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a b s t r a c t 

Karst aquifers are characterized by extreme heterogeneity due to the presence of karst conduits em- 

bedded in a fractured matrix having a much lower hydraulic conductivity. The resulting contrast in the 

physical properties of the system implies that the system reacts very rapidly to some changes in the 

boundary conditions and that numerical models are extremely sensitive to small modifications in prop- 

erties or positions of the conduits. Furthermore, one major issue in all those models is that the location 

and size of the conduits is generally unknown. For all those reasons, estimating karst network geometry 

and their properties by solving an inverse problem is a particularly difficult problem. 

In this paper, two numerical experiments are described. In the first one, 18,0 0 0 flow and transport 

simulations have been computed and used in a systematic manner to assess statistically if one can re- 

trieve the parameters of a model (geometry and radius of the conduits, hydraulic conductivity of the 

conduits) from head and tracer data. When two tracer test data sets are available, the solution of the 

inverse problems indicate with high certainty that there are indeed two conduits and not more. The ra- 

dius of the conduits are usually well identified but not the properties of the matrix. If more conduits are 

present in the system, but only two tracer test data sets are available, the inverse problem is still able 

to identify the true solution as the most probable but it also indicates that the data are insufficient to 

conclude with high certainty. 

In the second experiment, a more complex model (including non linear flow equations in conduits) 

is considered. In this example, gradient-based optimization techniques are proved to be efficient for es- 

timating the radius of the conduits and the hydraulic conductivity of the matrix in a promising and 

efficient manner. 

These results suggest that, despite the numerical difficulties, inverse methods should be used to 

constrain numerical models of karstic systems using flow and transport data. They also suggest that a 

pragmatic approach for these complex systems could be to generate a large set of karst conduit net- 

work realizations using a pseudo-genetic approach such as SKS, and for each karst realization, flow and 

transport parameters could be optimized using a gradient-based search such as the one implemented in 

PEST. 

© 2016 Elsevier Ltd. All rights reserved. 
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Karst aquifers are extremely heterogeneous and difficult to

haracterize [2] . Their heterogeneity is induced by the presence

f highly permeable preferential flow paths created by the disso-

ution of the surrounding rock. Those preferential flow paths are

ften fractures and bedding planes that are enlarged by dissolu-
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ion, often resulting into karstic conduits which are organized in

ierarchical networks. 

Annable [1] gives an exhaustive overview of the evolution of

he conceptual models of speleogenesis over the last two centuries.

he conceptual model that is considered in the present study [ [63] ,

.g.] is the following: the karst aquifer is composed by 2 main hy-

rofacies: the matrix which represents more than 90% of the vol-

me of the aquifer, and has an important storage role; and the con-

uits which represent a very small volume, but have a very high

mportance for flow, since they are considered to be responsible
or more or less 90% of the total flow. 

http://dx.doi.org/10.1016/j.advwatres.2016.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
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Although karst aquifers have already been studied for more

than a century they are still very difficult to model [1] . Over the

last 3 decades, several numerical modeling techniques have been

developed to provide better understanding of these aquifers, but

also to manage water quantity and quality. A review of these tech-

niques is provided by Ghasemizadeh et al. [23] . A striking feature

of this review is that only direct approaches, i.e. modeling flow

and transport when the geometry and the properties of the con-

duits are known, are described. Following the same line of thought,

Saller et al. [52] show the benefits of coupling conduit flow (pipes)

with matrix elements, but points out the uncertainty regarding the

location of the conduits (which strongly influences the flow field)

and the extreme difficulty of calibrating such models. 

More generally, among the approaches used to solve inverse

problems [57] in groundwater hydrology, gradient-based methods

are frequently used. They consist in modifying iteratively the hy-

draulic conductivity values either in predefined zones [10] until

the error between observed and calculated state variables reaches

a minimum or stabilizes at an asymptotic value. This is extremely

efficient if zones of constant but unknown hydraulic conductivity

values are predefined. If the spatial distribution of the permeability

field itself is unknown, it can be inferred as well using techniques

such as pilot points, gradual deformation, or probability perturba-

tion methods [9,30,48] which are also using gradient optimization.

In the case of karstic aquifers, the progressive deformation of

the conduit structure and especially topology to reach a maxi-

mum likelihood or minimal error solution is particularly difficult to

achieve. Preliminary tests conducted in this research have shown

that the application of methods such as the probability pertur-

bation lead to extremely discontinuous behavior of the objective

function, making the use of gradient optimization completely use-

less. This is explained by the fact that during the progressive de-

formation of the geometry, disconnection and reconnection of the

conduits occur leading to abrupt changes in the hydraulic and

transport response. 

Such difficulties explain partly why there are so few studies

that considered applying inverse methods for karst aquifer dis-

tributed parameter models. Notable exceptions areLarocque et al.

[40,41] and Panagopoulos [46] who used inverse methods to cali-

brate karst hydrogeological models. But, both group of authors do

not include discrete karst conduits in their models and represent

the karst aquifer with a 2D equivalent porous medium. Moreover,

in these previous works, transport data have not been considered. 

In this perspective and before conducting or developing any in-

verse methodology, it is important to understand better which pa-

rameters (like the hydraulic conductivity and porosity, or the shape

and the number of conduits) mainly control the simulation results

and therefore the value of the objective function. 

Moreover, the ability of a classical optimization technique to

effectively (and possibly efficiently) calibrate the physical proper-

ties of karst aquifers has also to be tested when simulating com-

plex systems, with Darcy laminar flow in the matrix and turbulent

Manning–Strickler flow in discrete pipes. 

In this perspective, the present paper investigates whether in-

verse methods could be used to obtain information about the

structure of the karstic network or the distribution of the conduit

dimensions. 

Two distinct numerical experiments are carried out. The first

considers the influence of changing geometry and topology of the

karst conduits on the simulation results. 150 different geometries

with varying karst conduit radius and matrix hydraulic conduc-

tivity are considered. All these models are generated using the

pseudo-genetic algorithm previously developed by Borghi et al.

[8] . In practice, the test is performed by comparing the results of

18,0 0 0 2D flow and transport EPM (Equivalent Porous Medium) fi-

nite elements simulations ( Sections 3 ). The second test investigates
he ability of an inverse algorithm such as PEST [17] to retrieve op-

imal physical parameters when using a more complex model, i.e.

 3D model with karst conduits meshed as 1D pipe elements and

on linear flow dynamics in the conduits. 

. Literature review 

.1. Flow simulation 

Mathematical black-box models consider the whole aquifer as a

ingle reservoir whose global behavior can be described with sim-

le mathematical relations between an input signal and an out-

ut response: e.g. global parameter models [e.g. [42] ], or neural

etworks [e.g. [29] ]. An exhaustive review of these kind of mod-

ls can be found in Ghasemizadeh et al. [23] . Unfortunately, as

xplained by De Marsily [14] , these models may be sufficient to

redict spring hydrographs, but they do not provide any spatial in-

ormation about the karstic conduit system. 

As opposed to black-box models, distributed parameter models

re based on the discretization of the model domain into sub-units.

ach sub-unit has homogeneous parameters in the space that it

elimits (see Section 2.2 ). As Ghasemizadeh et al. [23] say, the chal-

enge of distributed modeling approaches to represent karst ground-

ater systems is to cope with the high spatial heterogeneity of karst

quifers . Many authors have already modeled karst aquifers using

arameter distributed models. The easiest way is to consider the

hole karst aquifer as an equivalent porous medium (EPM), where

atrix, fractures and conduits are brought together in an equiv-

lent hydrofacies (e.g. [6,39] ). Unfortunately, EPM models have a

ery low applicability in very kartified fields and may lead to

atastrophic situations like the case of Walkerton (Ontario, Canada)

here, in May 20 0 0, 7 people died from a bacterial contamination

f the municipal water supply because the spring protection zone

as based on an EPM model, which gave much larger transit time

han what was observed (later) by field tracer tests (Worthington,

64] ; Goldscheider, [25] ; Kresic and Stevanovic [37] ). 

To avoid this kind of issues, other authors have developed mod-

ls, which use the available information about the conduit geome-

ry to add heterogeneity in their model. Worthington [62] models

he Mammoth Cave aquifer using MODFLOW, and he defines the

esh elements where karst conduits were explored as cells with

igher hydraulic conductivity. He also had to increase the hydraulic

onductivity according to the hierarchy of the conduits to be able

o simulate realistic head distributions. Király [33] , Király et al. [35]

odeled the conduits as discrete 1D or 2D features embedded in a

D matrix using a discrete-continuum approach, flow in conduits

eing laminar. The discrete–continuum approach is often used to

evelop speleogenesis models [1,18,22] . These speleogenesis mod-

ls are useful to understand the complex kinetics of karst aquifers.

n addition, as Jeannin [32] pointed out, turbulence is often ob-

erved in conduit flow. Nowadays there are computer codes that

llows non linear flow equations to be used in discrete conduits,

s MODFLOW-CFP [Conduit Flow Process, [38] ] or GROUNDWATER

12] . De Rooij [15] developed a model that is able to simulate also

nsaturated flow in pipes. Recently, Saller et al. [52] show the ben-

fits of the application of a discrete conduit model for the simula-

ion of the Madison aquifer of Southern Dakota (USA). 

.2. Conduit network modeling 

The models of De Rooij [15] and Saller et al. [52] show en-

anced results with respect to EPM models, because they solve

ore complex physics, but their authors agree on the difficulty

hat is posed by the unknown conduit location. In order to use re-

listic conduits, one could use the networks resulting from speleo-

enetic models [1,18,22] , but the computation of these models is
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eavy and they are difficult to condition to field data. Geostatistical

ased models can be used as an alternative to obtain discrete con-

uit models like Fournillon et al. [21] . They are easier to condition

o field data, but it is difficult to produce well connected paths.

aquet et al. [31] propose to use a modified lattice-gas automaton

or the discrete simulation of karstic networks, which can produce

ierarchical structures, but which is also difficult to condition to

eld data. Ronayne and Gorelick [50] propose to simulate branch-

ng channels (analogous to karst conduits) using a nonlooping in-

asion percolation model, which produces nice features, but that

re based on a pixel discretization to represent the enlargement

f the conduits, and are therefore very difficult to use directly for

 flow simulation. Finally, a new approach is to use a pseudo-

enetic algorithm [8,11,28] , which mimics the resulting structures

f karst networks produced by speleogenetical models, without

olving the complete kinetics of the system, i.e. the combination of

hysical and chemical processes that lead to speleogenesis: equi-

ibrium state of calcite (rate of dissolution/precipitation), transport

f carbonates, etc. These computations are extremely computation-

lly expensive. On the other hand, pseudo-genetic models use ap-

roximated physics to generate the karst networks, which are ex-

remely lighter to compute. The approach of Borghi et al. [8] is

ased on the assumption that water (and consequently conduit de-

elopment) follow a minimum effort path as suggested by Groves

nd Howard [26] . The conduit enlargement and development does

ot strictly follow physical and chemical laws during the simula-

ion, but the resulting conduit networks satisfyingly mimic the net-

orks obtained using full speleogenetic models. 

.3. Recharge and epikarst model 

Karst aquifers present several complex recharge phenomena,

hich are caused by the presence of a highly altered superficial

skin” (of a few meters) on the top of the aquifers, called epikarst

20] . The epikarst has a complex role on aquifer recharge, be-

ause it concentrates the rainfall into several “point” inlets (do-

ines), which lead directly to the karstified network. It represents

oughly the “skin” of karst aquifers, that rapidly drains and con-

entrates the rainfall into several infiltration points known as do-

ines (concentrated recharge). Moreover, it is quite common that

urface water streams can infiltrate directly into the conduit net-

orks through other point inlets called sinkholes. 

The conceptual model of Mangin [42] considers that a consis-

ent part of the rainfall is quickly drained by the epikarstic layer

oward the conduit network, and the remaining part of water will

e infiltrated diffusely on the low-permeability fractured volumes.

irály et al. [36] use a nested 2D model to simulate the epikarst,

oupled with a 3D model where the karstic network was modeled.

he epikarst model outputs are used as input for the concentrated

echarge (sinkholes and dolines). Their recharge function for the

ow model underlying the epikarst layer is computed as a propor-

ion of diffuse and concentrated recharge. Their final conclusions

dmit that in most open karst aquifers more than 40% of the infil-

ration should be drained rapidly into the karst channels . This work

howed the benefits of correctly modeling the effect of epikarst

n recharge. Authors like Ofterdinger et al. [45] use a complex hy-

rological model that computes the recharge contribution and the

unoff of precipitation on the base of several parameters, like the

lope, the altitude and the soil cover. They obtain satisfactory re-

ults. Unfortunately, this kind of model can be very difficult to cor-

ectly parameterize, especially if only a few measurement stations

re available for model calibration. Finally, Weber et al. [61] use

lack-box models to estimate the recharge of a karst aquifer. Their

pproach shows very promising results and they demonstrate that

 good estimation of the recharge function is essential to correctly

odel a realistic flow behavior. 
.4. Inverse problem 

The aim of the inverse problem is to identify the geometry,

hysical parameters, initial or boundary conditions of any model

hat describes a system from field observations of state variables

51,57] . Unfortunately, due to their mathematical structure, inverse

roblems are usually ill posed and have either no solution, an

nfinity of solutions, or can be unstable [27] . Many different ap-

roaches have been developed to overcome these difficulties over

he last 60 years. 

One of the most general way to solve the inverse problem is

o frame it into a Bayesian framework. This implies to define a

rior probability distribution for the unknown input parameters

nd a statistical distribution of the acceptable error on the mea-

ured state variables. Based on these two main ingredients one can

ormulate the expression of a likelihood and deduce a posterior

robability distribution for the unknown parameters. This formal-

sm is described in detail in [57] . 

Then, one can either search only for the parameter set lead-

ng to the maximum likelihood using optimization techniques or

im to a more complete solution by sampling directly the posterior

istribution. Sampling the posterior requires using Monte Carlo

echniques [53] . Among those, the most simple is the rejection-

ampling method [59] . It consists in generating a large number of

andidate models within the prior distribution and accepting or

ejecting them with a probability that depends on the probabil-

ty distribution of the expected measurement errors [57] . The re-

ult is a number of models that are proper samples of the pos-

erior probability distribution of the unknown parameters. How-

ver, this method is computationally inefficient since it requires

unning a very large number of models. It is therefore used only

or benchmarking more efficient methods or to study particularly

imple models as it will be done in the following of this paper. 

In practice, solving the inverse problems requires in general to

nd a compromise between computational feasibility and proper

ncertainty quantification. It also requires to use some adequate

ools that one can couple to any forward model. One of the most

exible tools available today for such model parameter estimation

s PEST [17] : it offers a wide range of methods that can be coupled

o any model. It includes functionalities for the minimization of an

bjective function using Levenberg–Marquardt method [43,44] as

ell as Null Space Monte Carlo sampling [58] for example. 

. Karst modeling method 

This section describes the forward modeling methods that are

sed in the two following sections when we investigate the inverse

roblems. 

.1. Conduit networks 

In this paper, the Stochastic Karst Simulator (SKS) pseudo-

enetic method developed in Borghi et al. [8] is used to model

he 3D geometry of conduit network. The method includes the fol-

owing steps: (1) a 3D geological model is built; (2) a stochastic

racture model is used to add heterogeneity into the 3D geological

odel [7] ; (3) the conduits of the karstic network are generated

sing the pseudo-genetic approach, which uses a Fast Marching

lgorithm [FMA, [56] ] to compute minimum effort paths between

arstic inlets (dolines and sinkholes) and springs. This minimum

ffort path computation is based on the assumption that the wa-

er (and consequently the conduits generated by dissolution) will

referentially flow inside the more conductive discontinuities like

ractures and bedding planes, termed as inception horizons [19] .

oreover, the conduits are generated iteratively. Every conduit that

as already been simulated influences the next ones, because it is
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Fig. 1. The conduits are meshed as 1D pipes that follow the edges of the 3D voxels 

(matrix). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Model description: in white the matrix elements, in black the conduits; Flow 

boundary conditions: the blue arrow is the spring (constant head), the inlets have 

90% of total recharge, the remaining 10% is distributed on the matrix elements; 

Transport: injection of 1 kg of tracer in 2 inlets (violet point). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 

s  

f

2

2

 

w  

t  

o

 

u

 

 

 

f  

c  

i

 

c  

t

 

o

2

 

r  

t  

c

C  

w  

t  

1 The reader can find the documentation of the software at http://e-dric.ch/index. 
considered as a new preferential flow path. This leads to a hier-

archical network, where the conduits that start from several in-

let points converge toward the outlets of the system. SKS allows

to distinguish the saturated and unsaturated zones, to account for

several phases of karstification, and can generate cycles and com-

plex interconnections between the conduits. 

2.2. Meshing 

In its current implementation, the model is meshed with bricks

in 3D and quadrangles in 2D. If an Equivalent Porous Medium ap-

proach is used to model the flow (as done in Section 3 ), the cells

corresponding to the conduits are flagged as conduit elements.

Otherwise, if a flow simulation based on laminar or turbulent 1D

flow equation for discrete conduits must be performed ( Section 4 ),

the conduits are meshed as 1D line elements, which are composed

by 2 nodes and follow the edges of the 3D bricks. As shown in

Fig. 1 , the pipe nodes are consistent with the 3D finite element

grid, which allows using a discrete continuum approach to simu-

late the interactions between matrix and pipes. 

2.3. Recharge black box model 

A reservoir black-box model is used to simulate the total

recharge function for the finite element model. Two kinds of

recharge patterns are then considered: diffuse and concentrated.

Diffuse recharge is directly assigned on topographic surface nodes

of the model, and concentrated recharge is assigned to the nodes

connected to dolines or sinkholes. The proportion λc of the total

recharge that will be considered as concentrated is defined by the

user and is used to compute both the total concentrated recharge

R c and the total diffuse recharge R d : 

R c = λc R, R d = R − R c (1)

where R is the total recharge. Then the concentrated recharge R i c 
for each inlet i is calculated with respect to their estimated catch-

ment surface S i over the total N dolines catchment surface: 

R 

i 
c = R c 

S i ∑ N 
k S k 

(2)

R is a function that varies with time and that depends on the me-

teorological conditions. It can be estimated for example using the
 p
oftware RS2012 1 , which is a hydrology routing system developed

or watershed management. 

.4. Flow and transport boundary and initial conditions 

.4.1. Flow boundary conditions 

Spring zones, and in general the discharge areas, are modeled

ith prescribed head boundary conditions: the outlets of the sys-

em are supposed to be at fixed altitudes, and the outflows depend

n the head variations only. 

On the other hand, two kinds of boundary conditions can be

sed for recharge: 

• Prescribed flux of Neumann type ( m/s ) at the boundary of an

element 
• Prescribed inflow ( m 

3 / s ) assigned to the nodes that correspond

to sinkholes and dolines 

Neumann fluxes are considered to be perpendicular to the sur-

ace. GROUNDWATER uses the net inflow projecting the vertical

omponent of the inflowing flux onto the face of the correspond-

ng element. 

A source term can alternatively be used to model recharge. It

orresponds to the direct injection of water into the elements at

he topographic surface. 

In this way, it is possible to infiltrate the corresponding value

f recharge into the nodes. 

.4.2. Transport boundary conditions 

In the proposed workflow, the tracer tests are simulated sepa-

ately: every one starts at injection time using an initial concentra-

ion of tracer at the injection node. The initial concentration C in is

omputed from a known mass to be injected as follows: 

 in = M/V p (3)

here M is the injected mass ( kg ), and V p is the porous volume at

he given node (i.e. the node of the injection). The porous volume
hp/en/software-en/rs2012 . 

http://e-dric.ch/index.php/en/software-en/rs2012
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Fig. 3. A stochastic fracture network (a) is the basis for the karst conduits model (b) . 
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2 Appendix B details the EPM computation. 
3 Appendix D explains the necessary conditions to ensure the numerical stability 

of the tracer test simulation. 
f a given node is defined as: 

 p = 

N i ∑ 

i =1 

φi V e 

8 

(4) 

here i runs on all the parallelepipedic elements that are con-

ected to the given node, V e is the element volume, φi is the

orosity of each element. If the simulation uses also 1D pipe el-

ments, and that the given node is also connected with a 1D ele-

ent, Eq. 4 becomes: 

 p = 

N i ∑ 

i =1 

φi V e 

8 

+ 

N j ∑ 

j=1 

π r 2 
j 

2 

(5) 

here j are the 1D elements connected to the node, and r j is the

adius of these elements. 

These equations show that the initial concentration strongly de-

ends on the discretization, on the elements that are connected to

he given node, and also on their properties (i.e. porosity, radius).

oreover, if recharge is applied to the injection node, it may addi-

ionally dilute the solute. To account for this dilution, the inflow-

ng recharge Q t at a time t with duration of dt is summed over the

orous volume V p as follows: 

 

t 
p = V p + 

Q t (t) 

dt 
(6) 

here V t p represents the “porous” volume at time t , i.e. the water

olume that dilutes the tracer at time t . 

. Retrieving conduit geometry 

In the present section, we analyze if geometric or physical

roperties of a karstic system can be identified using an inverse

pproach. To answer this question, a numerical experiment is

erformed in which an ensemble of different geometries and pa-

ameter sets are generated. Then we search systematically which

ther geometries or parameter sets produce similar responses. 

.1. Model description 

The case study considered in this numerical experiment is a

ynthetic 2D finite element model with 20 0x20 0 m size and 2 m

esolution (dx = dy). The flow and transport equations are solved

sing the finite element code GROUNDWATER [12] . 

The model considers 2 hydrofacies: “karst” and “matrix” (NB:

arst elements are those that contains a karst conduit). Flow in
arst and matrix elements follow Darcy’s law (laminar flow); an

PM 

2 is therefore used within the “karst” elements. The model

ssumes steady-state flow and transient transport. The synthetic

ase mimics a small karst aquifer, for which only 2 inlets (sink-

oles) and 1 spring are known. For both inlets, the mean head is

upposed to be known and a tracer test has been performed. The

racer test is a punctual injection 

3 of a unitary mass at time 0 of

imulation. The flow boundary conditions are: no flow boundary

n every side of the model, a fixed head at the spring node and

 constant recharge over the model. 90% of the total recharge is

irectly infiltrated in the inlets of the model and only 10% on the

matrix” elements (i.e. λc = 0 . 9 , in Eq. 1 ). Leaving 10% of recharge

n the other elements allows the reproduction of a gradient from

very element of the model toward the spring. Fig. 2 summarizes

he model setup. 

.2. Geometrical karst realizations 

150 geometrical realizations are generated using the pseudo ge-

etic methodology described in Borghi et al. [8] ( Fig. 4 ). All realiza-

ions can be grouped into 3 families based on the number of inlets

50 realizations for every family). The first family has only 2 inlets

i.e. the 2 known inlets), the second 7 (i.e. 2 of known location,

nd the others with random locations) and the third 14 inlets (of

hich 2 are deterministic). Note that SKS generates conduits from

very inlet toward the spring. It means that a simulation with 2

nlets will correspond to geometries with 2 main conduits. These

onduits can merge and create a hierarchical structure that can be

een as a tree with three branches, but for the sake of simplicity,

e will describe these karst networks as made of two conduits and

imilarly for those with 7 or 14 inlets. The pseudo genetic method-

logy requires the existence of an initial fracture network to con-

rol the variability of the realizations of karst networks. Here, a dif-

erent equiprobable realization of a fracture model is used for ev-

ry karst realization. The same fracture statistics are used for every

ealization so that the final karst realizations still remain statisti-

ally comparable. Fig. 3 shows one realization of the fracturation

odel (a) and the corresponding stochastic karst conduits model

b). 
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Fig. 4. Stochastic karst realizations used for this study, 50 realizations with (a) 2 conduits, (b) 7 conduits, and (c) 14 conduits. 
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tive function: 
3.3. Flow parameters for each karst realization 

For every karst realization, 120 different combinations of the

hydraulic conductivity of the matrix K and conduit radius r were

tested. The hydraulic conductivity of the matrix K varies from

5 · 10 −7 m/s to 10 −3 m/s (8 values with regular steps in a log 10 

space) and the radius r of the conduits in karst elements, varying

from 0.1 to 0.8 m (15 values with an increment of 0.05 m). It is

important to note that changing the radius of the conduits leads

to differences in both porosity n ( Eq. B.1 ) and equivalent perme-

ability κeq ( Eq. B.4 ). Fig. 5 shows the variation of both porosity n

and equivalent hydraulic conductivity K eq with an increasing radius

r from 0.1 m to 0.8 in 2D cells of 2 m length. 
.4. Reference simulation selection 

After having solved the direct problem for both tracer tests

nd for every combination of parameters for every karst realiza-

ion (which means 150x120x2 = 36,0 0 0 simulations) one reference

imulation is chosen. It is selected from the 18,0 0 0 flow parame-

er fields (150x120). This reference simulation is then considered

s our reality. The results of this simulation are 2 observations of

ead H 

i at both inlets, and 2 tracer breakthrough curves C i at the

pring. 

These observations are then compared to the results of all the

ther simulations. The comparison is based on the following objec-
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Fig. 5. Variation of the equivalent porosity [-] and hydraulic conductivity [m/s] as 

a function of the radius r of the conduits . 
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 = λe c + (1 − λ) e H (7)

ith: 

 c = 

1 
N c 

∑ N c 
i =1 

| C i 
obs 

− C i 
calc 

| 
max 

(
1 

N c 

∑ N c 
i =1 

| C i 
obs 

− C i 
calc 

| ) (8) 

nd 

 H = 

1 
N H 

∑ N H 
i =1 

| H 

i 
obs 

− H 

i 
calc 

| 
max 

(
1 

N H 

∑ N H 
i =1 

| H 

i 
obs 

− H 

i 
calc 

| ) (9) 

here λ is a weighting percentage, N c are the number of time

easurements of concentration, and N H the number of head ob-

ervations. 

.5. Inverse problem 

Having a given reference data set, solving the inverse problem

onsists here in finding the ensemble of configurations (geometry

 parameters) that match the observations. In practice, the error

 is computed using Eq. 7 for all the other models. Only the one

or which e is lower than a given threshold are selected. The result

s an ensemble of realizations that match the data and describe

tatistically the remaining uncertainty. 

Fig. 6 illustrates this procedure. In Fig. 6 a, the ensemble of all

he 18,0 0 0 recovery curves are displayed with the one that is con-

idered as the reference. Huge differences between the reference

nd most of the other breakthrough curves are observed. Fig. 6 b

hows the selected acceptable simulations, i.e. those displaying an

rror e ( Section 3.4 ) lower than 1%. 

Fig. 7 a shows the histogram of e c and Fig. 7 b the histogram of

 H in this case. The response for transport ( Fig. 7 a) is much more

iscriminant than the one for flow ( Fig. 7 b). The histogram of the

rrors on the flow responses shows that it is quite easy to obtain

 good fit, as many simulations have a very small value of e H . The

eason for this behavior is that with only few observations, it is

asy to obtain several models that match the observations within

 given threshold of confidence. On the contrary, transport results

how a wider distribution of the errors e c , related to a higher sen-

itivity of the solution to the geometry of the flow paths. Indeed,

he error on the breakthrough curves is highly influenced by the

ath followed by the streamlines. Fig. 7 c shows the histogram of

he objective function with a value of λ equal to 1/2 ( Eq. 7 ), i.e.

iving the same weight to both e c and e . 
H 
.6. Statistical analysis 

The previous section has shown that it is possible to find mod-

ls matching a certain reference. In the present section, the ex-

eriment is repeated using systematically all models as a refer-

nce. The inverse problem is solved for each one (as explained in

ection 3.5 ). This allows analyzing in a statistical manner if the pa-

ameters are well identifiable. 

To represent the results, the probability distribution of the es-

imated parameter values is computed and compared to the true

arameter values in the form of log ratios: log 10 ( r est / r ref ) and

og 10 ( K est / K ref ). These probabilities are represented conditional to a

ertain value of the reference parameters: 

 ( log 10 (r est /r re f ) , log 10 (K est /K re f ) | N re f = x ) (10)

here x is the possible number of conduits. When log 10 ( r est / r ref )

r log 10 ( K est / K ref ) are equal to 0, it means that the estimated ra-

ius r est and the estimated matrix conductivity K est are equal to the

eference. We also compute the probability of having N est number

f estimated conduits, knowing the N ref number of reference con-

uits: 

 (N est | N re f ) (11)

hich allows understanding the probability to identify properly

he number N of conduits of the reference. We also compute the

onditional joint pdf of the ratios: log 10 ( r est / r ref ) and log 10 ( K est / K ref )

nowing N ref and N est the number of conduits of the possible solu-

ions: 

 ( log 10 (r est /r re f ) , log 10 (K est /K re f ) | N est = y, N re f = x ) (12)

here x and y are the possible number of conduits. 

Figs. 8 and 9 show the results. They suggest that the conduit ra-

ius is likely to be better identified by the inverse procedure than

he hydraulic conductivity of the matrix. The probability of having

n estimated radius larger or smaller than twice the real radius is

ery small; a ratio in the range [1/2, 2] between the real and esti-

ated radius corresponds to a log 10 value in the range [ −0 . 3 , 0 . 3] .

e see that outside of this range, the probabilities are very low. 

On the opposite, the probability to have an estimated hydraulic

onductivity for the matrix around 3 orders of magnitude larger or

maller than the truth is large. This is consistent with our concep-

ual model, for which 90% of the flow and possibly all the tracer

re supposed to pass through the conduits. 

One interesting thing that can be seen on Fig. 8 is that

hen the reference has only 2 conduits ( N re f = 2 ), the probabil-

ty P (N est = 2 | N re f = 2) is extremely high as compared to P (N est =
 , 14 | N re f = 2) . In this case the inverse problem is quite robust and

ble to identify precisely that the unknown reality has indeed 2

onduits. This result is of course valid only under the tested con-

guration (2 inlets, 2 conduits, 2 tracer tests). 

On the opposite, when the reference has 7 conduits ( N re f = 7 ),

he probability to estimate that the model should have 7 inlets is

nly slightly higher than the probability of having 2 or 14 con-

uits. This is even more difficult when the reference has 14 con-

uits ( N re f = 14 ). This is related to the fact that only 2 tracer tests

re available in this synthetic example. But it shows that when suf-

cient data are available, one can expect that the inverse problem

ill allow to identify properly some major features of a karstic net-

ork (such as the number of main conduits or their radius). 

Looking more in detail at Fig. 9 , we notice that the estimated

adius r est and matrix hydraulic conductivity K est are very well

dentified for the simulations for which N est = N re f ( Fig. 9 a, e, and

), i.e. both log 10 -ratios are close to 0. When N est < N ref , the esti-

ated values of r est and K est are overestimated. This makes sense

ecause the model needs to drain more water relatively to the

umber of conduits. For the same reason, when N est > N ref the es-

imated values of r est and K est are underestimated. 
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Fig. 6. Tracer test results (cumulated mass at the spring). (a) In red we see the tracer test result for tracer one on the reference simulation, in blue the results of all the 

other simulations. (b) selection of the “best fit” simulations, i.e. the ones under 1% of error. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article). 

Fig. 7. pdf of normalized error, (a) on tracer test results ( e c ). (b) on flow results ( e H ). (c) using both flow and transport ( e ), with λ = 0 . 5 . 
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4. Retrieving conduit properties using gradient-based methods 

In the previous section, the acceptable parameters are obtained

by rejection sampling and systematic search implying to run the

model for many possible geometries or parameter values. This was

possible because the model was small and simple. For a large scale
odel (regional scale, millions of nodes) this is generally not pos-

ible and a faster method is required. This is why we test in this

ection the feasibility to use a gradient based approach to accel-

rate the identification of the physical parameters when the ge-

metry is fixed. For that purpose, we run a systematic parameter

earch to know exhaustively the objective function and then test
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Fig. 8. Joint probability distribution functions obtained using rejection sampling: (a) case with a reference having 2 conduits ( N re f = 2 ); (b) case with N re f = 7 ; (c) case with 

N re f = 14 . 
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he efficiency of the gradient search using the software PEST [17]

n a synthetic case. 

.1. Model description 

Karst networks often show some degree of hierarchy [34] . As

nnable [1] demonstrates by speleogenetical modeling, karst con-

uits can show an organization of the mean conduit diameter that

ncreases according to the hierarchy of the network, i.e. that the

iggest conduits are located downstream as they collect the wa-

er of their affluent conduits in a similar way as rivers. Differently

rom streams, karst conduits can also diverge, and in this case the

ow is divided between the different diffluent conduits [1] . To con-

ider these particular characteristics of karst networks, in a pre-

ious work [60] we have proposed a simple model in which the

onduit radius r is estimated using a power law similar to Horton’s

aw: 

(u ) = αe uβ (13) 

here α and β are two parameters that have to be calibrated, and

 is the order of the conduit. However, unlike Collon-Drouaillet
t al. [11] and Vuilleumier et al. [60] who used a Horton’s order

ased on the river Strahler classification, here the order u of each

onduit is computed as the ratio of the catchment surface S that is

rained by the given conduit over the total catchment surface as

uggested in Borghi et al. [8] : 

 i = 

∑ 

j∈ A i S j ∑ N 
k =1 S k 

(14) 

here N is the total number of inlets of the system, S k represents

he total surface of the catchment that is drained by karst conduits,

nd A i represents the set of indices that drain into the conduit i

 Figs. 10 and 11 ). 

SKS uses walkers to compute the paths of the conduits. To con-

ider the diverging conduits, it stores the information of the origin

f the walkers for each computed path. In this way, it is possible

o keep the divergence of conduits consistent with their radius. In

he proposed approach, the idea is to create the minimal hydraulic

ecessary dimensions to allow the system to drain recharge water

ut of the system. 
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Fig. 9. Joint probability distribution functions of the estimated conduit radius r est and matrix hydraulic conductivity K est as a function of the estimated N est and reference 

N ref number of conduits. 

Fig. 10. The order of each conduit u is the ratio between the total catchment sur- 

face S that it drains and the total karstic catchment ( Eq. 14 ). 

 

s  

3  

i  

3  

c  

e  

T  

1  

t  

p

 

T  

s  

e  

v  

p  

t  

s

 

w  

[

φ  
In this section, we consider only one single 3D realization of a

ynthetic karstic aquifer generated using SKS. It covers an area of

 km 

2 . The 3D mesh is rather coarse to reduce computing time; it

s composed of 40 elements in x direction, 30 in y direction and

 in z direction. The cells are cubic, with a width of 50 m. The

onduits are meshed with 1D pipe elements 4 , located along the

dges of matrix elements that are meshed as 3D cubes ( Fig. 1 ).

he reference parameters are α = 0 . 2 , β = 1 . 5 ( Eq. 13 ) and K M 

=
0 −5 . 5 [ m/s ] (the hydraulic conductivity of the matrix). The geome-

ry and distribution of the conduit radius for the reference is dis-

layed in Fig. 11 . 

The flow is then simulated in transient state using GROUNDWA-

ER [12] . The parameters chosen for the reference allow the repre-

entation of a realistic karst behavior with rapid response to pulse

vent in the recharge function. The synthetic data used for the in-

erse problem include the head variations in five observation wells

laced at the base of the model at coordinates given in Table 1 and

he spring discharge at location (10 0 0;50 0) where the head is pre-

cribed at a value of one meter (head is equal to altitude). 

The objective function φ is defined as the sum of the squared

eighted residuals in the same manner as implemented in PEST

17] : 

= 

n o ∑ 

i =1 

(w i · r i ) 
2 (15)
4 Appendix C details the equations used for 1D pipes. 
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Fig. 11. Distribution of the radius of the conduits in a synthetic case. The radius increases with the order of the conduits. For a visual purpose, the apparent conduit radius 

has been exaggerated. 

Table 1 

Observation wells coordinates. 

ID X Y 

H1 10 0 0 750 

H2 650 500 

H3 650 10 0 0 

H4 1350 500 

H5 1350 10 0 0 

Table 2 

Ranges of parameter values for the systematic search. 

min/max : bounds for the parameter; nb : number of inter- 

vals. α and K M increments have been computed in a log10 

scale. 

Parameter Reference Min Max nb 

α [ −] 0.2 0.05 1.5 16 

β [ −] 1.5 0.1 5 14 

K M [ m/s ] 10 −5 . 5 10 −7 10 −4 16 
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Fig. 12. Reference simulation: (a) simulated spring discharge (b) simulated hy- 

draulic head in observation wells. 
here n o is the number of observations, r i is the residuals of the

 th observation and w i its weight. The observations are taken from

 different time series. The first one is the spring discharge, and

he other 5 are the heads in the observation wells. To give the

ame weight to the discharge observation and to the head ob-

ervation, a weight of 1/ σ is given to the discharge observation

where σ is the variance of each time series) and a weight of

/ σ × 1/5 is given to the head observations because there are 5

bservation points. The observation data are presented in Fig. 12 :

he spring discharge and the hydraulic head observed in boreholes

eact rapidly with recharge impulses as expected in a realistic karst

ystem. 

.2. Systematic search 

In a first step, the objective function φ is systematically evalu-

ted for all possible parameter values ( α, β , K m 

), in order to know

recisely whether the problem has a unique or an ensemble of

ossible solutions and to get some information about the shape

f the objective function. The tested parameter ranges are given in

able 2 . Note that K M 

is sampled in a logarithmic scale, because it

an vary over several orders of magnitude. For this step, a total of

584 flow simulations have been made. 
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Fig. 13. Systematic search result: isosurfaces of the objective function φ as a func- 

tion of the 3 parameters α, β , and K m . The axes of the parameter α and K m are in 

log scale for improved clarity. 
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The results are shown in Fig. 13 . The objective function φ is

very sensitive to variations of the hydraulic conductivity of the

matrix. Looking in detail at the shape of φ in the K M 

dimension,

one can notice that the value of K M 

corresponding to the mini-

mum of φ is well defined, but it is far less defined for its high

values. This may be explained as follows: on the one hand, if the

hydraulic conductivity of the matrix is too low, it leads to too high

and unrealistic heads and φ is extremely high. On the other hand,

if the hydraulic conductivity of the matrix allows the drainage of

the diffuse recharge that is infiltrated directly on it, this parameter

becomes far less sensitive to the variations. 

Another feature of φ is that several combinations of α and β
can give similar results. The shape of the minimum values of φ is

quite well defined with respect to K M 

, but much less clearly for

α and β . This is not surprising because both of these parameters

influence the radius r of the conduits. α influences the base ra-

dius principally, while β influences the size distribution, i.e. the

differences between the biggest and smallest conduits. Therefore,

the objective function φ has the shape of a valley. Several combi-

nations of α and β values provide a good fit. When α is small the

good fits are obtained with large values of β: the smallest con-

duits are small, and the biggest conduits must be sufficiently large

to drain all the system. When α is large, the contrast of size be-

tween the smallest and biggest conduits is less strong, i.e. all the

conduits have similar sizes, but they are all bigger than in the first

case, and the system can be drained equally efficiently. 

4.3. Parameter estimation 

PEST [17] is one of the most advanced parameter estimation

software available for groundwater studies. It is free and open-

source. In the present paper it is used as a gradient based opti-

mization technique. The idea is to test the ability of this kind of

methods to retrieve the optimal physical parameters for the karst

realizations. The way PEST works is conceptually simple: 

1. start with an initial guess of the model parameter values 

2. run the flow model 

3. compute the value of φ
4. compute the gradient of φ for each parameter (requires sev-

eral additional runs of the flow model) 

5. update the parameters using the Levenberg–Marquardt

method [43,44] 
6. go to step 2 and repeat until a convergence criterion is

reached 

To test the ability of gradient based techniques to identify the

hysical parameters for one karst realization, eight optimization

uns have been done, starting approximatively from all the corners

f the cube (in the parameter space) defined by the parameters of

able 2 . To show the results of these optimization runs, the paths

efined by the parameter variations (in the parameter space) have

een displayed in Fig. 14 a. The value of the objective function φ
or each parameter combination is displayed as colored balls along

he paths. Moreover, the same paths are plotted together with the

esults of Section 4.2 to show the paths within the plot of φ in

ig. 14 b. 

The results of this test indicate that from the eight optimization

uns, one run did not converge toward the right parameters at all,

nd 5 of them approached very closely the exact reference param-

ters. The other two were stuck in a local minimum of φ, as it can

e noted in Fig. 14 b. This is a consequence of the shape of φ de-

cribed in the previous section ( Section 4.2 ). The model run time

or the forward problem was approximately 5 min, depending on

he parameters. The PEST runs needed from 34 to 274 model runs

o reach convergence in this case (except one optimization, which

ailed). Compared to the 3584 simulations of the systematic search,

t represents a gain in computational efficiency on the order of 10

o 100. 

These results show that gradient search can be an efficient way

o estimate the physical parameters of the conduits when the ge-

metry is fixed. As the results of the optimization depend on the

tarting positions (in the parameter space), one possibility to in-

rease the reliability of this method could be to run several pa-

ameter estimations from different starting points and look for the

nes with the lowest values of φ. 

. Discussion 

The results presented here are part of wide research field aim-

ng at better understanding karst aquifers, and providing forecast-

ng and modeling tools for these complex hydrogeological systems.

n this work, many assumptions were made to ease the compre-

ension of the inverse problem applied to karst aquifers. In the fol-

owing, we summarize and discuss the implications of our results

 Section 5.1 ) and cover also some more general questions about the

odeling of karstic systems ( Section 5.2 ). 

.1. Results of this study 

The tests that have been performed in the scope of this re-

earch show two encouraging results. The first test shows that it is

ossible to infer some general information such as the number of

ain conduits, or the conduit radius, using rejection sampling and

ystematic search methods. The problem associated with this ap-

roach is that it is extremely demanding in terms of computer re-

ources. Using a desktop PC (2Gb Ram, 2.8 GHz CPU), it takes about

0 min to run one flow and transport simulation, while the gen-

ration of the karst network takes about 5 s. Running the 36,0 0 0

imulations required for the first experiment was possible only be-

ause we used the high performance linux computing cluster of

he University of Neuchtel. 

However, the flow model in this first test still remains very

imple: it uses an equivalent porous media approach within the

onduit elements instead of a more accurate but non-linear flow

quations. High Reynolds number values (reaching 30 0 0 in some

lements and in some simulations) indicate that Darcy’s law is not

pplicable for those elements and for some simulations. Further re-

earch should consider the inertial effects in those elements, but
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Fig. 14. (a) Eight parameter estimation runs using PEST [17] , displayed in the parameter space. 7 runs have given reasonable results and found a parameter set close to the 

reference. (b) combination of Fig. 13 (with transparency) and (a). We notice that some optimal parameter sets are trapped in local minima of the objective function. 
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his was not possible in the framework of this project. Nonethe-

ess, the statistical analysis of the error function shows that using

racer test data deeply enhances the ability to infer the geometry

nd equivalent hydraulic radius of the karst system. Solute trans-

ort depends on particle trajectories; head distribution and spring

ydrographs are less sensitive to particular flow paths, resulting in

 higher degree of uncertainty in the posterior distribution. 

This suggests that any information obtained from tracer tests

also natural tracers) should be used to solve the inverse problem

n karstic aquifers. The objective function should be a composite

unction with a strong weight on transport. We observed that with

ur model setup there was a much larger uncertainty associated

ith the estimation of the hydraulic conductivity of the limestone

atrix in comparison to the conduit radius. We noticed that karst

ystems with smaller number of drains (2 conduits) were easier to

dentify than others (e.g. 7 or 14 conduits) when only two tracer

ests are available. 

The second test showed that it is possible to use standard pa-

ameter estimation techniques to optimize the physical properties

ssociated with a geometrical SKS realization. This enhances the

omputational efficiency of the search by one or two orders of

agnitude (10x to 100x less model runs are needed). This second

est did not include tracer test simulation, but included more so-

histicated physics for the flow problem. Based on the results of

he first test, it can be reasonably guessed that the results would

enefit of the inclusion of tracer test results to compute the error

unction. Unfortunately, the direct problem run time would also in-

rease significantly 5 , this is why it was decided not to compute so-

ute transport in this test. 

Based on the previous results, we foresee that one possible

ragmatic approach to solve the inverse problem in a karstic sys-

em could be based on the combination of rejection sampling

nd gradient based optimization. The procedure could follow three

teps: (1) several SKS realizations are generated, (2) the parameters

f each one of them are optimized using a gradient based method,

nd (3) only the ones that provide an acceptable error are kept for

ncertainty analysis. 

Such a method would have the advantage of reducing the com-

uting time very significantly as compared to a pure rejection sam-

ling, it would however provide only some models that reproduce
5 Appendix A details a model-run workflow to minimize the necessary cpu time 

f direct problems. 

i  

v  

m  

n  
he observation, but not a proper set of models within the poste-

ior uncertainty distribution since combining the sampling of the

eometry and the optimization step may introduce a statistical

ias. Therefore more research is still needed to clarify those prob-

ems. 

.2. Open questions and further outlooks 

.2.1. Questions related to the direct problem 

In this study, the conduits are simulated as straight pipes, and

heir radius follows a power law that is dependent of the topo-

ogical order of the conduits ( Eq. 13 ). It is clear that this approach

orresponds to a strong simplification of natural conduits. In re-

lity, the shape of the conduits vary significantly. As a result of

nisotropic preferential dissolution, some parts of the same con-

uit usually present local variation of their radius. Assuming the

onduits as cylindrical pipes leads to a strong simplification. These

implifications are necessary because currently no rule exists to

haracterize these local variations. The use of saturated conduits

nly results in another significant simplification. Some numerical

chemes which allow for the use of variably saturated conduits

16] exist and could be used. 

An additional question is related to the importance of simulat-

ng the limestone matrix. It would be interesting to investigate in

hich cases it is possible to exclude the matrix from the problem

ithout losing significant information. This would lead to a sim-

lification of the whole problem, but could drastically enhance the

omputing efficiency. Using this approach, it could be interesting

o test the application of hydrological software for urban conduits

etwork to solve this problem [47] . In the context of inverse prob-

em, it may be possible to use only the conduits for flow during the

rst estimation of the parameters, and then perform the full cou-

led simulation only on a few representative models. This could be

sed as a proxy (approximated physics solver) for flow simulation.

Saller et al. [52] use MODFLOW-CFP and transfer functions

o simulate the interactions between the matrix and conduits.

hey identify the difficulty in correctly assessing the values of

hese transfer functions, but show also that this gives a realistic

ehavior to these interactions. In our study, we use a direct hy-

raulic connection between matrix and conduits. Further stud-

es should be achieved to include transfer functions in the in-

erse problem framework. This would probably results in an even

ore complex inverse problem because more parameters would

eed to be identified. But, on the other hand, the use of transfer
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tions for each tracer 
functions could enhance the numerical efficiency because the con-

trasts of hydraulic conductivity would be smoother, and the direct

flow problem would probably reach convergence more rapidly, re-

ducing the CPU time needed. 

5.2.2. Questions related to the inverse problem 

Several aspects of the inverse problem have not been taken into

account in the present work. For example, the recharge model used

in this study is based on a reservoir model. The identification of its

parameters was not included in the inverse problem framework.

As Weber et al. [61] show, the recharge model has a very strong

impact on spring hydrographs for real applications. Similarly, the

matrix and the radius of the conduits have been described with a

very small number of parameters, while we expect that the matrix

will be heterogeneous with parameters varying in space and we

expect the distribution of the conduit diameters to be much more

complex than the simple power-law proposed here. All these addi-

tional complexity will need to be faced when dealing with a real

case. 

In terms of methodology, a method that could be used to in-

crease the numerical efficiency of the whole inverse framework is

to employ approximate physics solvers (so called “proxies”) and

classification techniques as a preliminary step to select candidate

models (parameter sets) and to minimize the number of runs of

the highly demanding and accurate direct problem [55] . A further

technique is proposed by Ginsbourger et al. [24] who used kriging

to interpolate the error function using proxies. Such an approach

could be used for karst aquifers as well, but additional research is

required to identify good proxies for karst aquifers. 

Conclusion 

In this paper, several aspects of the inverse problem in karst

modeling have been studied. Our numerical experiments did not

aim at solving the inverse problem, but rather at providing a better

understanding of the underlying challenges. Indeed, the estimation

of the 3D geometry of a karstic network and of the corresponding

physical parameters can be impossible to achieve by a manual trial

and error approach. Therefore, these models should benefit from

available automatic parameter estimation techniques. Furthermore,

the inverse problem needs to be applied with the aim to evaluate

the uncertainty related to these models and their parameters. 

The numerical experiments described in this paper show two

very encouraging results. 

The first test has shown that both physical and geometrical pa-

rameter can be identified pretty accurately in an inverse frame-

work if adequate data is available. By repeating the experiment a

very large number of times with different references having differ-

ent number of conduits, different matrix permeability and different

conduit radius, we could statistically evaluate how efficiently the

inverse method can retrieve the features of the reference from the

head or tracer data. This test indicated that data from tracer tests

had a very strong impact on the identification of the geometrical

properties of the karst network. 

The second test has shown the possibility of improving the

numerical efficiency of the inverse algorithm by accelerating the

search for optimal parameters when the geometry is fixed using

gradient-based methods. The model that has been used for this

test considers more complicated physics than the one of the first

test. A systematic analysis of the objective function φ shows that

several combinations of the parameters that influence the radius of

the conduits ( α and β) can give more or less equally satisfactorily

results. The hydraulic conductivity of the matrix is very sensitive

to the low conductivity values, but as soon as it is sufficient to let

the recharge infiltrate and let the water reach the conduits, φ is far
ess sensitive to its variations. This test also shows that PEST [17]

an be used efficiently to solve this problem. 

These results indicate that one could solve the inverse problem

n karstic aquifers in a pragmatic manner using a two steps ap-

roach. First, a set of many different karst geometrical realizations

re generated using the pseudo-genetic methodology [8] , and sec-

ndly for each one of them the best physical parameters are found

sing a parameter estimation technique. The resulting set of simu-

ations can be used for further analysis. 

In both tests, we used a combination of already existing tools

o simulate flow and transport in karst aquifers with distributed

arameter models. The karstic conduits are meshed as 1D pipes

hat follow the edges of the 3D elements used for the matrix.

urbulent flow equations are used to simulate flow in the con-

uits. The radius of the conduits depends on their hierarchical or-

er. Major conduits have largest radiuses, while secondary con-

uits are smaller. The conduits are hierarchically classified by the

atio of their catchment surface over the total catchment surface.

he recharge function applied on the inlets also depends on their

atchment surface. The greatest part of recharge is applied di-

ectly to the inlets and only a small percentage is applied on the

est of the model. This allows for an approximation of the effect

f epikarst in convoying water to the inlets. We argue that this

ethodology is pretty general and could be used for many karstic

ystems. 

Finally, if we consider again the question stated in the title of

he present study “is it possible to identify karst conduit networks

eometry and properties from hydraulic and tracer test data ?”, the

nswer that is suggested is “Yes, it seems possible to bracket the

alues of the radius of the conduits within a reasonable range, pro-

ided that enough computing power and sufficient data are avail-

ble”. In practice, this study shows very promising results, but it

s based on a limited set of numerical experiments and restric-

ive assumptions. Further research is needed to enhance the in-

erse framework, and especially the solving of the direct problem.

s stated in the discussion, maybe the use of approximate physics

o simulate the direct problem within the inverse problem frame-

ork could allow to highly speed up the search of valid karst real-

zations, and therefore allow such a methodology to be applied on

eal size aquifer problems. 
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ppendix A. Model run workflow 

To be used in an inverse problem framework, the model run

orkflow is defined in order to minimize the total necessary CPU

ime. The workflow must take into account transient flow condi-

ions, and transient transport. When studying karst aquifers, sev-

ral tracer tests may be performed. Therefore, the model should

atch all of them. Unfortunately, the transport simulation, espe-

ially with strong heterogeneity in the flow medium, may lead

o very high computational times. The model run workflow is in-

ended to reduce the necessary CPU time as much as possible,

hen simulating flow and transport at transient state. It is sepa-

ated in three main steps: 

1. steady state flow simulation 

2. long transient state (years) flow simulation 

3. short transient state (months) flow and transport simula-

http://dx.doi.org/10.13039/501100001711
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Fig. A.15. Flowchart of the model run. 
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The first step of the model run is a steady state flow simula-

ion using the average flow conditions (i.e. the average discharge

f the springs) as input for the model. The steady state hydraulic

ead result is then used as initial conditions for the transient flow

imulation. The steady state simulation has to be run in the same

ydrological conditions as the beginning of the transient simula-

ion, e.g. if the transient simulation starts in a low-flow period, the

teady state simulation must be run under low flow condition too,

nd vice-versa. 

The transient simulation is done for the whole period of in-

erest, which must include the periods of the tracer tests, and

hich may last a few years. During this simulation, the hydraulic

ead results at every tracer test injection time is stored to ini-

ialize the flow field of the short flow and transport simula-

ions. The transport simulations are performed only over a short

eriod of time (a few days or weeks, depending on the dura-

ion of the experiments), because they are heavier to compute.

he advantage of this workflow is that the tracer simulations

re consistent with the whole transient flow simulation, with-

ut needing to solve the whole transient simulation (years) in-

luding transport. Fig. A.15 shows the flowchart of the model

un. 
ppendix B. Simulating flow and transport by equivalent 

edium “karst” elements 

The first tests with the hierarchical conduit networks have been

one using an equivalent porous medium (EPM) approach, even if

his does not allow the simulation of the full complex karstic flow

e.g. turbulent flow in the conduits). Still, some authors have ob-

ained satisfactory results in some cases such as Scanlon et al. [54]

ho use equivalent properties for entire regions of their model. In

his section, the EPM approach is used by assigning specific flow

nd transport properties to the karst conduit elements, similarly

o Worthington [62] . This method has the advantage of being sim-

le and fast to solve as compared to the use of discrete elements

ith non linear flow equations ( Section Appendix C ). 

The properties of the conduit elements are derived from the ra-

ius of the conduits and the mesh size in the following manner:

he equivalent porosity φeq (-) is computed by estimating the vol-

me of void in the cell divided by the volume of the cell: 

eq = 

V v oid 

V 

= 

V conduit + (V cell − V conduit ) · φmatrix 

V 

(B.1) 

cell cell 
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where V conduit is the volume of the conduit ( m 

3 ) , i.e. π r 2 d , with

d the length in the cell (m), φmatrix is the porosity of the matrix

( −). 

The equivalent permeability is computed such that the total dis-

charge Q tot ( m 

3 / s ) flowing through one cell in a given direction is

identical in the equivalent porous medium or in the pipe plus ma-

trix model. The total discharge is given by: 

Q tot = Q m 

+ Q c | Q c = −π r 4 

8 

ρg 

μ
∇H, 

Q m 

= −κm 

ρg 

μ
· (A − π r 2 ) 

A 

∇H (B.2)

where A [ m 

2 ] is the area of the cell side crossed by the flux, π r 2 the

area of the conduit, Q c [ m 

3 / s ] is the discharge through the conduit

that crosses the element (using the Poiseuille law), Q m 

[ m 

3 / s ] is the

discharge flowing through the matrix surrounding the conduit, κm 

is the permeability of the matrix ( m 

2 ), g is the acceleration of the

gravity ( m · s −2 ), ρ is the water density ( kg · m 

−3 ) and μ is the

water dynamic viscosity ( kg · m 

−1 · s −1 ) and ∇H is the hydraulic

gradient. Therefore the total flux q tot ( m/s ) is equal to: 

q tot = 

Q tot 

A 

= −
[
π r 4 

8 A 

+ κm 

(A − π r 2 ) 

A 

]
ρg 

μ
∇H = −κeq 

ρg 

μ
∇H 

(B.3)

The equivalent permeability of the cell κeq ( m 

2 ) is then given

by: 

κeq = κm 

+ 

π r 2 

A 

(
r 2 

8 

− κm 

)
(B.4)

The use of an equivalent porous medium approach is a strong

approximation, especially for transport problems, as we need to

put unrealistically low porosity to the karst elements (the elements

containing a karst conduit) so that the pore velocity becomes sat-

isfactory in terms of transport [37] . 

Appendix C. Simulating flow and transport in 1D pipes 

embedded in a 3D porous matrix 

The whole model is meshed using a regular grid ( Section 2.2 ).

Pipes elements are located on the edges of the 3D elements (hex-

ahedrons) of the karstic matrix. There is a direct hydraulic connec-

tion between the pipes and the matrix, as the nodes of both types

of elements are the same. 

To model the flow in the conduits two different approaches can

be used: laminar and turbulent flow. The linear flow equation used

in pipes is the Darcy–Poiseuille formula, the hydraulic conductivity

for the pipes elements in this case is: 

κ = 

ρg 

μ

r 2 

8 

(C.1)

The flow equation used in pipes for turbulent flow is the

Manning–Strickler (Turbulent flow conditions). The hydraulic con-

ductivity for the pipes is therefore: 

κ = 

φ r 
2 √ ||∇H|| (C.2)

where φ is the friction coefficient ( m 

1 / 3 s −1 ). Both cases are used

with the same law for flow ( � v = −K∇H) where only the definition

of K varies from one case to the other ( K = κ ρg 
μ ). 

Appendix D. Transport simulation 

The injection of the tracer is modeled as an initial concentration

at the beginning of the transport simulation. The initial flow field
f the simulation is extracted from the transient long period flow

imulation. In this way, all the transport simulations are consistent

ith the long period flow simulation. Ideally, the transient flow

eld of the transient flow simulation should be used as flow field

or the transport simulation, to reduce the computational time, but

his is not possible, because the time-steps evolution depends also

rom the transport simulation. 

According to many authors [3–5] , it is necessary to pay atten-

ion to two parameters: the Peclet number Pe and the Courant

umber Cr [13] . The Peclet number is defined as: 

 e = 

v dx 

D 

(D.1)

here v is the flow velocity, i.e. the pore velocity v p multiplied

y the porosity φ ( v = v p φ). dx is the mesh dimension in the flow

irection (in this case dx = dy = dz) and D is the dispersion coeffi-

ient ( m 

2 / s ). The Courant number is defined as: 

r = 

v δt max 

dx 
(D.2)

here δt max is maximal time step size ( s ) for the transient simula-

ion. The numerical solution can be considered stable if these two

onditions are satisfied: 

 e < 2 , Cr < 1 (D.3)

hese two inequalities can be expressed in order to isolate the dis-

ersion D and the maximum time step δt max : 

v dx 

2 

< D, δt max < 

dx 

v 
(D.4)

he dispersion is a parameter that depends on the scale of the

roblem, as it can be used to assume the dispersion of a pollu-

ant induced by pore-scale heterogeneities in an equivalent porous

edium. As explained in Rausch et al. [49] the effect of other kinds

f heterogeneities (like karst features in this case) may strongly in-

uence the behavior of the solute in the simulation. In this case,

he dispersion has to be interpreted as the dispersion occurring at

ell scale, and depends therefore strongly on the mesh dimensions.

Moreover, following the conditions of Eq. D.4 , it appears that

articular attention has to be payed to mesh size and on the values

o the dispersion coefficient. The time discretization is also very

mportant. However, when simulating karst aquifers, with a very

trong heterogeneity, it can be difficult to compute the value of the

aximal flow velocity in the medium a priori, which can be very

ast in some cases. To guess these parameters before running the

ull transient transport simulation, a steady state flow simulation

an be performed in high flow conditions. 
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