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This paper presents a new approach in generating stochastic discrete fracture networks. The particularity of the
approach is that it allows us to simulate the theoretical families of fractures that are expected in a folded environ-
ment. The approach produces fractures that are consistent with the local stratigraphic orientation. The fractures
aremodeled as simple rectangular planar objects.When they aremodeled, they are rotated according to the local
stratigraphic orientation. As the stratigraphy is modeled using an implicit approach, we use the gradient of this
geological potential field to retrieve the information about the geological orientation. The fracture number and
size are following user-defined probability density functions.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Fractures are very common objects in geological systems. These frac-
tures have a significant impact on mechanical, geophysical and hydrau-
lic properties of the rocks. The study of fractured systems is of great
importance in many domains: petroleum industry, hydrogeology,
waste disposal, geothermics, civil engineering (tunnels, dam stability).

Fractured systems have been studied bymany authors, and the rela-
tionship between fracture orientation and folds has been underlined
(Price, 1966; Price and Cosgrove, 1990; Twiss and Moores, 1992;
Bazagette, 2004; Bellahsen et al., 2006; Zahm and Hennings, 2009).
There are several parameters that must be taken into account to
model correctly a fracture network such as density, size, and shape of
the fractures. Until now, no simple general model has been commonly
accepted, mainly due to the complexity of geological systems.

A wide literature exists about discrete fracture network (DFN) model-
ing, and several reviews have been published (Chilès, 2005; Dershowitz
et al., 2004; Jing, 2003; Sassi et al., 2012). DFN can be used for a very wide
range of applications. Here, the technique was developed as an initial step
to model the formation of karstic systems in complex three dimensional
folded environments (Borghi et al., 2012), but it could be directly applied
for other problems. In general, the fracture objects in the DFN models are
assumed to be planar (often rectangular or elliptic). For example,
\Kloppenburg et al. (2003) use the results of a regional/local strain analysis1
nalyses.
from borehole data to infer the orientation and density of fractures accord-
ing to the probable deformation chronology. Freudenreich et al. (2005) use
3D maps of orientation and density derived from seismic observations.
Other authors use geomechanical models in which the fractures grow dur-
ing the deformation process, and the complex interactions between them –

truncation of fracture sets against each other, already existing fractures
damage zone and shadow zone (Olson, 1993) – can be modeled
(Maerten et al., 2000), but these models are very difficult to condition by
field observations, and need high computational resources. More recently,
hybrid (combined stochastic and geomechanical) models have been pro-
posed (Mace, 2006), as well as pseudo-genetic models (Bonneau et al.,
2013; Davy et al., 2013). These techniques mimic the complex interactions
between fractures without solving all the complexity of the fracturing
physics.

There are less methodologies allowing to consider (and model)
the variation of fracture orientation according to the orientation of
the geological structures (dip and strike of the geological forma-
tions). This paper describes a methodology that can be used to gen-
erate a stochastic discrete fracture network (DFN), in which the
fracture orientations are consistent with the orientation (deforma-
tion) of the geological formations.

The fracture generator presented in this paper is called FRAGILe,
which stands for: FRActure Generator based on an Implicit geomodeL.
The proposed methodology considers DFN composed by very simple
fracture objects, i.e., the fractures are supposed to be rectangular.
These fractures are modeled in folded sedimentary environments. The
resultingDFN is generated according to the local orientation of the strat-
ification. This is possible since the orientation map is extracted from an
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implicit geologicalmodel. In implicit geologicalmodeling, the geology is
not modeled as a multitude of distinct surfaces, but as iso-values of one
or several continuous scalar fields. The proposed methodology uses the
potential field method (Lajaunie et al., 1997; Moyen et al., 2004; Cowan
et al., 2003; Frank et al., 2007; Calcagno et al., 2008; Caumon et al.,
2013; Souche et al., 2013) to model the geological implicit function
(Section 2.2).

The methodology described in the present paper considers that the
potential field is known. It is assumed that the orientation of the fractures
will follow a conceptual model such as the one described by Price and
Fig. A.1. Illustration of the fracture sets in: a) folded environment (modified from Twiss andMoo
sphere); b) in a reference environment (see Section 2.4.3). The colors are only meant to identi
Cosgrove (1990) or Twiss and Moores (1992) (Section 2.4.1). The algo-
rithm generates several sets of fractures (Section 2.4) that are rotated
into the folded geological model according to the orientation of the stra-
tigraphy (Section 2.5).

2. Detailed description of the modeling method

In this section,we describe themethodology thatwe use to generate
the fractures. The generator is based on a stochastic approach, the
dimensions and locations of the fractures are generated randomly. The
res, 1992),with conceptual plot and stereonets of fractures families (Schmidt lower hemi-
fy easily the families in the stereoplots.

Image of Fig. A.1


Fig. A.2. The 4 initial points of the basic “fracture object”, xi with i ∈ [0, 3], see the text in
Section 2.4.3. Symbols: x[0,3] are the 4 points describing the fracture. dx1 and dy1 are the

components of vector x0x1
��!, dz, dx2 and dy2 are the components of vector x0x2

��!, d′ is the

norm of vector dx2dy2
����!

, α is the strike of the fracture, expressed in degrees from the
x axis (trigonometric), θ is the dip of the fracture expressed in degrees.
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probability distribution function (PDF) for the generation of fracture
orientation must be defined by the user. The method allows us to use
a combination of purely theoretical families of fractures, and families
based on field observations.

The generation of the fractures is divided into 3 main steps:

• definition of the number and length of the fractures (Section 2.3)
• construction of the unrotated fractures (Section 2.4)
• positioning of the fractures into the geological model and rotation
according to the local orientation of the structure (Section 2.5)

2.1. Conventions for geological surfaces

Geological surfaces (fractures or bedding planes) can be described
using different terminology conventions. To avoid any ambiguity, the
conventions that are used in this paper are the following:

• strike: orientation of the intersection between the geological plane
and the horizontal plane, given in degrees (0 to 360) clockwise to
the North.

• dip: angle between the geological plane and the horizontal plane,
expressed in degrees (0 to 90). The strike is oriented so that the dip
plunges on the right-hand side.

• orientation: normal vector to the geological plane.

2.2. Implicit geological model

The information of the orientation of the strata is extracted from
an implicit geological model. In this work, we used the software
geomodeller (Geomodeller3D, 2013) to compute the potential field;
the resulting geological model is exported on a regular mesh,
which contains the information about lithology type and orientation
for every voxel.

We give here a very brief explanation of the implicit geological
model that we use because some symbols defined here will be used
later in the paper. The implicit approach is based on a potential
field P defined over the model domain Ω ∈ R3. This potential field
P(x) ∀ x ∈ Ω, is a scalar function defined for each point x of the domain.
It is interpolated by cokriging two types of data: observed positions of
geological interfaces and structural measurements (dip and strike)
taken anywhere in the domain. The details of the method are described
in Lajaunie et al. (1997) and Calcagno et al. (2008).

All the points having the same value of the potential P(xj) belong to
the samegeological interface. The orientation of the interface is given by
the gradient of the potentialG(xj)which is the normal vector of the geo-
logical interface.

G xð Þ ¼
Gx xð Þ
Gy xð Þ
Gz xð Þ

2
4

3
5 ¼

∂P
∂x xð Þ
∂P
∂y xð Þ
∂P
∂z xð Þ

2
6666664

3
7777775
: ð1Þ

Knowing the potential and its gradient allows defining for any point
in the domain the geological formation and the orientation of the layers
at that location.

2.3. Fracture size and density

One of the most difficult parameters to measure in the field, and
subsequently tomodel, is the fracture length distribution.Many statisti-
cal models for the fracture length (negative exponential, uniform, nor-
mal, log-normal, power law, etc.) are commonly used in the literature
(Priest and Hudson, 1981; La Pointe and Hudson, 1985; Priest, 1993).
Many statistical studies show that exponential or power laws are
often appropriate (Odling, 1997; Ackermann et al., 2001; Bour et al.,
2002; Soliva and Benedicto, 2005; Davy et al., 2010).

In the proposedmethodology, theuser is free to choose theprobabil-
ity density distribution (PDF) for the fracture length that best suits his
field observation for his own application. The discussion about the ben-
efits and shortcoming of the different distributions is beyond the scope
of the present paper.

Furthermore, the fractures are supposed to be rectangular. Their
width d is proportional to the fracture length l. The shape ratio d/l is pre-
scribed by the user as a constant or as PDF.

Similarly, the fracture density is assumed to be constant in this
paper: the user defines a point density and the fracture centroids are
computed following a Poisson point process. Note that the user defined
density is not the fracture density but only the density of the centroids.

All these parameters can be defined for each fracture family if
needed.

2.4. Construction of the fracture sets

2.4.1. Conceptual model
In ourmodel, we can use either user defined fracture families (based

on field observations, see 5) or, and this is themain novelty, the theoret-
ical families of fractures that should be present in a fold, as proposed by
Twiss andMoores (1992). This conceptualmodel suggests that sixmain
fracture sets occur depending on the position within the fold. Fig. A.1a
shows such fracture families. Even if this is only a conceptual represen-
tation of natural systems, it provides some guidelines for the definition
of theoretical fracture sets, which are often observed in the field. The
model includes 6 main families of fractures:

• Conjugate system C1: This system is roughly perpendicular to the fold
axis: 2 conjugate high angle fracture systems (C1a and C1b) (situa-
tions A and D in Fig. A.1a.).

• Conjugate system C2: This system is roughly parallel to the fold axis:
2 subvertical conjugate fracture systems (C2a and C2b) (situation B
in Fig. A.1a).

• Conjugate system C3: This system is parallel to the fold axis: 2
high angle conjugate fracture systems (C3a and C3b) (situation E in
Fig. A.1a).

• Conjugate systemC4: This system is parallel to the fold axis: 2 lowangle
conjugate fracture systems (C4a and C4b) (situation C in Fig. A.1a).

• Fractures with ac orientation: Vertical fractures that have their strike
perpendicular to the fold axis (situation A in Fig. A.1a).

Image of Fig. A.2


Fig. A.3. The original fractures (green and red objects) are first generated in an reference environment (a) and secondly rotated according to the local geological orientation (b), this is
equivalent to a basis transformation from the initial (i0, j0, k0) basis to the local (i,j,k) basis.

a) b)

c) d)

Fig. A.4. Rotated fractures according to the geological orientation. a) Fractures parallel to the fold axis, b) fractures perpendicular to fold axis, c) and d) two different view angles of two
conjugate fracture families. NB: the brown surface represents the base of the formation.
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Image of Fig. A.3
Image of Fig. A.4


a) b)

c)

Fig. A.5. a) Normalized potential P0
f in one formation, b) Laplacian of the potential ΔG(x), c) absolute value of the Laplacian (|ΔG(x)|). values.
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• Fractures with bc orientation: High angle fractures with a strike parallel
to the fold axis (situation B in Fig. A.1a).

The fracture systemsC1 and ac are typical for fold limbs. The systems
C2, C3 and bc are typical for the fold extrados (extension), while the sys-
tem C4 is characteristic for the fold intrados (compression).

Fig. A.1b shows the families in a reference environment, i.e., in the
environment that will be used do generate them as explained in the fol-
lowing sections.

2.4.2. Strike and dip probability distribution function definition
Each of the fracture sets described above are given for a theoretical

case. In practice, the fractures are never perfectly parallel between
them. Therefore in our approach, for every family the user has to define
a PDF. In the case of a uniform distribution, upper and lower bound
values for both strike and dip have to be provided, and in the case of a
normal distribution, the mean value and standard deviation have to be
Fig. A.6. The fractures measured on the field are rotated in the (u0, v0, w0) base using the inve
represents stratigraphy, while the yellow one represents a fracture. NB: we use trigonometric
provided. When each fracture composing the initial set is built, a
random value of dip and strike is retrieved from the PDF of the family
which the fracture belongs to.
2.4.3. Initial coordinates of the fracture vertices
Each initial fracture is generated after its length and its orienta-

tion information have been defined. As shown in Fig. A.2, the frac-
tures are rectangular, and their initial vertices (the 4 corners of the
fracture) are computed. Their length on the horizontal plane l is
given by the chosen distribution (Section 2.3), and their width in
the dip direction is given by d = a ∗ l, with a being a user-defined
(or random) ratio (Section 2.4.1). The vertex coordinates xi with
i ∈ [0, 3] are:

xi ¼ x0 þ x0xi
��! ¼

xi
yi
zi

2
4

3
5 ð2Þ
rse of the rotation matrix R defined by the local stratigraphy orientation. The blue surface
angles (counterclockwise).

Image of Fig. A.6
Image of Fig. A.5
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and are computed as follows:

x0 ¼
0
0
0

2
4

3
5; x1 ¼

dx1
dy1
0

2
4

3
5; x2 ¼

dx2
−dy2
−dz

2
4

3
5; x3 ¼

dx1 þ dx2
dy1−dy2

dz

2
4

3
5 ð3Þ

with dx1 = cos(α) * l and dy1 = sin(α) * l (where − α is the strike of
the fracture with respect to the i axis) are the components of x0x1

��!.
dx2 = sin(α) * d′, dy2 = cos(α) * d′, and dz = sin(θ) are the compo-
nents of x0x2

��! (with d′ = cos(θ) * d and θ the dip of the fracture). Fi-
nally x0x3

��! ¼ x0x1
��!þ x0x2

��!.

2.5. Placement and rotation of the fractures

After the initial fractures are built, they are translated one by one
into the 3D model, and then rotated according to the local stratigraphy
orientation. Clearly, if a 3D geological model with known structure ori-
entation is not used, this is not possible, and the fractures are kept with
their original orientation.

2.5.1. Translation of the fractures inside the model
Let us consider one fracture previously generated. Before moving it,

its gravity center c is computed:

c ¼ 1
4

X3
i¼0

xi ð4Þ

as well as the lag vectors vi, which are the vectors between the gravity
center c and each point xi of the fracture:

vi ¼ xi−c: ð5Þ

We then use the geology and orientation information obtained from
the potential field (here exported from geomodeller) in a voxel grid. For
every voxel, the information available is a code indicating the geological
formation Ff (where f ∈ 1, 2,..., NF with NF the number of geological for-
mations in the model), and the gradient G of the potential in the voxel.
The combination of these 2 pieces of information allows us to define
several rules for the generation of the fractures. The first rule is that a
given family of fractures will develop only into certain specific forma-
tions according to their competence, e.g., the fractures can be generated
only in hard rock formations (like limestones or sandstones) but not
into soft rocks (shales). This is done by first indexing the voxels that be-
long to the different formations with an indicator function If that is de-
fined for every voxel i = (i,j,k) of the model and for every formation f:

I f ið Þ ¼ 1 if F ið Þ ¼ f
0 if not

�
: ð6Þ

After that, we select randomly one of the cells ir and test if it is pos-
sible to place a fracture in the selected voxel. To speedup the search, the
voxels are ordered in a 1D array, from which we randomly select only
the valid voxels, i.e., the ones tat can be affected by a given fracture fam-
ily f. Knowing the origin of the grid o= (ox, oy, oz), and the dimensions
of the cells dx,dy,dz, then a random point xr is generated inside the cell
using a uniform distribution (i.e., the gravity center for the new fracture
is found randomly within the selected voxel):

xr ¼
ox þ jc−1ð Þdxþ dxrandðÞ
oy þ ic−1ð Þdyþ dyrandðÞ
oz þ kc−1ð Þdzþ dzrandðÞ

2
4

3
5 ð7Þ

where ic, jc, kc are the matrix indices of the randomly selected cell, and
rand() is a random function that generates a random floating point
number in the interval [0,1].
Finally, the displacement vector d between c (gravity center of the
fracture) and the random point xr is computed. xr becomes the new
gravity center of the fracture:

d ¼ xr−c: ð8Þ

The new points of the fracture x0i are computed with their respective
vi vectors or by using the displacement vector d:

x0i ¼ xr þ vi ¼ xi þ d: ð9Þ

2.5.2. Rotation according to the local geological orientation
After the fracture has been placed into the medium, a rotation is

applied to account for the local geological orientation. The rotation of
the fracture is made in 3 steps. First a new local orthonormal basis con-
sistentwith the orientation of the stratigraphy is built. Secondly, the ro-
tation matrix is computed, and finally every point of the fracture is
rotated using this rotation matrix.

In the case of a perfectly cylindrical fold, the components of the new
orthonormal basis can be easily computed using the normal vector to
stratigraphy, and its dip. But in many cases, a perfectly cylindrical fold
is quite rare, and we must consider that it may be tilted, i.e., the fold
may present an axial plunge direction. In this case, the new right-
handed orthonormal basis (u,v,w) will be as follows:

• w, the basis component which corresponds to the normal vector to
the stratigraphy

• v, the component that corresponds to the plunge direction
• u, the component that is orthogonal to the others, and which corre-
sponds to the tilted dip.

This is shown in Fig. A.3.
To compute this basis, themethod described in Hillier et al. (2013) is

used: using a neighborhood of N neighbors around a given point, the
sum of the cross-products of the N normalized normal vectors ni gives
the following pole orientation matrix:

XN
i¼1

ni � nT
i ¼

XN
i¼1

n2
ix

XN
i¼1

nixniy

XN
i¼1

nixnizXN
i¼1

niynix

XN
i¼1

n2
iy

XN
i¼1

niynizXN
i¼1

niznix

XN
i¼1

nizniy

XN
i¼1

n2
iz

2
666664

3
777775: ð10Þ

Then, the eigen vector analysis of this orientation tensor yields eigen
values E1, E2, and E3 with E1 b E2 b E3 and the eigen vector matrix V:

V ¼
e1x e2x e3x
e1y e2y e3y
e1z e2z e3z

2
4

3
5 ð11Þ

with e1, e2, and e3 being the eigen vectors associated with the eigen
values E1, E2, and E3. Woodcock (1977) explains that e1 represents the
direction for which the inertia momentum is minimized, therefore
corresponding to the plunge direction, e3 corresponds to the major
momentum of inertia, i.e., to the normal vector to the stratigraphy,
and e2 is simply orthogonal to the others. Consequently, we can define
u, v, andw as follows:

u ¼ e2= e2k k ; v ¼ e1= e1k k ; w ¼ e3= e3k k : ð12Þ

The rotation matrix R is then defined as follows:

R ¼ u; v;w½ �: ð13Þ



141A. Borghi et al. / Engineering Geology 187 (2015) 135–142
We can now use this rotation matrix to generate the four rotated
vertices of the fracture xir′:

x0ir ¼ xr þ Rvi: ð14Þ

2.5.3. Results of 3D fracture modeling in a folded environment
Fig. A.4 shows an example of fracture generation with 3 different

orientations. One fracture family that is parallel to fold axis (Fig. A.4a)
and corresponds to bc fracture type in Fig. A.1. The second is perpendic-
ular (Fig. A.4b) and corresponds to ac fracture type in Fig. A.1. Fig. A.4c
and d shows two conjugate families that correspond to C1a and C1b
fracture types in Fig. A.1.

The rotated fractures reproduce quite well the theoretical orienta-
tions of fractures with respect to folds shown in Fig. A.1. Furthermore,
fracture orientations follow the orientation and shape of the folds
(antiform and synform).

3. Discussion

The present paper shows how an implicit geological model based on
the potential field (Lajaunie et al., 1997; Calcagno et al., 2008) can be
used to generate discrete fracture networks that account for the local
orientation of the geological layers. This is especially useful in folded
regions. The method is sufficiently versatile to be adapted to any kind of
implicit methods, such as the GeoChron model (Moyen, 2005; Mallet,
2014) for example. The only requirement is to have access to a 3D field
of local orientations.

As it has been shown in the literature (e.g., Mace, 2006; Davy et al.,
2013; Bonneau et al., 2013), geomechanical control over the fracture
growth, relative position, and interaction are very important. Here,
these interactions are not considered because the aim of the paper is
to show how the implicit method can be used to rotate the fractures
within the structures. Many further improvements could however be
considered, including such interactions that would impact the fracture
length distribution and the fracture spacing.

One straightforward extensionwould be to use the implicitmodel to
detect not only the orientation but also the type of fractures that could
be expected at a specific location. Indeed, the information provided by
the implicit model (potential, gradient, but also curvature) can be
used to define the different zones of the fold (intrados, extrados).
Fig. A.5 illustrates this idea.

To be more precise, first, the value of the potential P(x) for each
geological formation f allows defining the position within the layer.
For that we suggest, to normalize it as follows (Fig. A.5a):

P0
f ¼

P−P f ;min

P f ;max−P f ;min
j f∈ 1; :: :;NFf g ð15Þ

where NF is the number of geological formations, P0
f is the normal-

ized potential, and Pf,min and Pf,max are the minimal and maximal
values of P(x) for the formation f.

Then, the Laplacian of the potentialΔG(x) allows defining the type of
fold (syncline or anticline) in the following way (Fig. A.5b):

if ΔG xð ÞN0 anticline
if ΔG xð Þb0 syncline

�
: ð16Þ

By combining these two pieces of information, and taking the abso-
lute value |ΔG(x)|, one can locate in an approximate manner the zones
of maximum deformation within the fold. This principle is illustrated
in Fig. A.5c. Such local information could then be used to modify locally
the density of the various fracture types. While in theory, the compres-
sive and extensive regimes are expected to be separated roughly by the
median line P f 0 ¼ 0:5, further research is needed to propose a reason-
able model for the distribution of fracture seeds depending on the posi-
tion and curvature.

Furthermore, the approximation given by the rotation matrix may
not reflect the real geomechanical constraints. Producing a more realis-
tic model of conjugate fracture systems would require to establishing
further links with geomechanics. Nevertheless, the use of the implicit
model proposed here shows that some promising results can be obtain-
ed simply and at a low computational cost.

Finally, the use of the implicit method opens a link to structural
uncertainty analysis; for example Wellmann et al. (2010) show
the use of an uncertainty analysis on the geological model, and
Lindsay et al. (2013) include also geophysical observations in the in-
verse framework. As the geological structure (i.e., the geological
model) has a deep impact on the subsequent DFN model, it would
make sense to combine both steps in the same uncertainty analysis.
Cherpeau et al. (2012) uses an implicit method to simulate faults in
a Monte Carlo Markov Chain framework. A similar approach could
be imagined for DFNs.

4. Conclusions

In this paper, we propose a methodology allowing us to use the
information provided by an implicit geological model about the de-
formation within a folded structure to generate oriented discrete
fracture networks (DFN). The methodology is simple: the gradient
of the potential is extracted from the implicit model. It is used to ro-
tate the fractures within the fold. The fracture sets can either be
taken from a theoretical model such as Twiss and Moores (1992) or
provided by the user. For the length distribution, the code can use
several user-defined distribution laws. The resulting DFN models
can be rasterized if needed for further use in any subsequent model-
ing applications.

Several possible further improvements are discussed such as the ad-
dition of “geomechanical rules” to better account for the position of the
fractureswithin the structure. This would allow simulating the different
fracture families within specific zones of the fold (compression in the
intrados and extension in the extrados).
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Appendix A. Consideration and integration of field data in the
proposed approach

One option with the model is to reproduce fracture families that
are observed in the field. The classical approach consists in using the
same orientation anywhere in the domain and this is feasible with
the code.

However, a more interesting option consists in analyzing the
field data in relation with the local orientation of the strata. This al-
lows us to obtain families that are independent of the position in the
complex 3D setting. These families are then used in the procedure
described in the paper.

To analyze thefield observations, we proceed as follows: the observed
fractures are rotated into the local coordinate system (u0, v0,w0) derived
either from the 3D geological model as explained in the paper, or from
local analysis of the orientation of the stratigraphy as explained in
Hillier et al. (2013). This is then done using the inverse of the rotation
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matrix R defined by the local stratigraphy orientation defined in Eq. (13)
(Fig. A.6). The fracture plane system (fu, fv, fw) is transformed in a refer-
ence system (f u0 ; f v0 ; f w0) as follows:

f 0u ¼ R−1 f u ; f 0v ¼ R−1 f v ; f 0w ¼ R−1 f w : ðA:1Þ

Using this procedure, all the fractures measured in the field are
normalized accounting for the local orientation of the bedding. This
transformed dataset allows computing fracturation statistics indepen-
dently from the orientation of the stratigraphy.
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