of the reduced graph proved to
be the most useful as it is simple to compute, it discriminates properly the interconnected systems (mazes)
from the acyclic ones (tree-like structures), and it permits us to classify the acyclic systems as a function
of the total number of branches. This topological information is completed by three parameters, allowing
us to refine the description. The correlation of vertex degree is rather simple to obtain. It is systematically
positive on all studied data sets indicating a predominance of assortative networks among karst systems.
The average shortest path length is related to the transport efficiency. It is shown to be mainly correlated to
the size of the network. Finally, central point dominance allows us to identify the presence of a centralized
organization.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Several studies have shown the importance of karst network
geometry for understanding flow and transport in karstic aquifers
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(Jeannin, 2001; Chen and Goldscheider, 2014). But in many cases,
the network geometry remains partially, or even totally, unknown.
Various simulation methods have thus been developed to tackle
this problem. They can be conditioned to field observations and to
a partial knowledge of the network that drive orientations and/or
length of the conduits, but they hardly consider the global net-
work architecture (e.g., Jaquet et al., 2004; Labourdette et al., 2007;
Borghi et al., 2012; Collon-Drouaillet et al., 2012; Pardo-Iguzquiza
et al., 2012; Viseur et al., 2014; Hendrick and Renard, 2016). Metrics
that would characterize karstic networks are thus required (i) to
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compare artificial and natural networks, and possibly, (ii) to better
parameterize the simulation methods.

First attempts to quantitatively characterize karst networks date
back to the 1960s (e.g., Curl, 1966; Howard, 1971; Williams and
Williams, 1972) and was strongly supported by parallel investiga-
tions on river networks (e.g., Horton, 1945; Scheidegger, 1966; Schei-
degger, 1967; Woldenberg, 1966; Smart, 1969; Howard et al., 1970).
Systematic analysis was then mainly done on two-dimensional pla-
nar maps or vertical cross sections produced by speleological explo-
rations (Howard, 1971).

But over the last decade, new exploration and survey tools have
emerged that ease the acquisition, storage, and share of three-
dimensional data. LIDAR techniques and aerial photography now
allow us to rapidly map surface evidence of karst presence
(Weishampel et al., 2011; Alexander et al., 2013; Zhu et al., 2014).
Lidar technology is also used underground and allows now 3D mor-
phological analysis of small portions of conduits and drains (Ployon
et al., 2011; Jaillet et al., 2011; Sadier, 2013). Underground-GPS sys-
tems progressively develop (Caverne, 2011), and one can hope that
they will therefore facilitate the acquisition of 3D regular data sets
on karstic systems, as well as the optical laser device tool recently
tested in Yucatan (Mexico: Schiller and Renard, 2016). Combined
with the increasing power of computers, these recent advances cre-
ate a renewal on statistical analysis of karsts, considering now the 3D
nature of these systems (Pardo-Iguzquiza et al., 2011; Piccini, 2011;
Fournillon et al., 2012). But in general, these studies focus on the geo-
metrical characterization of the networks, and they rarely compute
metrics on more than one or two examples.

In parallel, topological analysis of networks has had an explosive
growth, and many new metrics have been proposed that have not
yet been applied on natural networks such as karstic systems (Ravasz
and Barabasi, 2002; Boccaletti et al., 2006; Costa et al., 2007).

The goals of this paper are (i) to propose a set of metrics to char-
acterize both the geometry and the topology of karstic networks and
(ii) to provide a data set of the corresponding values computed on a
large ensemble of karstic systems.

With these objectives, we introduce several metrics from graph
theory that have not yet been used, to our knowledge, in this context.
We compare them with other metrics introduced by previous authors.
For each metric, we provide, in addition to its formal definition, some
examples on simple networks to help in getting an intuitive under-
standing of their meaning. We then compute all the metrics on a data
set of 34 cave systems gathered thanks to the help of speleologists:
31 networks are real 3D data sets, while 3 come from 2D projec-
tion maps of Palmer (1991). The analysis of these results permit us
to compare the metrics, analyse potential correlations, and discuss
their relevance for the quantification of karst geomorphology.

2. From real networks to graphs

2.1. Data acquisition

A solid statistical analysis would require a data set as large as pos-
sible of precise, complete, regular, and homogeneous measurements.
Cave mapping is technically difficult and performed thanks to long-
term work of trained speleologists. To our knowledge, no centralized
database inventories all explored caves and gives open-access to the
primary 3D data. To realize this study, various speleologists have
been independently contacted and have agreed to share their data.
Thus, we collected 31 three-dimensional karst networks from vari-
ous locations in the world (Table 1). Three 2D networks were also
used in the study and complete the database: Blue Spring, Crevice,
and Crossroads (USA). Note that four parts of the Sieben Hengste
karst (Switzerland) were provided and studied. Subparts SP1 and SP2
are included in the LargePart network. The UpPart is an independent
one, located upstream from the LargePart network. We have not split

nor merged any network parts as we had no accurate information
indicating if it should be done and how.

The total explored length of these networks strongly varies: from
small networks like Pic du Jer in France, with a total length of around
612 m, to very large ones like Ox Bel Ha in Mexico, with a total
explored length of 143 km. The variety of morphologies of the gath-
ered networks are also interesting to notice. Some are principally
developed around some horizons providing them a close to 2D archi-
tecture (e.g., Agen Allwed, Foussoubie Goule Ox Bel Ha), others are
characterized by their vertical elongation (e.g., Krubera and Ratasse),
and some have developed equally in the three dimensions of space
(e.g., Mammuthöhle, Sakany and Sieben Hensgte SP1: Fig. 1).

The three 2D networks come from an automated digitalization of
2D maps published by Palmer (1991). Despite that the data format
changes from one source to another, all 3D karst networks mapped
by speleologists are available as a sequence of n topographic sta-
tions i = 1, 2, . . . , n referring to a given origin point i = 1 (e.g.,
an entrance of the considered cave: Fig. 2A). In general, cave survey
data consist in such series of uniquely defined stations linked to each
other by lines-of-sight (e.g., Jeannin et al., 2007; Pardo-Iguzquiza et
al., 2011). Surveying methodology varies, but, in general, one line-of-
sight, cij, linking two consecutive stations i and j, is defined by (i) a
distance measured with a low-stretch tape or laser range-finder, (ii)
a direction (azimuth or bearing) taken with a compass, and (iii) an
inclination from horizontal taken with a clinometer (Fig. 2B). Most
of the time, but not always, the maximum height and the maximal
width of the passage are also measured at each station. Sometimes,
it is a more detailed distance to the surrounding walls that is pro-
vided through left, right, up, and down measurements (e.g., Jaillet et
al., 2011; Rongier et al., 2014).

Despite the recent efforts of the speleological community to
homogenise their cave survey methodology and take increasing care
of the precision and validity of the field measurements, some survey
errors can still appear and are more or less easily detectable:

• Back-sight measures: a station can be measured twice when
the surveyor returns in the opposite direction but continues its
data acquisition. This can be easily detected when the station is
strictly identical, but if the measurement is made just nearby,
it can be interpreted as a cycle – also called passage loop
(Fig. 3 - case A).

• Cycle closure errors appear when a gap, even small, is observed
between the first and the last stations of a cycle. This happens
especially when cumulative inaccuracies are registered during
the cycle survey without a final rectification by speleologists.
This can be detected by a neighbourhood distance scanning
around each point (Fig. 3 - case B).

• Missing connections are similar to cycle closure errors. This
division of a junction survey station into two points separated
by a small gap appears at junctions, notably when the explo-
rations of the joining conduits were performed at different
times and/or by different teams.

Moreover, survey stations are chosen by speleologists for their
ease of access and clear sight along the cave passage. This choice has
several consequences:

• Karstic networks are not regularly sampled. Additional samples
can affect the apparent topology (Fig. 3 - case F) of the net-
work. Some small meandering of the conduits could be ignored
during the acquisition if a lower sampling resolution is chosen
(Fig. 3 - case C).

• Stations are not located on the mathematical central line of the
conduit, i.e., they are not located at the middle of the con-
duit section. Placing the stations along the conduit walls can
emphasize the conduit apparent sinuosity (Fig. 3 - case C′).
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Table 1
Karst dataset: L is the total mapped length (in kilometers); DZ is the vertical extension of the system (in meters).

Name Location L (km) DZ (m) Name Location L (km) DZ (m)

AgenAllwed South Wales, UK 13.7 122 Krubera Georgia 13.2 2191
ArphidiaRobinet France 13.5 634 Lechuguilla New Mexico, USA 329 1257
Arrestelia France 60.9 827 Llangattwg South Wales, UK 0.90 30
BlueSpring (2D) Tennessee, USA 8.00 – Mammuthöhle Austria 63.9 1202
Ceberi France 7.20 310 Monachou France 0.70 33
CharentaisHeche France 13.5 433 OjoDelAgua Cuba 12.3 91
ClydachGorge Caf1 South Wales, UK 2.30 112 OxBelHa Mexico 143 29
ClydachGorge OgofCapel South Wales, UK 0.80 30 PicDuJer France 0.60 67
Crevice (2D) Missouri, USA 4.90 – Ratasse France 3.60 445
Crossroads (2D) Virginia, USA 7.80 – SaintMarcel France 56.5 275
DarenCilau South Wales, UK 20.2 186 Sakany France 7.50 141
EglwysFaen South Wales, UK 1.40 19 Shuanghe Chine 130 593
FoussoubieEvent France 2.60 130 SiebenHengsteLargePart Switzerland 82.2 988
FoussoubieGoule France 20.2 129 SiebenHengsteUpPart Switzerland 3.30 131
GenieBraque France 2.70 229 SiebenHengsteSP1 Switzerland 7.50 286
GrottesDuRoy France 3.80 330 SiebenHengsteSP2 Switzerland 6.80 239
HanSurLesse Belgium 9.80 30 Wakulla Florida, USA 17.8 93

• Several stations can be set up in one single big cave in order to
get a correct representation of its scale and to better map it. The
result is either a cycle or some sun-ray shape of what should
have been only registered as a point (Fig. 3 - case D).

• No genetic consideration is done for the definition of a line-of-
sight, thus, owing to a change of the genetic phase, the form of
the conduit can change radically between two survey stations
without being exhaustively recorded and located.

• Finally, we cannot be sure of the completeness of the data:
some conduits are not mapped because (i) they have not been
explored yet, and/or (ii) they are not accessible, being too small
or drowned on long distances (Fig. 3 - case E).

These approximations, of no consequence for speleological explo-
ration, can affect the results of a systematic shape analysis. Two
pre-processing steps have been performed to limit the survey errors.
First, we have implemented a tool to correct the most common cases
of missing connections. If an extremity vertex is closer than a user-
defined tolerance distance to a neighbouring vertex or segment, it
creates a new link between them. The case of two intermediate
segments close to each other in 3D, and thus, possibly defining a
junction, has been ignored: at this stage, we suppose that cross-
roads are important enough for speleologists to ensure that a station
would have been defined on each real junction. This assumption has
been verified on the 34 cave survey data we treated. Second, to deal
with additional cycles that may have been generated by the previous
treatment, we suppressed cycles smaller than a user-defined toler-
ance sphere. These corrections do not cover all the cases mentioned
above, but deals with the most automatically detectable errors.

2.2. Karst networks as graphs

Karst networks are considered in the analysis as a mathemati-
cal graph. This consideration is not new, as Howard (1971) already
proposed such representation of natural systems to quantitatively
analyse what was represented on planar maps, and several other
authors have performed equally since (e.g., Glennon and Groves,
2002; Glennon, 2001; Pardo-Iguzquiza et al., 2011; Piccini, 2011).

From the preprocessed networks, two different representations
are used for the statistical analysis. For geometrical analysis, which
requires real distance computations, the complete networks are
directly used. But for topological parameters, a reducedrepresentation
has been defined that fastens the computations.

2.2.1. Complete graph
In the complete graph of a karst, an edge ci,j, or link, represents a

line-of-sight between two stations that correspond to graph vertices
i and j (Fig. 4A–B). Each vertex, or node, is characterized by its Carte-
sian coordinates i = {xi, yi, zi}. The initial data in distance, direction,
and inclination line-of-sight successions from an origin point have
been converted to {x, y, z} coordinates to end with a network com-
posed of a set of n vertices and s edges connecting them. In the karst
perspective, the direction of a segment may intuitively be associated
with the direction of the flow in the conduit. But this direction of flow
is sometimes ambiguous, notably because of the presence of cycles
in the karst network. Thus, the graph is undirected.

The degree ki of a vertex is defined as the number of edges that are
linked to this vertex. The first neighbours of a vertex i are the vertices
that can be reached from i following one unique edge. Depending on
the degree of a vertex we define (Fig. 4):

• the extremity nodes as the vertices with ki = 1; and
• the internal nodes as the vertices with ki > 1; among them, the

junction nodes are the vertices with ki > 2.

A branch is defined as a set of adjacent edges connecting ver-
tices of degree 2. They represent the portion of the curve connecting
an extremity or a junction node with another junction or extremity
node (Fig. 4B).

2.2.2. Reduced graph
The number of internal nodes of degree k = 2 in a topographical

survey is largely a function of the field conditions and the speleol-
ogist’s sampling preferences. These vertices do not give information
about the topology of the karstic network. To simplify and speed up
the topological analysis of the network, we defined a reduced graph.
The reduction process consists in removing all vertices of degree
2 from the network (Figs. 4C and 5A). Thus, in the reduced graph,
only junction and extremity nodes are kept, gathered in the term of
seed vertices. Two seed vertices are then linked by an edge of unit
length that replaces the branch of the corresponding explored path
(Fig. 4C). The reduced graph is thus composed of N seed vertices and
S edges linking them.

This process, while straightforward, takes also into account spe-
cial cases. Indeed, when two different conduits link the same two
seed vertices, forming a cycle, the cyclic structure has to be kept
in the reduced network. To do so, one of the intermediate vertices
is kept in each conduit (Fig. 5B: cycle 1). Another special situation
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Fig. 1. The data set: 31 three-dimensional cave survey data have been gathered thanks to the help of various speleologists who agreed to share them. Three 2D networks were
also used in the study and complete the database: Blue Spring, Crevice, and Crossroads. Four parts of the Sieben Hengste karst are also studied: SP1 and SP2 are subparts also
included in the LargePart network; the UpPart is an independent one, not considered in the LargePart network. A relative altitude scale is indicated to ease the perception of the
third dimension. The total cave survey length is also indicated. But for data protection reasons, we are not allowed to give more precise location, and scale of the networks.
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A

B

Fig. 2. Example of a cave map (plan view) and associated survey data. (A) 27 mea-
surement stations i = 1, 2, . . . , n linked by 28 lines-of-sight ci,j constitute the karst
network. (B) Plan and side views: definition of length, azimuth, and inclination along
a line-of-sight. Cross section: in the best case four measures (up, down, left, right) are
made; more often, only width and height are recorded.

comes from the cycles in the network. Cycles are defined as con-
duits starting and ending at the same seed vertex, without crossing
any other seed vertex. In order to preserve the cyclic structure in

Fig. 3. Errors linked to the data acquisition process. Cases A and B can be automatically
detected and corrected when processing the data. (A) Additional point and line-of-
sight result from a back-sight measurement; the green point and segment should not
have been recorded. (B) A small gap appears between the first and last point of the
cycle, resulting in a cycle closure error. C and C′ - impact of the sampling location on
the apparent sinuosity of the explored conduit: a regular sampling and systematically
positioning of the station in the middle of the conduit could limit it. (D) Sun-ray
configuration resulting from the strategy chosen to sample one big cave. (E) Some parts
of the network remain unexplored owing to accessibility criteria. (F) The addition of
a new station can change the local topology of the network.

A

B

C

D

Fig. 4. From field data to graphs. (A) Map view showing the karst network and
the survey stations. (B) Corresponding graph with 5 external nodes and 23 internal
nodes, among which 6 are junction nodes; 28 edges are gathered into 12 branches.
(C) Reduced graph: only the seed vertices are kept to obtain a topological simplified
representation of the network. (D) Undirected adjacency matrix representation of the
reduced graph.

the reduced network, two intermediate nodes are also kept in the
looping conduit (Fig. 5B: cycle 2).

2.2.3. Numerical representations
Two representations are used for the networks. The position-links

or node-links representation corresponds to geometrical description
of the network. It consists in two matrices: a matrix [X Y Z] storing
the positions of the vertices and a matrix [i j] of edges between the
vertices. This representation can be visualized in 3D in the Gocad
geomodelling software or in Matlab, for whom specific functions
were coded. For the real karstic networks, if the conduit diameter at
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A B

Fig. 5. From field data to graphs: (A) Long linear caves; (B) special cases where nodes of degree 2 are kept in the reduced graph to preserve the topology.

each node is known, the position matrix can be extended with an
additional column D leading to the new matrix [X Y Z D].

To quickly and easily compute topological parameters, an adja-
cency matrix representation is also used (Fig. 4D). It is a square
matrix Ad, where each element wij expresses the existence (wij = 1)
or absence (wij = 0) of an edge from vertex i to vertex j. As we
consider undirected networks, the adjacency matrix is symmetric as
each edge from i to j is also an edge from j to i. In this work, we do
not allow self-connecting vertices, i.e., vertices that have a link to
themselves, and thus w(i, i) = 0∀i. Using the adjacency matrix, one
can easily compute some statistics on the networks. The degree of
each vertex is for instance the row-sum or the column-sum of the
adjacency matrix.

3. Metrics to characterize network geometries

We propose here several metrics to characterize the karstic net-
work geometries. They are all calculated on the complete graph of
networks stored in a position-link representation. For each metric,
we discuss the results obtained on the 31 three-dimensional net-
works of our database.

3.1. Conduit orientation

Several geological features constitute natural drains for under-
ground fluids and thus strongly influence the development of karstic
conduits. Fractures count among those main features (Palmer, 1991).
Fractures are generally organized into families of particular orienta-
tion depending on the regional stress field (e.g., Billaux et al., 1989;
Zoback, 1992; Beekman et al., 2000). As a result, karstic networks
that are mainly developed along the prominent fractures will show a
network pattern, i.e., an angular grid of intersecting passages (Palmer,
1991).

To analyse the 3D network geometry, it is thus relevant and clas-
sical to compute the conduit orientations (e.g., Kiraly et al., 1971;
Ford and Williams, 2007; Pardo-Iguzquiza et al., 2011). In 3D, edges
are assumed to point downward. Orientation of an edge consists in
measuring its azimuth (angle between the north and the segment,
ranging from 0 to 360◦) and its dip (angle with the horizontal plane,
ranging from 0 to 90◦). Resulting values are stored on a 3D pointset
corresponding to the midpoints of each line-of-sight (Fig. 6A and B).

Typically, these data are analysed with a Rose diagram to rep-
resent azimuth and dip distributions (Fig. 6C). No azimuth can be
affected to vertical conduits, and edge lengths vary. Thus, to compute

the Rose diagram, each orientation value has been weighted by the
length of the edge projection on the horizontal plane.

To better assess the third dimension and combine azimuth-dip
analysis, we also project the results on a Schmidt’s stereonet (which
preserves the areas) and draw a weighted density map (Fig. 6D and
E). The density map counts the number of data points inside a cell
counter that has by default a radius one tenth of the stereonet. For
density map computation, to avoid bias owing to a heterogeneous
sampling step, each point is weighted by the real edge length. The
density map expresses so the percentage of orientation data that are
contained in each 1% of the entire stereonet area. Data interpretation
of the density map is done manually. We consider that preferen-
tial orientations exist when localised data clusters clearly appear
(density ≥ 4%). Compared to the Rose diagram, the density map
is essential to identify significant proportions of subvertical edges
(Fig. 7). Families of poles can be defined for which circular statistics
are provided. As the three 2D networks come from initial raster data,
the orientation of their segments is aligned with the background grid
making them irrelevant for such an analysis.

To better quantify the differences in orientations of conduits, we
proposetocomputetheentropyoforientations,HO,asrecentlydonefor
urban street networks (Gudmundsson and Mohajeri, 2013). Entropy
is generally assimilated to a measure of disorder (e.g., Ziman, 1979;
Journel and Deutsch, 1993). We use the Shannon entropy formula:

HO = −
t∑

i=1

pilnnbins(pi) (1)

with pi the probability of an edge (weighted by its length) to fall
in the i-th bin, nbins represents the number of bins when comput-
ing the histogram of the orientations and t the number of bins with
nonzero probabilities. Note that the entropy calculation uses a base
nbins logarithm.

As the orientation can only take values between 0◦ and 360◦,
and as we used undirected graphs, data of opposite directions are
counted in the same bin and Rose diagrams are symmetric ones. This
is also handled in the orientation entropy computation where we
used bin widths of 10◦, thus fixing the number of bins at 18. The
shape of the probability distribution is thus quantitatively assessed
by the entropy value that equals 0 if all edges occupy a single bin and
that equals 1 if all bins have exactly the same probabilities (e.g., the
distribution is uniform).



128 P. Collon et al. / Geomorphology 283 (2017) 122–142

A B

C D E

Fig. 6. Orientation analysis of the Daren Cilau karst. (A and B) Azimuth (A) and dip (B) properties stored on the pointset corresponding to the midpoints of each edge (s = 2687).
(C) Rose diagram (symmetric) showing a preferential orientation of the edges along the N160◦(=N330◦) direction. Frequency computation is weighted by the length of the edge
projection on the horizontal plane to take into account the heterogeneous sampling step and the absence of direction associated to vertical conduits. The corresponding orientation
entropy HO = 0.921 is among the lowest measured values, expressing the existence of a preferential direction. (D) Projection of the orientations on a Schmidt’s stereonet (equal
areas). (E) Density map computed on the Schmidt’s stereonet (% of data in 1% of the entire stereonet area). The density map enhances the existence of a preferred direction family
N160◦–O◦ dip and of the close to horizontal development of this karstic network.

On the 31 three-dimensional karst networks that we analysed,
the orientation entropy varies from 0.746 (for ClydachGorge Caf1)
to 0.997 (OxBelHa). These globally high values express the fact that
all directions are often observable. When preferred directions exist,
their relative frequency is rarely superior to 20% of all data. In the
data set indeed, the ClydachGorge Caf1 karst appears as an excep-
tion: it is a quite linear network, and the orientation analysis shows a
maximal frequency of 32% along N150◦, which explains the entropy
value HO = 0.794. Ranged by increasing entropy, the next network
is thus Genie Braque with HO = 0.884 that corresponds to two main
orientations, one clearly marked around the N50◦ direction. Then,
the entropy of orientation increases regularly as preferred orienta-
tions are less and less distinguishable (Appendix A) until values are
very close to 1. For example, the karst of Lechugilla has an entropy of
HO = 0.996, which expresses the fact that all directions are almost
equally observed in the network (Fig. 8). It corresponds to sinuous
and curvilinear patterns developed when the passages are mostly
influenced by almost horizontal bedding planes. Fixing a threshold
value for which no preferential direction would be defined is quite
difficult, but entropy of orientations appears as a good quantitative
way to classify networks upon an orientation criteria. Nonetheless,
caution has to be taken in the interpretation as the entropy is only
computed on the horizontal projection of the orientations. Thus, a
preferential subvertical orientation does not appear on the Rose dia-
gram and is ignored in the orientation entropy computation. This

confirms the usefulness of the complementary density map analysis.
In Appendix A, the karstic networks that show a preferred subverti-
cal orientation are classified separately (Fig. A.23): again from lowest
orientation entropy (which is observed for networks with 2 pre-
ferred orientations, a subhorizontal and the vertical one: Arphidia
Robinet, HO = 0.918) to the highest orientation entropy (observed
for Krubera, HO = 0.996, which is mainly vertically developed).

The variety of orientation analysis patterns observed on just 31
networks shows the variability that one can encounter when study-
ing karstic systems. Most of the time, preferential orientations relate
to particular inception features: tectonic (joints, fractures and faults)
or stratigraphic (bedding planes: Filipponi et al., 2009). For example,
in the Sieben Hengste Large Part network, a main orientation of
N100◦/16◦ plunge is identified complementary to a vertical one. This
is consistent with the dip and direction of the main karstifiable for-
mation in which the system developed (Jeannin, 1996). Also, the
direction observed in the Han-sur-Lesse network (N95◦/1◦ plunge)
is linked to one preferential direction of fracturation observed in the
field (Bonniver, 2011).

Conduit orientation is thus an interesting parameter for detect-
ing the geological features of influence and for better understanding
the speleogenetic processes that have locally dominated. In this way,
entropy of orientations constitutes a useful metric to quantitatively
assess the existence and relative importance of preferential karstic
developments.
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B C

Fig. 7. Orientation analysis of the Ratasse karst: an example of network with two
preferential orientations: a subvertical one and a subhorizontal one. (A and A′) Top
and southern views of the Ratasse karst. (B) Rose diagram enhancing the moderate
subhorizontal preferential orientation along N95–275◦ direction, which explains the
orientation entropy HO = 0.986. (C) Density map computed on the Schmidt’s stere-
onet enhancing the clear preferential vertical orientation of some of the conduits (dip
close to 90◦ gathers up to 20% of the edges) clearly visible on the southern view A′ .

3.2. Length, length entropy, and coefficient of variation of the lengths

The curvilinear length of a branch li,j is measured from one seed
vertex i to the following one j by adding the length of each edge
it contains. The average branch length varies from 8.46 m for the
Monachou cave to 331.74 m for the Clydach Gorge Caf 1 karstic system
(Table 2). This said, most of the values range from 20 to 70 m with a
set of only six networks showing higher values: Agen Allwed, Clydach
Gorge Caf1, Genie Braque, Ox Bel Ha, Shuanghe, and Wakulla. Those
networks do not correspond to a specific pattern: the first three are
elongated with one main long conduit, but the three others are more
branchwork ones. One could have supposed that exploration in the
largest caves could have been done with a looser sampling, inducing
a smaller average branch length. This is not at all the case, as no linear
relationship appears with the total survey length (linear correlation
coefficient r = 0.07).

As for orientation, we also propose to compute the Shannon
entropy of the lengths Hlen to measure the variability of conduit
lengths in the network: length entropy will be maximal for a uniform
distribution and equal to zero if all conduits have the exact same
length. In practice, contrary to orientations, lengths are not limited
values. To have comparable entropy values between all networks,
branch lengths are normalized by the maximum length of the net-
work. Then, results are binned in 10 bins. In this study, the entropy
of the lengths is therefore defined as

Hlen = −
t∑

i=1

pilog10(pi) (2)

with pi the weighted probability of branches falling in the i-th bin,
and t is the number of bins with nonzero probabilities of edges.

We also computed the coefficient of variation of the lengths CVlen

to characterize the dispersion of the measures. It is expressed in per-
centage and corresponds to the ratio of the standard deviation s len

to the mean ¯len:

CVlen =
slen

¯len
∗ 100 (3)

The length entropy Hlen varies from 0.18 to 0.74. The coefficient
of variation of the lengths CVlen varies from 0.90% to 2.56% (Table 2).
No clear linear relationship is observable between both parameters,
but a slight negative correlation is observed (r2 = −0.69, see also
Section 5). The Charentais Heche network is a good example to better
illustrate the respective meaning of both these parameters (Fig. 9).
This network has the highest coefficient of variation of our data set,
CVlen = 2.56%: branch lengths vary indeed from low (around 2 m) to
high values (around 1550 m) for an average length ¯len = 50 m. But in
the case of Charentais Heche, these extrema are outliers that squeeze
the data into the first three bins (Fig. 9), inducing a low entropy of
lengths, Hlen = 0.18. On the opposite, the Genie Braque karst is char-
acterized by the highest length entropy of our data set (Hlen = 0.74),
which expresses the more uniform distribution of the lengths (Fig. 9).
In this case, the branch lengths do not vary very much around the
mean, which is expressed by a very low value of CVlen = 0.95%.

3.3. Conduit tortuosity (or sinuosity)

Tortuosity, also called sinuosity, is a classical metric used to char-
acterize karstic morphologies (Jeannin et al., 2007; Pardo-Iguzquiza
et al., 2011). It is used as well to parameterize karst network

A

B C

Fig. 8. Orientation analysis of the Lechuguilla karst: an example of a network with no
preferential orientation. (A) Top view of the Lechuguilla karst. (B and C) Rose diagram
and density map showing the absence of preferential orientation conduit, confirmed
by the very high value of orientation entropy HO = 0.996.
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Table 2
Geometry measures on the 31 three-dimensional karst networks (L is the total explored length (in kilometers); HO is the entropy of orientations; n is the number of survey
stations, i.e., the number of nodes of the complete graph; s is the number of line-of-sights, i.e., edges; ¯len is the average length of karst branches (in meters); Hlen is the entropy
of karst branch lengths; CVlen is the coefficient of variation of the branch lengths, expressed in %; t̄ is the average tortuosity of karst branches); for each parameter, minimal and
maximal values are indicated in bold.

L (km) HO n s ¯len (m) Hlen CVlen (%) t̄

AgenAllwed 13.7 0.964 1874 1893 119.99 0.46 1.84 1.54
ArphidiaRobinet 13.5 0.918 1461 1477 70.73 0.63 1.09 1.42
Arrestelia 60.9 0.907 6257 6268 69.74 0.34 1.49 1.35
Ceberi 7.2 0.972 881 886 55.61 0.50 1.35 1.27
CharentaisHeche 13.5 0.986 1985 2013 50.84 0.22 2.56 1.25
ClydachGorge Caf1 2.3 0.746 230 229 331.74 0.55 1.51 1.18
ClydachGorge OgofCapel 0.8 0.892 145 146 50.80 0.58 1.55 1.35
DarenCilau 20.2 0.921 2665 2687 55.85 0.32 1.87 1.21
EglwysFaen 1.4 0.948 307 308 15.81 0.68 1.29 1.14
FoussoubieEvent 2.6 0.928 333 339 33.20 0.50 1.61 1.27
FoussoubieGoule 20.2 0.987 2326 2354 62.30 0.66 1.41 1.21
GenieBraque 2.7 0.884 164 163 194.03 0.74 0.95 1.20
GrottesDuRoy 3.8 0.981 724 733 29.76 0.65 1.10 1.24
HanSurLesse 9.8 0.976 1668 1705 62.06 0.63 1.26 1.12
Krubera 13.2 0.996 2150 2157 55.31 0.53 1.87 1.30
Lechuguilla 329 0.996 12725 13503 68.96 0.57 0.91 1.26
Llangattwg 0.9 0.954 232 228 15.32 0.66 1.14 1.15
Mammuthöhle 63.9 0.996 9348 9712 30.99 0.25 1.29 1.42
Monachou 0.7 0.984 251 258 8.46 0.59 0.90 1.24
OjoDelAgua 12.3 0.964 1292 1326 43.81 0.53 1.43 1.21
OxBelHa 143 0.997 10098 10098 170.79 0.65 0.94 1.37
PicDuJer 0.6 0.933 102 102 25.51 0.64 1.12 1.21
Ratasse 3.6 0.986 692 693 64.86 0.44 1.59 1.41
SaintMarcel 56.5 0.993 5506 5556 75.96 0.40 1.78 1.23
Sakany 7.5 0.992 1716 1784 20.81 0.49 0.92 1.40
Shuanghe 130 0.988 7581 7634 118.76 0.46 1.28 1.22
SiebenHengsteLargePart 82.2 0.988 15340 15570 36.84 0.18 1.73 1.36
SiebenHengsteUpPart 3.3 0.978 753 753 52.46 0.72 1.04 1.36
SiebenHengsteSP1 7.5 0.991 1881 1915 26.94 0.58 1.32 1.40
SiebenHengsteSP2 6.8 0.991 1396 1418 39.52 0.64 1.21 1.43
Wakulla 17.8 0.982 474 477 330.51 0.56 1.53 1.28

simulations (Pardo-Iguzquiza et al., 2012). It is addressed at the scale
of a branch. The tortuosity ti,j from one seed vertex i to the following
one j is the ratio between the curvilinear length li,j along the branch
and the euclidean length di,j between the two seed vertices:

ti,j =
li,j
di,j

(4)

In order to avoid divergence for the tortuosity coefficient, we dis-
card all looping path from the computation. The tortuosity coefficient
of a network is defined as the mean tortuosity t̄ of all the branches in
the network.

Tortuosity coefficients range from 1.12 (Han-sur-Lesse) to 1.54
(Agen Allwed: Table 2). Tortuosity values are quite difficult to inter-
pret. Indeed, one could have assumed that high tortuosity coeffi-
cients would reflect sinuous, curvilinear patterns of conduits like
branchwork or anastomotic caves as defined by Palmer (1991). But
the results seem more linked to the sampling strategy than to a
clearly cave pattern (Fig. 10). This refers to the limitations of the
data acquisition process, which is not guided by statistical con-
siderations but by surveying constraints (Section 2.1), which also
vary depending on the speleologist team. Nevertheless, this param-
eter is sometimes proposed as an input parameter for stochastic
simulations (Pardo-Iguzquiza et al., 2012).

4. Statistical measures of topology

To complement the geometrical analysis of karstic networks, we
propose to use several parameters from graph theory to characterize

network topology. Table 3 summarizes these metrics, which are
computed on the reduced graph representations. As only the topol-
ogy matters here, the three 2D networks are also included in the
database, allowing us to have 34 networks to analyse.

4.1. Considering cycles

In the following, tree graphs, or also called acyclic networks, refer
to networks that do not have any cycles or passage loops. They
correspond to branchwork patterns (Palmer, 1991). The terms inter-
connected networks or maze patterns are used to name nonacyclic
networks, i.e. networks with several passage loops. These networks
regroup the anastomotic (dominated by curvilinear conduits) and
network patterns (dominated by straight conduits linked to the
enlargement of fractures) of Palmer’s classification.

4.1.1. Connected components and cyclomatic number
A connected component of a graph is a subgraph such that all

its nodes are reachable by all other nodes in the subgraph. Reach-
ability corresponds to the existence of a path between the nodes.
To compute the connected components of a cave system we use a
depth-first-search algorithm tagging each vertex with the index of
the connected component to which it belongs (Fig. 11). The number
of connected components corresponds to the number of subgraphs
p as defined in graph theory. Our data set gathers karstic systems
mostly composed by 1 to 5 connected components (Table 4). The
Mammuthöhle karst has, however, the particularity of being com-
posed by 25 connected components. Showing multiple connected
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Fig. 9. Charentais Heche and Genie Braque karsts: colors vary to enhance the different karst branches. On the right the corresponding length distributions are represented. The
rather wide distribution of Genie Braque branch lengths is expressed through a high Hlen value (Hlen = 0.74), while the more concentrated distribution of Charentais Heche
corresponds to a low value of Hlen = 0.18.

components means that the network is divided into several parts
that are not linked one to another by a mapped karstic conduit. Two
possible interpretations can explain this absence of link (i) a hydro-
logical connection does exist and has been proved by tracer tests,
but the corresponding conduit(s) has(ve) not been yet, or cannot be,
explored or (ii) the connection does not exist.

The cyclomatic number Ncycl is a classical parameter used in graph
theory. It reflects the number of cycles, or passage loops, inside a
network, which is high for maze patterns and equals 0 for acyclic
networks. It can be automatically calculated from the total number

of nodes N, the number of edges S, and the number of subgraphs p:
Ncycl = S − N + p. A large variety of cases are encountered in our
database, with cyclomatic numbers ranging from 0 to 779 for the
highly anastomotic Lechuguilla karst.

4.1.2. Howard parameters
Derived from graph theory (Garrison and Marble, 1962; Kansky,

1963), Howard’s parameters were developed to characterize braided
patterns of streams (Howard et al., 1970). They were rapidly applied
to quantify karst network connectivity (Howard, 1971). Howard’s

Fig. 10. Three top views of karstic networks of increasing tortuosity coefficient: Han-sur-Lesse t̄ = 1.12, Ojo del Agua t̄ = 1.21, and Agen Allwed t̄ = 1.54. No evidence of a link
between the cave pattern and the tortuosity coefficient arises.
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Table 3
List of metrics used to characterize the karst topology; all are
computed on the reduced graphs.

Ncycl Cyclomatic number (number of passage loops)
DC Connectivity degree
H Global cyclic coefficient (Kim and Kim, 2005)
k̄ Average vertex degree
CVk Coefficient of variation of degrees
rk Correlation of vertex degrees (Newman, 2002)
¯SPL Average shortest path length

CPD Central point dominance (Freeman, 1977)

parameters are defined for planar graphs and depend on three graph
attributes: the number of external nodes Next, the number of junction
nodes Njunc, and the cyclomatic number Ncycl (Fig. 4).

The parameter a designates the ‘ratio of the observed number of
cycles to the greatest possible number of [cycles] for a given number
of nodes’ (Howard et al., 1970):

a =
Ncycl

2(Njunc + Next) − 5
(5)

The parameter b is the ratio of the number of edges to the number
of seed vertices:

b =
S

Njunc + Next
(6)

The parameter c expresses ‘the ratio of the observed number of
edges to the greatest possible number of edges for a given number
of nodes’ (Howard et al., 1970), i.e., the ratio between the number of
karst branches toward the maximal possible connections:

c =
S

3(Njunc + Next − 2)
(7)

Fig. 11. The 25 connected components of the Mammuthöhle network: each color
represents one connected component.

It is important to emphasize again that these parameters were
developed for 2D planar graphs. In our data set, most networks are
3D, and their topology cannot always be reduced to those of their 2D
horizontal projection (such as Arphidia Robinet, Mammuthöhle, or
Krubera).

However, even if the assumptions underlying Howard’s calcula-
tions are not met, it is interesting to compute those parameters in
order to compare our results with the 25 networks that Howard stud-
ied. Howard (1971) indicates that a, b, and c respective values are
close to 0, 1, and 0.33 for a branchwork karst; and respectively close
to 0.25, 1.5, and 0.5 for a reticular one. They can be thus synthesized
into the connectivity degree DC, expressed in percentage, which is
expected to be close to 0 for a branchwork karst and close to 1 (or
100 if expressed in %) for a reticular karst:

DC =
a

0.25 + b−1
0.5 + c−0.33

0.17

3
(8)

The results are presented in Table 4. The a values range from 0
to 0.16, b values from 0.88 to 1.28, and c values from 0.32 to 0.44,
which is quite consistent with the reference values for karst. High
values of the three parameters systematically concern the same net-
works: Han-sur-Lesse, Sakany, Mammuthöhle, Sieben Hengste SP2.
But for the low values the classification slightly varies depending
on the considered parameters. In every case, low values correspond
to obviously branchwork karsts, while the high values are associ-
ated to more reticular patterns (Fig. 12). Between these extrema, all
intermediate configurations (and values) are observed, and defining
thresholds that would permit us to differentiate karst categories is
quite difficult.

4.1.3. Cyclic coefficient
The cyclic coefficient is a topological coefficient defined by Kim

and Kim (2005) in order to measure how cyclic a network is. The
local cyclic coefficient Hi of a seed vertex i is defined as the mean of
the inverse of the sizes of the smallest cycles formed by vertex i and
its neighbours (Fig. 13A). The mean is taken on all possible pairs of
edges connected to the vertex i:

Hi =
2

ki(ki − 1)

∑

( j,h)

1

Li
jh

(9)

where Li
jh is the size of the smallest cycle that passes through vertices

i, j, and h. If no cycle passes through i, j, and h then Li
jh = ∞ (Fig. 13A).

The algorithm for the computation of the cyclic coefficient for ver-
tex i consists in taking its two first neighbours (j and h) and removing
the edges (i, j), (i, h) and their opposite counterparts (j, i) and (h, i)
from the network. Then, the length Ljh of the shortest path between j
and h is computed. The length of the cycle is then obtained by adding
the removed edges Lijh = Ljh + 2. These edges are then reintroduced
in the network and the computation is redone on a second pair of
neighbours of vertex i until each possible pairs are visited.

The global cyclic coefficient for a network is defined as the mean
cyclic coefficient of all the seed vertices of the network:

H =
1
N

∑
i

Hi (10)

If a network has a pure branchwork pattern, no cycle is present
in the network, h = 0 (Fig. 13B). On the opposite, if all vertices of a
network are connected to the other ones, the cyclic coefficient will
be equal to one-third (Fig. 13C). Note that the cyclic coefficient is
slightly different from the global clustering coefficient, C, defined by
Watts and Strogatz (1998), that is also used to measure how well a
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Table 4
Topology measures on the 34 reduced graphs of the karst networks: considering cycles (N is the number of seed vertices; S is the number of edges; p is the number of connected
components; Ncycl is the cyclomatic number (number of passage loops); a, b, and c are the Howard’s parameters; DC is the connectivity degree; H is the global cyclic coefficient);
maximal and minimal values are enhanced in bold.

N S p Ncycl a (10−2) b c (10−2) DC (%) H (10−2)

AgenAllwed 129 148 1 20 7.91 1.15 38.85 31.82 5.70
ArphidiaRobinet 180 196 2 18 5.07 1.09 36.70 19.95 4.02
Arrestelia 879 890 3 14 0.80 1.01 33.83 3.52 0.83
BlueSpring (2D) 477 503 1 27 2.85 1.05 35.30 11.93 2.00
Ceberi 132 137 4 9 3.47 1.04 35.13 11.33 3.28
CharentaisHeche 260 288 1 29 5.63 1.11 37.21 22.94 5.17
ClydachGorge Caf1 8 7 1 0 0.00 0.88 38.89 3.21 0.00
ClydachGorge Ogof Capel 19 20 1 2 6.06 1.05 39.22 23.78 5.26
Crevice (2D) 253 262 1 10 2.00 1.04 34.79 8.55 1.55
Crossroads (2D) 371 430 1 60 8.14 1.16 38.84 32.92 5.91
DarenCilau 351 373 1 23 3.30 1.06 35.63 13.73 2.19
EglwysFaen 88 89 1 2 1.17 1.01 34.50 5.25 0.61
FoussoubieEvent 75 81 1 7 4.83 1.08 36.99 19.59 3.50
FoussoubieGoule 302 330 1 29 4.84 1.09 36.67 19.83 3.79
GenieBraque 15 14 1 0 0.00 0.93 35.90 1.24 0.00
GrottesDuRoy 124 133 2 11 4.53 1.07 36.34 17.42 3.58
HanSurLesse 130 167 3 40 15.6 1.28 43.49 60.46 12.4
Krubera 235 242 1 8 1.72 1.03 34.62 7.46 1.12
Lechuguilla 4187 4965 1 779 9.31 1.19 39.55 37.63 6.26
Llangattwg 67 63 5 1 0.78 0.94 32.31 −4.30 0.50
Mammuthöhle 2168 2532 25 389 8.98 1.17 38.97 34.87 6.44
Monachou 80 87 1 8 5.16 1.09 37.18 20.91 3.63
OjoDelAgua 258 292 1 35 6.85 1.13 38.02 27.76 5.10
OxBelHa 838 838 1 1 0.06 1.00 33.41 0.89 0.04
PicDuJer 26 26 1 18 2.13 1.00 36.11 7.58 2.56
Ratasse 59 60 1 2 1.77 1.02 35.09 7.58 1.13
SaintMarcel 713 763 3 53 3.73 1.07 35.77 15.08 2.83
Sakany 344 412 1 69 10.1 1.20 40.16 40.68 6.46
Shuanghe 1058 1111 3 56 2.65 1.05 35.07 10.93 1.91
SiebenHengsteLargePart 2063 2293 1 231 5.61 1.11 37.09 22.92 4.34
SiebenHengsteUpPart 65 65 5 5 4.00 1.00 34.39 8.06 3.24
SiebenHengsteSP1 250 284 1 35 7.07 1.14 38.17 28.64 5.24
SiebenHengsteSP2 156 178 1 23 7.49 1.14 38.53 30.23 6.03
Wakulla 55 58 1 4 3.81 1.05 36.48 15.54 3.56

network is connected on a local neighbour-to-neighbour scale (e.g.,
Newman, 2003; Andresen et al., 2013).

The results obtained on the 34 karstic systems range from 0
(Clydach Gorge Caf 1 and Genie Braque) to 0.12 (Han-sur-Lesse) with
a mean value of 0.04 (Table 4). An evident correlation appears with
the connectivity degree and is further discussed in Section 5.

4.2. Measures on vertex degrees

4.2.1. Distribution and coefficient of variation of vertex degrees
Simple statistics related with the vertex degrees can also be com-

puted. These include the average vertex degree k̄ and the standard
deviation of vertex degrees sk.

Fig. 12. Three top views of karstic networks that have increasing values of Howard’s parameters and connectivity degree: low values characterize branchwork patterns, while
high values are observed for reticular systems.
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A B C

Fig. 13. Cyclic coefficient. (A) An example for the local cyclic coefficient computation:
the vertex i has five neighbours, ki = 5. Only one cycle passes through 1 and 2 or 4
and 5, Li

12 = Li
45 = 3. Two cycles pass through 3 and 5: by c1 and by c2 (four through

3 and 4). The shortest one is c1, so Li
34 = 4 and Li

35 = 5. Vertices 1 and 2 are not
directly linked to vertices 3, 4 and 5, Li

13 = Li
14 = Li

15 = Li
23 = Li

24 = Li
25 = ∞. As a

result, Hi = 0.11. (B and C) Two examples of global cyclic coefficient values on a small
network with N = 6 vertices showing extrema cases: in case (B), no cycle is present in
the network, h = 0; in case (C), each vertex is always directly linked to the five other
vertices, and all cycles have the smallest possible dimension of 3, so h = 0.33.

With a mean value of 2.14, the average vertex degree ranges from
1.75 to 2.57 on the 34 studied karsts (Table 5 and Fig. 14). To inter-
pret these values, it is important to remember that this metric is
calculated on the reduced graphs of the networks so that all nodes
of degree 2 have been removed. Starting from this observation, if the
studied graph is acyclic, i.e., no cycle is observable, and we consider
a network with kmax = 3, a relation exists between the total number
of nodes N and n3 the number of nodes of degree 3:

N = 2n3 + 2 (11)

It induces a direct relation between the average vertex degree k̄
and N:

k̄ =
2(N − 1)

N
(12)

which involves that k̄ → 2 when N → ∞. Moreover, if we autho-
rize vertex degrees >3, it does not change this observation as each
edge addition involves also the addition of a new vertex of degree 1
(Fig. 15C). Thus, a value k̄ ≥ 2 indicates a network that shows cycles.
Also, as soon as one cycle is introduced in the network, k̄ is only
increasing if new cycles or vertices with degree >3 are introduced
(Fig. 15).

Like for lengths, the coefficient of variation of vertex degrees
CVk can be computed to characterize the dispersion of degrees. It is
expressed in percentage and corresponds to the ratio of the standard
deviation sk to the mean k̄:

CVk =
sk

k̄
∗ 100 (13)

The computed values of CVk are relatively high and range from
35% to 60%. Indeed, vertex degrees globally range between 1 and 3,
sometimes (but rarely) up to 5. As we work with reduced graphs, all
vertices of degree ki = 2 have been removed. Computing an entropy
of vertex degrees in this context is not really relevant.

4.2.2. Correlation of vertex degrees: assortativity
The correlation of degrees between first neighbour vertices has

been found to play an important role in structural and dynamical

Table 5
Topology measures on the 34 reduced graphs of the karst networks: other parameters
(k̄ is the average vertex degree; CVk is the coefficient of variation of degrees; rk is
the correlation of vertex degrees; ¯SPL is the average shortest path length; CPD is the
central point dominance); maximal and minimal values are enhanced in bold.

k̄ CVk (%) rk
¯SPL CPD

AgenAllwed 2.29 50.05 0.63 11.72 0.54
ArphidiaRobinet 2.18 49.06 0.74 13.28 0.45
Arrestelia 2.03 57.14 0.77 29.16 0.50
BlueSpring (2D) 2.11 47.13 0.73 26.90 0.46
Ceberi 2.08 51.42 0.63 7.20 0.30
CharentaisHeche 2.22 45.91 0.69 25.40 0.43
ClydachGorge Caf1 1.75 59.15 0.44 2.32 0.56
ClydachGorge Ogof Capel 2.11 52.26 0.49 3.95 0.47
Crevice (2D) 2.07 48.35 0.70 19.66 0.55
Crossroads (2D) 2.32 41.75 0.83 17.33 0.34
DarenCilau 2.13 55.47 0.74 18.44 0.51
EglwysFaen 2.02 59.49 0.59 8.69 0.57
FoussoubieEvent 2.16 48.16 0.72 7.87 0.47
FoussoubieGoule 2.19 45.96 0.76 25.07 0.44
GenieBraque 1.87 60.29 0.55 3.37 0.51
GrottesDuRoy 2.15 48.91 0.75 11.36 0.31
HanSurLesse 2.57 35.26 0.85 7.14 0.20
Krubera 2.06 58.80 0.58 21.48 0.45
Lechuguilla 2.37 52.01 0.84 55.76 0.49
Llangattwg 1.88 59.65 0.52 4.05 0.16
Mammuthöhle 2.34 53.59 0.72 14.89 0.02
Monachou 2.18 50.03 0.75 7.58 0.40
OjoDelAgua 2.26 47.42 0.78 19.58 0.38
OxBelHa 2.00 51.79 0.65 49.42 0.54
PicDuJer 2.00 49.00 0.59 5.80 0.37
Ratasse 2.03 55.51 0.70 8.40 0.44
SaintMarcel 2.14 51.53 0.72 21.69 0.23
Sakany 2.40 47.08 0.88 12.99 0.27
Shuanghe 2.10 51.02 0.73 25.98 0.27
SiebenHengsteLargePart 2.22 48.12 0.77 47.37 0.46
SiebenHengsteUpPart 2.00 53.03 0.66 4.28 0.14
SiebenHengsteSP1 2.27 45.96 0.75 15.53 0.49
SiebenHengsteSP2 2.28 46.91 0.79 14.04 0.39
Wakulla 2.11 47.13 0.64 8.11 0.43

network properties (Maslov and Sneppen, 2002). In order to assess
the correlation of degree of neighbour vertices in our reduced net-
works, we compute the Pearson correlation coefficient of the degrees
at both ends of an edge (Newman, 2002):

rk =
1
S

∑
j>ikikjwij −

[
1
s

∑
j>i

1
2 (ki + kj)wij

]2

1
s

∑
j>i

1
2

(
k2

i + k2
j

)
wij −

[
1
S

∑
j>i

1
2 (ki + kj)wij

]2
(14)

whereS isthetotalnumberofedges,andwij referstothecorresponding
values in the adjacency matrix representation. If r < 0 the network is
disassortative, i.e., vertices of high degree tend to connect to vertices
of low degrees (Fig. 16A). If r = 0 there is no correlation between
vertex degrees. If r > 0 the network is assortative, i.e., vertices of high
degrees tend to connect with vertices of high degrees (Fig. 16B).

The values obtained on the 34 reduced networks are all positive,
ranging from 0.44 to 0.88. The reduced representations of karstic sys-
tem are thus assortative (Table 5). This is probably linked to the fact
that maximal node degrees rarely exceed 4. Thus, nodes are globally
regrouped with nodes of similar low degrees.

4.3. Average shortest path length

In the reduced networks, we define a path as a sequence of edges
linking two seed vertices i and j. Because all the edges have a length



P. Collon et al. / Geomorphology 283 (2017) 122–142 135

Fig. 14. Examples of karstic networks and corresponding average vertex degree: on the left, the Clydach Gorge Caf1, which is a tree network: k̄ = 1.75; on the right Han-sur-Lesse,
which has a large number of cycles and nodes of degree 4: k̄ = 2.57.

A B

C

Fig. 15. Illustration of the average vertex degree meaning for reduced graphs. (A and C) For tree graphs, k̄ is increasing toward 2 as the size of the tree graph increases, but the
value 2 is never reached. (B) As soon as one cycle is introduced in the network, k̄ = 2. Then, k̄ is only increasing with the addition of new cycles or of nodes of degree >3.

equal to 1 in the reduced graph, the length of a particular path is
given by the number of edges that constitute the path. The shortest
path between vertices i and j is therefore the path that links the two
vertices with the minimal number of edges. If no path exists between
two vertices, i.e., the network is composed by disconnected compo-
nents, the length is set to ∞. Therefore, in order to avoid divergence
of the coefficient, we compute the shortest path for each connected
components of the network separately and then compute the mean
of all components. For any vertex i, the shortest path length SPLi is
the average shortest path that separates i from any other vertex j of
the same connected component:

SPLi =
1

(N − 1)

∑
j

Lij (15)

where N is the number of vertices in the network. We define the
average shortest path length of a network as the mean of the shortest
path length ratios:

¯SPL =
1
N

∑
i

SPLi (16)

The average shortest path length ¯SPL ranges from 2.32 to 55.76
for the 34 studied networks with a mean value of 16.93. The ¯SPL is

A B

Fig. 16. Correlation of vertex degrees is a measure of assortativity. (A) An example of
disassortative network (rk < 0): vertices of high degree tend to connect to vertices of
low degrees; (B) an example of assortative network (rk > 0): vertices of high degree
tend to connect to vertices of high degrees (‘hubs connected to hubs’).
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A B C

D E F G

Fig. 17. Average shortest path length, ¯SPL: (A) and (C) are complete graphs, each node
is directly linked to all other ones by one edge, thus ¯SPLA = ¯SPLC = 1 independently
of the total number of nodes N. On the opposite, (C) and (G) are linear graphs, but
with different sizes: (C) is longer than (G), thus ¯SPLB < ¯SPLD . As we compute ¯SPL on a
reduced graph, these linear structures cannot be observed (all nodes of degree 2 have
been removed). Cases (B) and (E) demonstrate that, for the same spatial architecture,
¯SPL increases with the total number of nodes N. Cases (E) and (F) demonstrate that, for

the same total number of nodes N, ¯SPL also varies depending on the architecture of the
tree graph: case (F) is more linear than case (E).

related to the efficiency of transfer processes through the network.
For example, applied on the world wide web, a short ¯SPL accelerates
the transfer of information. Here, it is calculated on the reduced rep-
resentations of the karst networks, which ignores real distances. It
just characterizes the efficiency of the network in terms of its struc-
ture or topology. The average shortest path length is thus jointly
influenced by two parameters (i) the linearity of the network, and (ii)
the size of the network (Figs. 17 and 18).

4.4. Betweenness centrality and central point dominance (CPD)

The betweenness centrality of a vertex i is a measure of the vertex
importance in a network. We consider it as a topological measure

A

B

Fig. 18. Examples of karstic networks and their associated ¯SPL value. (A and A′) The
Clydach Gorge Caf1 network is a short one with ¯SPL = 2.32; (A) presents the real
network with only the seed vertices visible. (A′) presents the nonscale corresponding
view of its reduced representation. (B) The Lechuguilla cave has ¯SPL = 55.76.

A B

Fig. 19. Central point dominance (CPD): (A) example of a complete graph, i.e., a graph
in which each vertex has a direct edge to all the other vertices: CPD = 0; (B) for a star
graph CPD = 1, i.e., a central vertex is included in all paths.

and therefore compute it on the reduced network. The betweenness
centrality relates to the number of shortest paths that cross a vertex
i with the following relation:

Bi =
∑

jk

nj,k(i)
nj,k

(17)

where n(j, i, k) is the number of shortest paths between the vertices
j and k that pass through the vertex i, and n(j, k) is the total number

A

B

Fig. 20. Examples of central point dominance (CPD) results: (A) Mammuthöhle cave
is constituted by 25 connected components and a dispersed organisation CPD = 0.02;
(B) Eglwys Faen is characterized by the existence of several high degree nodes (kmax =
5) and a more centralized pattern CPD = 0.57.
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Table 6
Linear (Pearson) correlation coefficients r between all studied metrics; values correspond to 0.7 ≤ |r| < 0.85; values correspond to |r| ≥ 0.85, which
expresses a strong linear correlation between both variables.

of shortest paths between j and k. The sum takes over all distinct
pairs j, k of vertices. The Bi indexes the potential of a point for control.
As it is essentially a count, its magnitude depends, among others,
upon the number of points in the graph. To eliminate this impact,
Freeman (1977) proposed to use a relative centrality, B∗

i . For any
undirected star graph, this normalization has to guarantee that the
relative betweenness centrality of the central point is equal to 1. Thus

B∗
i =

Bi

N2 − 3N + 2
(18)

where N is the number of nodes in the network. The central point
dominance for a network is then defined by Freeman (1977) as

CPD =
1

N − 1

∑
i

(B∗
max − B∗

i ) (19)

where B∗
max is the largest value of relative betweenness centrality in

the network.
The central point dominance is 0 for a complete graph, i.e., a graph

in which each vertex has a direct edge to all the other vertices, and
1 for a star graph in which a central vertex is included in all paths
(Fig. 19A and B). On karstic systems, we obtained values ranging from
0.02 to 0.57 with a mean value of 0.39. The highest value is obtained
on the Eglwys Faen cave, which is characterized by several vertices

of degree k ≥ 4 and quite centralized. On the opposite, the Mam-
muthöhle cave, which is composed by 25 connected components, all
of them without noticeable centralized organization, get the lowest
value of our data set with CPD = 0.02 (Fig. 20).

5. Comparison of the metrics and discussion

We proposed different metrics for the characterization of karst
geometry and topology. All of them have been computed on 34
karstic networks coming from various parts of the world and related
to different speleogenetic processes. In this section, we study the
relation between all these metrics in order to identify redundant
ones and to better understand their signification. To start the anal-
ysis, Table 6 presents the linear correlation coefficients that we
computed between the different metrics.

5.1. Geometrical parameters

We chose to focus the geometrical analysis on orientation, length,
and tortuosity of conduits.

The orientation analysis helps in identifying preferential direction
of speleogenesis that can be linked to the existence of inception fea-
tures, like fractures, bedding, and faults. Orientation also underlines
the curvilinear patterns of karsts developed along almost horizon-
tal bedding planes. Our results show the high variety of orientation
patterns and the difficulty to define general reference cases. The
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Fig. 21. Common patterns of solutional caves according to Palmer (1991) and links with some topological metrics we propose: interconnectivity is increasing with the average
node degree k̄; orientation entropy HO is lower when clear preferential directions of karst development exist; the central point dominance CPD should be higher for ramiform
patterns, and spongework patterns could be characterized by low values of average shortest path length ¯SPL. Nonetheless, especially for the two last parameters, relations are still
required to be demonstrated with a dedicated statistical analysis supported by speleogenetical considerations.

use of orientation entropy, as recently proposed for urban street
analysis (Gudmundsson and Mohajeri, 2013), provides an interest-
ing tool to quantitatively classify network on orientation criteria.
However, density map analysis is necessary to complement this
metric and especially to detect the existence of a vertical preferential
development of conduits.

The average length, length entropy, and the coefficient of vari-
ation of conduit length are interesting parameters to describe the
geometry of karstic networks. The length entropy informs about the
distribution of conduit dimensions, while the coefficient of variation
shows the extent of variability relative to the mean. A negative non-
linear correlation is observed between the length entropy and the
size of the network (expressed through the numbers of survey sta-
tions n, of lines of sight s, of seed vertices N, and of karst branches
S). The computation of entropy divides indeed the samples in bins.
Thus, for smallest karsts, the probability to obtain a bin that contains
one or two samples is higher. So, even if the population is tight-
ened around the mean (low value of the coefficient of variation), the
resulting distribution is more likely uniform.

Tortuosity, also called sinuosity index, has often been used to
describe karst geometry (Pardo-Iguzquiza et al., 2011; Jeannin et al.,
2007). Nonetheless, the computed values reveal only slight varia-
tions that do not seem to correspond to a particular or clear curvilin-
ear karst pattern classification when visualizing the corresponding
systems. We suspect that tortuosity is probably strongly affected by
the survey methodology. If this is true, it should be used as a crite-
rion or as an input parameter for conduit geometry simulation only
when data were acquired following a very well-defined sampling
procedure, i.e., with stations located in the center of the conduits and
a fixed distance between the stations.

Other geometrical metrics have been investigated in previous
papers (Howard, 1971; Pardo-Iguzquiza et al., 2011). In particular,
a set of metrics use widths, passage areas, mean height diameters.
These metrics provide important volumetric information, but they
required field data that were not available for all the karst systems
considered in this study and this is why they are not included here.
Such a volumetric description is, however, clearly vital for providing
a complete description of a cave system.

5.2. Topological parameters

Concerning topology, we used several metrics to described the
networkorganization.Consideringtheircorrelationcoefficients, some
of them appear to express similar characteristics of the networks. It
is important to remember that topological metrics are computed on
reduced graphs: all vertices of degree k = 2 are removed from the
networks.

The interconnectivity of the network is jointly expressed by all
Howard’s parameters a, b, and c, the resulting degree of connectiv-
ity DC, the global cyclic coefficient h, and finally, the average vertex
degree k̄. All these parameters are indeed highly linearly correlated
(Table 6). Additionally, a perfect linear correlation (r = 1) is observed
between b and k̄, which are linked by the relation k̄ = 2b. As a con-
sequence, we would recommend to keep only one of these metrics
for characterizing the interconnectivity of the network. Our choice
goes to the average vertex degree k̄, which is quite easy to compute.
As demonstrated in Section 4.2.1, k̄ has the advantage to classify tree
graphs (with values 1.5 ≤ k̄ < 2) and interconnected systems (val-
ues k̄ ≥ 2). Note that these peculiarities of k̄ are completely linked to
the fact that we compute it on reduced graphs. In other studies, e.g.,
on fracture networks (Andresen et al., 2013), the presence of nodes
of degree 2 leads to values k̄ ≤ 1.5.

The correlation of vertex degrees have demonstrated that the
reduced graphs of karstic systems were all assortative (0.44 ≤ rk ≤
0.88). Previously, Newman (2002) has showed that many social
networks were assortative while technological and biological net-
works seem to be disassortative. It is perhaps linked to the fact that
high degree vertices are quite rare in karstic networks: we did not
record k values >5. As a comparison, the equivalent graphs of trans-
formed fracture networks proposed by Andresen et al. (2013) were
characterized by a mean value kmax = 29. Assortativity is slightly
linked to k̄ (r = 0.79, Table 6), but the low correlation coefficients
obtained with other metrics relating to interconnectivity (a, c, DC, h)
show that it does not express the interconnectivity of the network. It
is a complementary metric.

Average shortest path length ( ¯SPL) is a standard metric in graph
theory (e.g., Chandy and Misra, 1982; Watts and Strogatz, 1998;
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Albert and Barabási, 2002; Newman, 2003; Andresen et al., 2013).
Expressing a kind of transfer efficiency through a network, the
average shortest path length is jointly influenced by the size of the
network and its architecture: it varies as the network is spread
(almost linear, ¯SPL > 1) or hunched ( ¯SPL = 1). This explains the high
correlation coefficients we obtained with the network size parame-
ters n, s, N, and S (Table 6). We computed it on the reduced graphs
where edge lengths equal 1. But alternative definitions could be
developed and used. Firstly, edge length could be defined as the
curvilinear length of the corresponding branch length to more accu-
rately express the network efficiency, in terms of flow. This would
probably reenforce the correlation between network size and the
new metric. Secondly, considering the cave entrance(s) or outlet(s)
and a downgradient could be interesting to get a metric with a more
hydrogeological meaning. In practice, siphons or other kinds of con-
duits could add complexity to automatically define a downgradient.
In the present study we do not always get the entrance(s)/outlet(s)
for the studied networks, but it could be an interesting perspective.

Central point dominance allows us to classify karstic networks
on a new topological characteristic: theoretically restricted between
0 and 1, values obtained for karstic systems range from 0.02 to
0.57; no noticeable correlation is observed with the other metrics
showing nonredundancy of the information provided by the CPD,
which expresses the potential centralized architecture of the network.

5.3. About karst patterns

Trying to relate the proposed topological metrics to standard pat-
terns of karstic systems as defined by Palmer (1991) and/or to a
geological environment is tempting (Fig. 21). Pure branchwork pat-
terns must have 1.5 ≤ k̄ < 2, with values increasing with the
number of branches. Maze patterns, gathering anastomotic and net-
work patterns of Palmer’s classification, should be characterized by
a high interconnectivity (and thus k̄ > 2) as well as spongework
and, perhaps, ramiform patterns. Ramiform patterns should proba-
bly distinguish themselves by a higher value of CPD and, potentially,
a high assortativity. Spongework patterns should probably show a
low value of ¯SPL as they seem quite hunched. But all those intuitive
interpretations cannot be rigorously demonstrated here. Indeed, it
would require us to accurately attach each system to one pattern. To
do so, a visual analysis of the karst network alone is not sufficient
and necessitates a parallel field study. Moreover, most of the stud-
ied karst systems appear to be the result of different speleogenetic
phases. As a consequence, relating parameters to a proper geologic
environment would require us to split the networks in homogeneous
speleogenetic subparts, which is again questionable without a field
study. Splitting networks in various groups reduces the population
of each group, and the statistical study should so ensure getting a
minimum amount of networks in each group. Such work constitutes
an interesting perspective that could be addressed with the help of
speleologists.

5.4. About sampling errors

Numerical tools have been developed to automate the measures
on graph representations of the networks. But cave surveys and data
acquisition processes still induce errors that cannot be completely
automatically corrected. It concerns errors coming from nonmeasured
conduits: potentially relating to small diameter conduits it should
probably affect metrics on volumetric characteristics but not neces-
sarily those concerning the geometry. It also concerns errors coming
from the fact that data comes from an exploration realized with a dif-
ferent aim than a statistical one: location of the survey station inside
the conduit, sampling step, sampling strategy for large caves. Differ-
ent parts of the Sieben Hengste network have been studied. The SP1
and SP2 are two subparts of the Sieben Hengste LargePart network.

It is interesting to notice that, despite the fact that the large part net-
work is obviously segmented in different zones (Fig. 1), most of the
values computed for both subparts are close to those computed for
the large network. The main differences are indeed observed for met-
rics that are sensitive to the size of the complete or reduced graph,
such as k̄, Hlen (and obviously n, s, N and S). Even if these results could
be interpreted as an encouraging point, the impact of survey errors
remains to be further explored. One way to address it could be to per-
form repeated random removals of network parts in a Monte Carlo
framework. Then, computing the different metrics on the resulting
subsystems would allow us to assess the sensitivity of the metrics to
incomplete data sets.

6. Conclusion

We have proposed and computed 21 metrics on a data set of
more than 30 karstic networks. The data set includes some of the
largest explored cave systems in the world and represents a broad
range of geological and speleogenetic conditions allowing us to test
the proposed metrics, their variability, and their usefulness for the
discrimination of different morphologies.

Numerical tools have been developed to automate these compu-
tations on two graph representations of the networks, consisting of
vertices and edges (i) a complete version of the network for geomet-
rical metrics, and (ii) a reduced version of the network for topological
considerations. Thesetoolsareavailableondemand. Amongthetested
metrics, eight appear particularly relevant to describe the karstic net-
works. For geometry, orientation entropy (HO), completed by a density
map analysis, provides a useful tool to quantitatively classify networks
onorientationcriteriaandtohelpdetecttheexistenceof inceptionfea-
tures. It is interestingly completed by average lengths ( ¯len), coefficient
of variations of lengths (CVlen), and length entropy of conduits (Hlen),
which describe the extension of the conduits within the network.
Concerning topology, we would recommend computing the average
vertex degree of the reduced graph of networks (k̄) to characterize
the interconnectivity of the systems. It is indeed simple to compute,
it discriminates properly the interconnected systems (mazes) from
the acyclic ones (tree-like structures), and it permits us to classify
the acyclic systems as a function of the total number of branches.
Assortativity (rk), average shortest path length ( ¯SPL), and central point
dominance (CPD) are metrics inspired by graph theory that have been
used for the first time to characterize karsts. These parameters express
various complementary aspects of network topologies, and we gave
some examples to help the user in interpreting their physical meaning.

Besides the metrics, the main contribution of this paper is to pro-
vide a reference database of values measured on several actual karstic
networks. Such a toolbox and associated database offer the possibil-
ity to test karst network models on a quantitative level when trying
to qualify their degree of ‘realism’. In that perspective, feeding this
database should be encouraged to increase its representativeness.
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Appendix A. Complete results of orientation analysis

Fig. A.22. Orientation analysis results (Part 1): karst networks without a clear vertical preferential direction (i.e., relative frequency of vertical segments is inferior to those of
other directions). The karstic systems are classified from the ones with the lower orientation entropy (HO = 0.746) to the maximal one (HO = 0.997).
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Fig. A.23. Orientation analysis results (Part 2): karst networks with a clear vertical preferential direction The karstic systems are classified from the ones with the lower orientation
entropy (HO = 0.918) to the maximal one (HO = 0.996). As the vertical direction does not appear on a Rose diagram, orientation entropy ignores this preferential direction. It
only expresses the existence of other preferential directions.
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