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Abstract Stochastic discrete fracture networks (DFNs) are classically simulated using stochastic point
processes which neglect mechanical interactions between fractures and yield a low spatial correlation in a
network. We propose a sequential parent-daughter Poisson point process that organizes fracture objects
according to mechanical interactions while honoring statistical characterization data. The hierarchical
organization of the resulting DFNs has been investigated in 3-D by computing their correlation dimension.
Sensitivity analysis on the input simulation parameters shows that various degrees of spatial correlation
emerge from this process. A large number of realizations have been performed in order to statistically
validate the method. The connectivity of these correlated fracture networks has been investigated at
several scales and compared to those described in the literature. Our study quantitatively confirms that
spatial correlations can affect the percolation threshold and the connectivity at a particular scale.

1. Introduction

Fracture networks in rock masses significantly affect hydrodynamic and geomechanical processes. Due to
incomplete observations and measurements at all relevant scales, numerical modeling is widely used to
describe the geometry and understand the behavior of fractured rocks. However, efficiently honoring both
statistical descriptions of the fractured medium and all the physical principles driving fracture genesis remains
a challenge. This paper reports on investigations to integrate physical and geological principles in stochastic
discrete fracture network (DFN) simulations and assessing the impact of this integration on emerging DFN
properties such as network connectivity and fractal dimension.

Spatial characteristics of subsurface fracture networks are the result of complex processes. These processes
have been described by linear elastic fracture mechanics and studies about the initiation, growth, interaction,
and termination of fractures [Olson, 1993; Renshaw and Pollard, 1994; Tuckwell et al., 2003; Jing, 2003;
Welch et al., 2009]. Fractures initiate at rock flaws [Pollard and Aydin, 1988; Cosgrove and Engelder, 2004].
Heterogeneities such as fossils, grains, cavities, microcracks, and other objects having elastic properties dif-
ferent from those of the surrounding rock modify the stress field in such a way that the magnitude of local
stresses may exceed the strength of the rock, thereby initiating a fracture. Fractures create local hetero-
geneities in both the stress field and the bulk properties of the rock. Pollard and Aydin [1988] describe the
decrease of mechanical stress along cracks (in the shadow zone) and its increase at fracture tips (in the stress
concentration zone). Fractures then grow as long as the effective stress locally exceeds the strength of the
rock [Griffith, 1921, 1924]. Numerical modeling of this process requires to evaluate the stress state everywhere
and at all times in the simulation domain. It is generally based on boundary conditions and uses finite ele-
ment, boundary element, or discrete element methods which are computationally intensive for large scale
3-D problems and are often subject to gridding and discretization problems. Therefore, stochastic approaches
are often applied for efficiently simulating very large fracture networks (for reviews, see, e.g., Jing [2003],
Chilès [2005], Dershowitz et al. [2004], Dowd et al. [2007, and see also De Dreuzy et al. [2013] for a benchmark).
Stochastic approaches do not solve the mechanical problem but aim at defining a mathematical proxy that
reproduces the final geometry of natural fracture networks. Those methods rely on the statistical inference
and characterization of the fracture network from field and analog observations.

Classical stochastic discrete fracture network simulations consider fractures as simple 2-D objects (rectangles
or ellipses) in 3-D space. The position of rock flaws stimulated by the stress field is usually generated either
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by a homogeneous or heterogeneous Poisson point process [Stoyan and Stoyan, 1994; Lantuéjoul, 2002]. The
dimension and orientation of the fracture are simulated for each object independently by sampling from
prior probability distribution functions with a Monte Carlo process. This approach generally simulates frac-
ture set by set following their chronology in relation to tectonic events [e.g., Mace et al., 2005; Yamaji and
Sato, 2011; Lamarche et al., 2012]. However, the geometry and the position of each fracture in each set is ran-
domly and independently selected. Even if the statistics describing each set are honored, the flow behavior
and emerging fracture network features such as connectivity and spatial correlations may be biased. This
is attested, for instance, by Odling and Webman [1991] who highlight in two dimensions the differences
of global permeability between natural and simulated fracture networks sharing the same length and
orientation statistics.

This problem can be addressed by several improvements to Poisson-based DFN simulation methods. An
avenue is to refine the statistical models used in the DFN simulation, see, for instance, Chilès [1988] and Xu and
Dowd [2010]. Another is to incorporate the effects of mechanical interactions which control fracture initiation,
growth, and arrest. This has been done by reproducing the effects of these interactions on the fracture geom-
etry [Josnin et al., 2002], and mimicking the fracture growth using planar fractures [Cladouhos and Marrett,
1996; Swaby and Rawnsley, 1996; Davy et al., 2013] or nonplanar fractures [Cacas et al., 2001; Srivastava
et al., 2005; Bonneau et al., 2013]. Among these methods, Cladouhos and Marrett [1996] relate a simplified
two-dimensional linkage model to the emergence of power law distributions. Similarly, Davy et al. [2013]
establish theoretical and numerical links between fracture seeding and development processes and emerg-
ing fracture statistics in simulated DFNs (density and power law length distribution). In this paper, we use
similar ideas to evaluate numerically the link between pseudomechanical DFN simulation and emerging char-
acteristics such as the connectivity and fractal dimension. For this, we propose a simulation method which
emulates the stress perturbation effects around fractures during their seeding. This numerical method aims at
both reproducing the statistics describing natural fracture networks and the geometrical hierarchy between
fractures. The main idea is to use a sequential parent-daughter Poisson point process that favors the initia-
tion of small fractures at the tips of larger fractures (section 2). A large number of realizations is performed
on synthetic data to validate the method in a statistical sense. We discuss and quantify the impact of this
sequential fracture seeding on the DFNs organization in terms of spatial correlation (section 3), connectivity,
and percolation (section 4).

2. Sequential Stochastic Discrete Fracture Network Simulation

Several pseudogenetic approaches have been proposed to simulate fracture geometry by propagating frac-
tures from an initial state using simple mechanical concepts on growth and arrest [Josnin et al., 2002; Srivastava
et al., 2005; Bonneau et al., 2013; Davy et al., 2013]. Instead, this work focuses on the fracture nucleation to
capture hierarchical organization of natural fracture networks.

We are making the assumption that fracture radial growth and coalescence are correctly described by the
length distribution law. Objects are progressively implanted in their final state, and so we neglect the fracture
growth, interaction, and coalescence that lead to the final fracture geometry. Large fractures are simulated
first because they have grown far from discontinuities that may interact and stop their growth. We use an
approximate local stress perturbation model (Figure 1 and section 2.1) to later organize small fractures around
these major objects with a probabilistic acceptance of fracture seeds (section 2.2).

2.1. Simplified Fracture Object
Produced DFNs are made of planar objects characterized by their position, extension, and orientation. These
objects may represent either a single or several coalesced discontinuities. Each fracture is associated to a
simplified stress perturbation model that represents the shadow and the stress concentration zones. Several
authors have integrated such simplified geomechanical models in stochastic DFN simulations [Cladouhos and
Marrett, 1996; Srivastava et al., 2005; Bonneau et al., 2013]. Most of them used a spherical isotropic model.
In this work, we use a simple model constituted by two ellipsoids in order to take into account the anisotropy
often observed in stress concentration around fracture tips (Figure 1) [Lyakhovsky, 2001].

These ellipsoids separate volumes where the probability to observe a crack is increased (respectively,
decreased) because of the stress concentration (respectively, relaxed). The geometry of each ellipsoid is
defined by factors weighting the fracture size: (𝛼s, 𝛽s) for shadow zone and (𝛼p, 𝛽p) for stress concentra-
tion zone. This model, inspired by the shape of symmetric stress perturbation around tensile fractures,
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Figure 1. Simplified 3-D stress model around a fracture. Two ellipsoids individualize the stress concentration zone
(in blue) and the shadow zone (in red). Note that the intersection between the blue and the red ellipsoids is a part
of the shadow zone. The extent of each zone is deduced from fracture dimensions by applying scaling factors
(𝛼s , 𝛼p, 𝛽s, and 𝛽p). In this figure, we set 𝛼s = 1, 𝛽s = 1, 𝛼p = 2, and 𝛽p = 0.5.

aims at approximating the first-order stress perturbation of all types of fractures. This may be locally inconsis-
tent (e.g., if fractures are parallel to the main compressive stress direction). However, far-field stress is generally
not known during DFN simulation, so this model is expected to emulate geomechanical effects on average
(section 5).

The next section describes a stochastic simulation process that uses these ellipsoids to drive the seeding of
fractures.

2.2. Sequential Parent-Daughter Poisson Point Process
Our global sequential seeding process is described in Appendix A and Figure 2. It uses a heterogeneous
Poisson point process that generates N potential fracture seeds according to a prior fracture density map
(d(x,y,z)) that may be obtained by strain analysis [Cacas et al., 2001; Mace et al., 2005], seismic methods

Figure 2. One seeding sequence follows several steps. (a) Fractures simulated previously and their associated influence
zones. They will drive the activation of new fractures during further steps. The classical Poisson point process generates
possible fracture center locations ((b) following a uniform density in this example). (c) Activated fractures are then
selected following equation (1).
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[Sayers, 2009; Serrano et al., 2014; Rodriguez-Herrera et al., 2015], or other ancillary observations. Then the

nucleation of fractures uses a probabilistic acceptance/rejection test that takes into account the fractures pre-

viously simulated. Simulation is then performed in a given number of sequences (s ∈ [1,N]). During the first

seeding sequence, the probability (P(x,y,z)) to simulate a fracture at a position generated by the Poisson point
process is uniform and equal to N

s
1
N
= 1∕s.

Planar fractures are simulated by a Monte Carlo sampling of orientation and dimension distribution laws.

Around each simulated fracture, a simplified geomechanical model (Figure 1) divides the volume of interest

into several parts in which the prior probability (P(x,y,z)) to activate a fracture at a given seed (x, y, z) has to be

locally adjusted considering the following.

1. The impact (g) and the number (Nacc(x, y, z)) of stress concentration zones overlapping the (x, y, z) location.

The probability to stimulate a rock flaw inside stress concentration zones is increased by a factor g ≥ 1.

2. The impact (h) and the number (Nacc(x, y, z)) of shadow zones defined at the (x, y, z) location. The condi-

tional probability to stimulate a rock flaw inside the shadow zone is decreased by a factor h ≥ 1.

h and g are input parameters standing for the impact of shadow and stress concentration zones. As a

consequence, we define the adjusted probability Ps
(x,y,z) at each step of a process divided in s sequences

as follows:

Ps
(x,y,z) =

N
s

(
1 + g × Nacc(x, y, z)

1 + h × Nshad(x, y, z)

)
∕

(
N∑

i=1

1 + g × Nacc(x, y, z)i

1 + h × Nshad(x, y, z)i

)
(1)

For each seeding sequence, the Poisson point process simulates N seeds that are scanned twice (algorithm

in Appendix A). The first iteration evaluates the denominator of equation (1) by counting Nacc (weighted

by g) and Nshad (weighted by h) for each seed. The second iteration uses the previous result that quan-

tifies the fracturing state to compute and normalize P(x,y,z) according to the impact of already simulated

fractures.

The proportion of stress concentration/relaxation zones (Figure 1) depends on both the fracture length and

on the number of simulated fractures. In other words, the proportion of these zones depends on the fracture

density. In the early stage, only a few fractures have been activated and the fracturing process is not strongly

impacted by previous fractures. In this case, every fracture center proposed by the Poisson point process

has the same probability (P(x,y,z) = 1∕s) to be selected for simulation because Nacc(x, y, z) ≈ Nshad(x, y, z) ≈ 0.

During the simulation, the number of fractures increases and consequently their impact on the simulation

process increases as well. Finally, the method naturally reproduces the “poorly” and “well-developed” fracture

networks [Wu and Pollard, 1995] as well as the transition regime between these two states [Davy et al., 2010].

“Poorly” and “well-developed” fracture networks have also been described in terms of “unsaturated” and

“saturated” [Josnin et al., 2002] or “dilute” and “dense” fracture networks [Davy et al., 2010].

This approach organizes small fracture objects at the tips of longest ones. It neglects the interaction between

fractures during their growth and the fractures that are nucleated during the fracture growth. As a result,

our method may underestimate the number of fractures that initiate from older fractures, which may lead to

an underestimation of the network connectivity. Strategies to incorporate the effects of interactions during

fracture growth should therefore be considered in future research.

2.3. Impact on DFN Spatial Correlation
In this section, we analyze the DFN spatial correlations emerging from the above sequential seeding process.

A quantitative characterization of spatial correlations is also possible using fractal theory. This aspect has been

much studied in the literature for its ability to describe natural fracture systems [Mandelbrot, 1983; Velde et al.,

1991; Ouillon et al., 1996; Bour and Davy, 1999; Bour et al., 2002; Darcel et al., 2003]. The measurement of the

fractal dimension of fracture networks can be related to several definitions that quantify the singularities of

the multifractal spectrum. Bonnet et al. [2001] present a review for characterizing and estimating the capacity

dimension, the information dimension, and the correlation dimension that can be considered as the three

first moments of the multifractal spectrum.
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Figure 3. The 3-D and 2-D views of DFNs obtained with the Poisson point process for (a) a single fracture set DFN, (b) a two fracture set DFN, and (c) a DFN
where fractures are randomly oriented. The 2-D views show the traces of fractures on the red slice. Fractures are uniformly positioned in space. Graphs show
for each kind of DFN the correlation function estimation C2(r) in black and the estimation of the DFN correlation dimension Dc in grey. As the fractal dimension
is approximately 3, the experiments show that the classical Poisson point process generates uncorrelated DFNs.

In this work, we quantify the correlation dimension Dc of fracture network models using a pair correla-
tion function (C2(r)) computed from the fracture center repartition, similar to Davy et al. [1990] and Bour
et al. [2002]:

C2(r) =
2 × N(r)

Nt × (Nt − 1)
≈ rDc (2)

where N(r) is the number of pairs of fracture centers whose separation distance is less than r. Nt is the total
number of fracture centers in the considered volume of rock. Ouillon et al. [1996] and Bonnet et al. [2001]
have shown that computing the correlation dimension using equation (2) provides more accurate spatial
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Figure 4. The 3-D and 2-D views of DFNs obtained with the sequential parent-daughter Poisson point process for (a) a single fracture set DFN, (b) a two fracture
set DFN, and (c) a DFN where fractures are randomly oriented. The 2-D views show the traces of fractures on the red slice. Fractures seem organized. The seeding
process entails a spacing between fractures and attracts small fractures at larger fracture tips. Graphs show for each kind of DFN the correlation function
estimation C2(r) in black and the estimation of the DFN correlation dimension Dc in grey. The presented sequential activation process builds correlated DFN
characterized by a correlation dimension inferior to 3.

correlation estimates than the classical box-counting method. This method assumes an isotropic distribution
of fracture centers which is a reasonable approximation in simple cases where we start from intact rock and
uniform orientation distributions.

We compare the spatial correlations that emerge from a hundred DFNs simulated with either our sequen-
tial Poisson point process or the homogeneous Poisson process. To get a consistent correlation dimension,
we simulate DFNs made of fractures whose lengths range over 2 orders of magnitude (1 to 30 m). Consistent
with our hypothesis that the fracture length distribution should reflect the growth and the coalescence
process, we choose a power law length distribution of exponent 1.8 [De Dreuzy et al., 2001], truncated between
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Table 1. Average Correlation Dimension (Dc) Over a Hundred DFN
Realizations

Poisson Point Process Single Set Two Sets Random Orientation

Classical 3.01 ± 0.07 3.01 ± 0.06 3.00 ± 0.01

Sequential 2.47 ± 0.09 2.55 ± 0.09 2.58 ± 0.09

1 and 30 m. Each DFN contains 10,000
fractures simulated from a uniform
density map in a volume of dimen-
sions 90 × 90 × 90 m. The correla-
tion dimension estimation focuses on
the central volume (30 × 30 × 30 m)
to reduce edge effects due to fracture
truncation. For the sequential Poisson

point process, 0.1% of the total number of fractures was simulated during each sequence. Other parame-
ter values for our pseudogeomechanical model (Figure 1) were arbitrarily chosen as follows: 𝛽s = 1, 𝛼s = 1,
h = 100; 𝛽p = 0.5, 𝛼p = 2, g = 100 (see section 3 for a sensitivity analysis related to these parameters).

We studied the impact of the sequential parent-daughter Poisson point process on DFN correlation dimension
for three kinds of DFNs:

1. DFNs made of one set of vertical fractures (strike uniformly distributed between 80∘ and 100∘; Figures 3a
and 4a).

2. DFNs made of two sets of vertical fractures (strike of the first set is uniformly distributed between 25∘ and
35∘, and strike of the second set is uniformly distributed between 145∘ and 155∘; Figures 3b and 4b.)

3. DFNs with fractures that can have any orientation (fracture dips are uniformly distributed between 0∘ and
90∘, and strikes are uniformly distributed between 0∘ and 360∘; Figures 3c and 4c.)

The homogeneous Poisson point process does not generate spatial correlations (Figure 3). The average frac-
tal dimension computed over a hundred DFN realizations is very close to 3 in all types of DFN (Table 1). On the
contrary, the sequential seeding of fractures (Figure 4) creates correlated DFNs with a correlation dimension
between 2.47 ± 0.09 for DFNs made with a unique fracture set and 2.58 ± 0.09 for DFNs made of randomly
oriented fractures (Table 1). This demonstrates that defining simple rules, inspired from geomechanical con-
cepts, to constrain progressive stochastic fracture nucleation impacts the correlation dimension of produced
networks. This also suggest that prior knowledge of fracture set orientation slightly affects the correlation
dimension. However, the correlation dimension defined in equation (2) is making the assumption of an
isotropic positioning of fractures. This assumption is difficult to make with our method if fractures are not ran-
domly oriented. In the following, we focus on density and connectivity of randomly oriented fractures and we
isolate the effect of the sequential seeding strategy.

2.4. Impact of the Sequential Seeding Process on Fracture Density
This section studies the ability of the produced DFNs to honor the input fracture density map that quantifies
the number of fracture centers per unit volume (P30). We quantify the average number of fracture centers that
are simulated per volume unit by mapping fracture centers on the simulation volume (90× 90× 90 Cartesian
grid of 1 × 1 × 1 m voxels, section 2.3). We compute maps of fracture center likelihood (often called E types
[see Journel, 1983]) over a large number of realizations, and we compare them to input fracture density maps
in order to detect and quantify the mismatch due to the simulation method. We simulate 1000 DFNs using
the parameters described in Table 2.

E types are first computed for uniform fracture density maps and using a homogeneous Poisson point pro-
cess. Input density is 1.37 × 10−2 center m−3, corresponding to DFNs with 10,000 fractures (Figure 5a). The
homogeneous Poisson point process perfectly reproduces the input density map. It produces a uniform

Table 2. DFN Simulations Parameters for E-Types Generations

E-Type Map Poisson Point Process Input Density Map DFNs Fractal Dimensions

Figure 5b Classical homogeneous (Figure 5a) 3.01 ± 0.06

Figure 6b Classical heterogeneous (Figure 6b) 2.98 ± 0.06

Figure 5c Sequentiala homogeneous (Figure 5a) 2.65 ± 0.09

Figure 6c Sequentiala heterogeneous (Figure 6b) 2.66 ± 0.08
aWe simulate 0.4% of the DFN at each sequence using the same parameters as described section 2.3.
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Figure 5. E types computed from 1000 realizations. (a) Homogeneous reference maps used. (b) E type obtained
from classical Poisson point process that produces uncorrelated DFNs (Dc is the average fractal dimension of DFNs
generated). (c) E-type map obtained from sequential Poisson point process that produces spatial correlations.
It shows a moderate bias that is interpreted to be related to a border effect.

E-type map with an average value of 1.37 × 10−2 center m−3 and a standard deviation of 2.08 × 10−4 m−3

(Figure 5b). The sequential seeding process also produces an E-type map almost uniform with an aver-
age values of 1.37 × 10−2 center m−3 but with a higher standard deviation (1.30 × 10−3m−3, Figure 5c).
The higher standard deviation indicates that the convergence of E type is more difficult due to the clustering
of each realization. The sequential process also introduces a small bias in the fracture repartition by simulat-
ing more objects in the center of the volume. We tried to reduce the intensity factors from h = g = 100 to
h = g = 10. This increased the DFNs correlation dimension from 2.65 ± 0.09 to 2.78 ± 0.06. The E-type map
obtained in this case is still very close to the one presented in Figure 5c. Additional tests on larger Cartesian
grids suggest that the acceptance/rejection process produces subtle edge effect, which could be further
investigated.

We performed the same study with a heterogeneous density map (Figure 6a). The E-type map correspond-
ing to a heterogeneous Poisson point process (Figure 6b) is correlated to input density. The linear correlation
coefficient linking the two properties is equal to 0.98. Note that producing DFNs that follow a heteroge-
neous spatial repartition does not create significant spatial correlations between objects (Dc ≈ 3). The E type
obtained by mapping correlated DFNs (Dc = 2.66) is correlated to the reference map but with a lower
coefficient (0.76, Figure 6c). As in the homogeneous case, we note a border effect that biases the global frac-
ture repartition. It seems that objects are more likely to be simulated at the center of the volume. Reducing
the intensity factors from h = g = 100 to h = g = 10 increases the DFNs correlation dimension to Dc = 2.79,
reduces spatial correlations, and increases the correlation factor between the reference map and E-type map
to 0.85. Because the intensity of spatial correlations may depend on the parameters of the sequential seeding
process, we propose a sensitivity analysis in section 3.

Figure 6. E types computed from 1000 realizations. (a) Heterogeneous reference maps used. (b) E types obtained
from classical Poisson point process that produces uncorrelated DFNs (Dc is the average fractal dimension of DFNs
generated). (c) E-type map obtained from sequential Poisson point process that produces spatial correlations.

BONNEAU ET AL. STOCHASTIC SEQUENTIAL DFN SIMULATION 8
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Figure 7. Sensitivity study on the fracture geomechanical model geometry factors. (a–i) Several models have been
tested and associated to their average correlation dimension. Increasing the size of shadow or stress concentration zone
dilutes the impact of the sequential process and progressively produces nonfractal geometries.

3. Sensitivity Analysis on the Sequential Poisson Point Process

The parameters of the method are (1) the relative extents of stress concentration zone (𝛼p and 𝛽p), (2) the
relative extents of the shadow zone (𝛼s and 𝛽s), (3) the intensity factors (g and h, equation (1)), and (4) the
number of seeding sequences (s). All these parameters relate to the mechanical parameters of the rock,
but no direct or statistical relationships have yet been established. This sensitivity study aims at quantifying
the relationships between input parameters and spatial correlations in DFNs.

Simulations are performed with similar parameters as in section 2.3:

1. Simulations are performed on a Cartesian grid with 90 × 90 × 90 cubic voxels.
2. Fracture seeding uses a uniform density map generating 10,000 fractures.
3. The distribution law describing the fracture length follows a truncated power law with an exponent of 1.8

and values bounded between 1 and 30 m.
4. Fracture dip and strike are randomly selected in [0∘, 90∘] and [0∘, 360∘], respectively.

In this section, we describe and quantify the impact of both the geomechanical model and the chronological
settings on the DFNs spatial correlations. The results of this sensitivity analysis are plotted in Figures 7, 8, and
11 and discussed in the next sections. For each set of tested parameters, we show a 2-D section of a 3-D DFN
(red section, Figures 3 and 4). For each cases, we associate an average estimation of the correlation dimension
computed over 100 realizations using the method described in section 2.3.

BONNEAU ET AL. STOCHASTIC SEQUENTIAL DFN SIMULATION 9
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Figure 8. (a–i) Sensitivity on the intensity factors g and h (section 2.2). The global behavior tends to decrease Dc
(increase spatial correlations) with the increase of h and g.

3.1. Sensitivity Study on Geomechanical Model Geometry Factors
To test the sensitivity of the method, we simulated 10,000 fractures in the same domain as in previous tests, by
implanting 10 fractures per sequence (0.1% of the final DFN). We have varied the extent of stress concentration
and shadow zones changing the values of 𝛽s and 𝛼p in the range [1–3] and [2–4], respectively, while keeping
the other input factors constant (𝛽p = 1, 𝛼s = 0.5, and intensity factors g = h = 10).

The sensitivity analysis shows that the increase of shadow or stress concentration zone extents increases the
correlation dimension of DFNs produced. In spite of the relatively large standard deviation of the correlation
dimension, we observe a progressive dilution of spatial correlations from the clustered DFN (Figure 7a) to the
uncorrelated DFN (Figure 7i).

3.2. Sensitivity Study on the Geomechanical Model Intensity Factors
In this sequence, we use the same chronology as in section 3.1 (0.1% of the DFN is simulated per sequence).
One hundred simulations have been run using the geometric parameters described in Figure 1 (𝛼s = 𝛽s = 1,
𝛼p = 2 and 𝛽p = 0.5). The intensity factors in the stress concentration and shadow zones (g and h) vary
between 10 and 100.

Results show a progressive decrease of the fractal dimension from Dc = 2.79 (Figure 8a) to Dc = 2.58
(Figure 8i) when g and h increase. Figure 8 also suggests that the impact of g is not as significant as the
impact of h. We note a strong variation in the correlation dimension when we increase the value of h from 10

BONNEAU ET AL. STOCHASTIC SEQUENTIAL DFN SIMULATION 10
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Figure 9. Evolution of the fractal dimension of DFNs with the intensity factor of the simplified geomechanical model.
Each triangle in grey corresponds to the correlation dimension computed on 100 DFN realizations for several values
of h and g = 10. In black, each point corresponds to the correlation dimension computed on 100 DFNs realizations for
several values of g and h = 10. Uncertainties are quite important, but we propose to identify a model to describe the
evolution of Dc(h) (grey line) and the evolution of Dc(g) (black line).

(Dc = 2.8, Figures 8a–8c) to 50 (Dc = 2.6, Figures 8d–8f ). Several other simulations have been made in order
to better characterize this trend (Figure 9).

More quantitatively, we found that the correlation dimension Dc mainly varies as a function of h (for g = 10)
following the experimental model:

Dc(h) ≈ −0.18 log h + 2.96 ± 0.09 (3)

The correlation dimension Dc, however, is a quasi-constant function of g. Considering h = 10, the experimen-
tal model of Dc(g) is described by

Dc(g) ≈ −0.03 log(g) + 2.81 ± 0.09 (4)

The low impact of the parameter g can be explained because the correlation dimension is a parameter that
quantifies the spacing between fracture centers. Because g mainly attracts small fractures at the tip of larger
ones, it affects very marginally the distance between fracture centers. Does this finding hold in the case of
preferential fracture orientation? To answer that question, we repeated this study in the case of single set
DFNs. Preferential fracture orientation does not change the behavior of Dc(h) because we used an isotropic
shadow zone model. Then we focused on the Dc(g) and established the following experimental model:

Dc(g) ≈ −0.05 log(g) + 2.83 ± 0.08 (5)

The similarity between equations (4) and (5) suggests that the relation between the correlation dimension Dc

and the intensity factors g and h is marginally affected by the orientation distribution of the fracture set.

3.3. Sensitivity Study on the Fracture Seeding Chronology
Theoretically, an idealized simulation should generate fractures one by one to take into account the impact
of every newly simulated fracture in further simulation steps. In practice, simulating only one fracture per
sequence is time consuming. For example, in our implementation on an Intel(R) Core(TM) i7-2600 CPU at
3.4 GHz, building a DFN with 10,000 fractures takes only few seconds when done in one sequence; but it takes
approximately 10 min when simulating fractures 10 at a time. In our simulation method, the proportion of
fractures that are simulated per sequence p varies with the total number of sequences (s) following:

p(s) = 100
s

(6)
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Figure 10. Fractal dimension versus proportion of DFN simulated per sequence. Correlation dimension of 2.8 is
obtained when 10% or less of the fracture network is simulated per sequence. Then, in the context of our example, a
more robust result is obtained as soon as 0.4% of the fracture network is simulated per sequence.

This means that for high values of s, we need a strong increase of s to observe only a small decrease of p(s).
A high increase of s leads to a high increase of the computation time. The current section aims at testing the
sensitivity of the method concerning the chronological seeding of fractures.

For this analysis, we simulated 10,000 fractures with a number of sequences (s) that vary between 1 and 1000
(Figure 10). Simulations have been done using the parameters summarized in Table 3.

The results suggest that simulating 10% of fractures at each sequence is sufficient to converge to a constant
correlation dimension (Dc). Furthermore, the value of Dc stabilizes as soon as 0.4% of the DFN is simulated
at each sequence. Another result of the sensitivity analysis is that several DFNs may have the same correla-
tion dimension but different spatial organizations (Figure 11). In other words, the hierarchical organization of
small fractures that clustered around largest fracture tips may not be described by Dc. Indeed, the correlation
dimension only quantifies the clustering of fracture centers and does not quantify the position of fractures
according to their size. Figure 11 shows the organization of fracture traces obtained with various number of
sequences. An increase of the number of sequences seems to cluster small fractures at large fracture tips and
also seems to decrease the number of X-shaped contacts. This may have an impact on the DFNs connectivity
that we propose to study in section 4.

4. Impact of the Sequential Poisson Point Process on 3-D DFNs Connectivity

Connectivity is a key property of fracture networks because it is directly linked to physical behavior of frac-
tured rocks. Numerous studies have used percolation theory to characterize flow and transport in porous and
fractured media (see Berkowitz and Balberg [1993] and Berkowitz [2002] for reviews). In this section, we inves-
tigate the DFN percolation threshold and local connectivity model that emerge from the sequential Poisson
point process. We describe and quantify the impact of spatial correlations and more generally the impact of
the chronological seeding of fractures on percolation properties in the isotropic case.

Table 3. Input Parameters for Sequential DFN Simulations Used in
Sections 3.3 and 4

Fracture Impact Model W Extent UV Extent Intensity Factor

Shadow zone 𝛽s = 1 𝛼s = 1 h = 10

stress concentration zone 𝛽p = 0.5 𝛼p = 2 g = 10
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Figure 11. Sensitivity on the number of sequences on the sequential seeding process. (a–c) Simulated in 1000, 100,
and 10 sequences; it means that 0.1%, 1%, and 10%, respectively, of the fracture network have been simulated per
sequence. Whereas the correlation dimension is comparable (2.8), we note some differences in the global organization
(X-shapes, hierarchy). This impact is quantified in section 4.

We propose a statistical analysis over 1000 3-D DFNs that are simulated considering the following parameters.

1. The 30 × 30 × 30 cells Cartesian grid sets the scale of the study and provides a uniform prior fracture
density map.

2. Fracture strike and dip follow a uniform distribution.
3. Power law fracture length distribution is defined as follows: n(l) = l−a; l ∈ [1, 30].

Darcel [2003] shows that the connectivity at percolation is mainly driven by the largest fractures and not
by spatial correlations for fracture networks with a small power law exponent (a ≈ 1). A larger power law
exponent increases the proportion of small fractures in the network; then spatial correlations may have a
stronger impact on the percolation study. Therefore, we chose to study the impact of sequential seeding
process on the connectivity of DFN of power law exponent a = 3. The sequential seeding process uses the
parameters described in Table 3. We made the proportion of fractures simulated at each sequence (p(s),
section 3.3) varying in the following range: (1) p(s) = 100% (equivalent to the classical Poisson point process),
(2) p(s) = 10%, (3) p(s) = 1%, and (4) p(s) = 0.1%.

During the simulation process, the uniform fracture density was progressively increased until the percolation
state would be reached. The percolation state is characterized when a cluster of fractures gets through the
whole volume of rock. It means that each of the six faces of the volume has to be intersected by the percolating
cluster (Figure 12).

Figure 12. The 3-D DFNs realizations at percolation state for extreme investigated cases. (a) Geometry of percolation
DFN obtained simulating all fractures in the same sequence. (b) Geometry of percolation DFN obtained simulating 0.1%
of the fractures at each sequence. Percolating clusters are shown in red.
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Figure 13. Impact of sequential seeding on the percolation threshold. It describes the probability for DFNs to percolate
as a function of the percolation factor (pf ). This experiment shows that the percolation threshold decreases with the
proportion of fractures initiated at each sequence.

4.1. The Percolation Parameter
Many studies have been made to identify a parameter that presents an invariant threshold that characterizes
the percolation state of fracture networks. Robinson [1983, 1984] first linked the percolation parameters to the
fracture density in the case of unit length fracture randomly distributed and randomly oriented in 2-D space.
He found that the average number of intersection per fracture describes the percolation independent of the
fracture orientation distribution law. Balberg et al. [1984] investigated the estimation of the excluded volume
around every fracture in a network. The excluded volume is the average volume surrounding an object into
which the center of another object cannot lie without intersecting it. This work allows to define a very general
expression of a factor describing the percolation of 3-D fracture networks. Finally, Bour and Davy [1997, 1998]
and De Dreuzy et al. [2000] defined the percolation factor, pf , for planar fractures as

pf =

(
n∑

i=1

< l3
i >

)
∕V (7)

where n is the number of fractures in the fracture network,< l3
i > is the third moment of the length distribution

law, and V is the considered volume of rock.

We generated 1000 percolating DFNs for each of the four different sequential seeding processes previously
described. Figure 13 shows the probability for these DFNs to percolate against the percolation factor. We
observe that the percolation threshold decreases when we decrease the proportion of fractures simulated at
each seeding sequence (p(s), Figure 13). This corroborates the findings of Darcel [2003] that spatial correla-
tions impact the connectivity and the percolation threshold (for networks with a high power law exponent).
We observe here that the sequential seeding process creates spatial correlations that can be measured by the
correlation dimension Dc and allows DFNs to reach the percolation state with a smaller factor pf as compared
to uncorrelated DFNs. We also show that the sequential process may create DFNs with a hierarchical organiza-
tion (section 3.3) that cannot be discriminated by the correlation dimension (Dc = 2.8 for p(s) = 0.1, 1, or 10)
but still reduces the percolation threshold. This is probably due to the local organization of fractures induced
by the process.

4.2. Average Number of Intersections Per Fracture
This section investigates the local connectivity of DFNs simulated in section 4.1. The average number of inter-
sections per fracture normalized by the fracture intensity (P32: fracture area per unit volume in m2 m−3) has
been plotted in function of the fracture length (Figure 14).
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Figure 14. Impact of the proportion of fractures simulated per sequence (p(s)) on the average number of intersections
per fracture. Uncorrelated DFNs follow a simple power law model that only depends on the fracture length (black line
model). Spatial correlations between fractures are obtained by reducing the proportion of fractures simulated per
sequence and quantified by the correlation dimension (Dc). It impacts the connectivity model by (1) increasing the
number of intersections for small fractures and (2) reducing it for large ones. Reducing the proportion of fractures (p(s))
simulated at each sequence allows to better capture the behaviors of the transition scale (even if the correlation
dimension does not change).

Simulating all fractures in the same sequence produces fracture networks where the number of intersections
per fracture increases with their length. For such DFNs, where fractures are randomly and independently sim-
ulated, the local connectivity model follows a single power law model (black line, Figure 14). Decreasing the
number of fractures simulated at each sequence changes the global organization of fractures and modifies
the model describing the local connectivity. Also, the number of intersections between small objects tends
to increase, whereas it decreases for large ones (Figure 14). It seems to naturally reproduce the two fractur-
ing regimes described by Wu and Pollard [1995], Josnin et al. [2002], and Davy et al. [2010]. The early initiation
of fractures appears in a poorly fractured network. It leads to little interactions with other objects that create
large fractures with few connections (large fractures are simulated first). The progressive apparition of addi-
tional fractures intensifies the interactions between objects and increases the number of intersections per
object. This explains why small fractures, which appear when the fracture network is well developed, have
relatively more intersections.

Figure 14 shows how progressive the fracture apparition should be to observe a smooth transition from the
poorly to the well-developed fracturing regime. If the number of fractures simulated per sequence (p(s))
is too high, then a discontinuity appears in the local connectivity model (dotted lines, Figure 14). In such
cases, the local connectivity model of medium fractures follows the same model as the one observed for
uncorrelated fracture networks. The best way to capture the behavior of the transition scale and to mimic
the actual fracturing process would be to simulate the fractures one by one. However, simulating 0.1% of
fractures per sequence is much more efficient and gives a good idea of the continuous local connectivity
model.

5. Discussion and Conclusion

The presented method uses a stochastic, sequential, and nonstationary nucleation process to simulate hier-
archical and spatially correlated DFNs. It is not only conditioned by statistics that characterize the natural
fracture network geometry but also use rules inspired from mechanical concepts to progressively seed frac-
tures in a 3-D model. As compared to the “likely Universal Fracture Model” [Davy et al., 2010, 2013] that
randomly nucleates and propagates fractures until their length is statistically equal to the distance to the
nearest fracture, we individualize a shadow zone and a stress concentration zone in order to drive the
progressive fracture nucleation process. Large fractures, simulated first, organize the nucleation of later
fractures.
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We show that such a chronological fracture seeding produces a hierarchical organization of fractures that
leads to correlated networks. Reducing the proportion of fractures simulated at each sequence likely gets
closer to the natural fracturing process and intensifies the spatial correlations between fractures. We iden-
tify a threshold proportion of fractures simulated at each sequence from which the estimated correlation
dimension stops changing (section 3.3). This value is experimental and probably depends on parameter set-
tings selected in this study. The computed correlation dimension does not completely capture the spatial
features of the simulated networks. Further study needs to investigate a new measure of spatial correlations
that take into account the anisotropy in the positioning of fracture center. Indeed, the correlation dimension
(equation (2)) describes the organization of fracture centers and does not fully describe the hierarchical orga-
nization of objects of various size. Decreasing the proportion of fractures simulated at each sequence tends to
cluster small fractures at the tips of large ones. It visually decreases the number of X-shaped intersections that
may be inconsistent according to the relative chronology of fracture growth (Figure 11). Section 4 shows that
DFNs characterized by the same correlation dimension may have significant differences in their local connec-
tivity model due to their spatial organization. The best case would be to consider every fracture previously
simulated in the current fracture simulation. However, it would lead to impractically feasible computational
costs for large 3-D simulation domains.

Spacing and clustering of DFN are important aspects that impact the connectivity of the network. Masihi and
King [2007] proposed a calibration process based on the minimization of the elastic energy dissipated by frac-
tures. They suggest that such optimized networks present a positive correlation between the length and the
spacing of objects, and they show that the global organization of fractures has an impact on the percola-
tion threshold. Our sequential parent-daughter Poisson point process tends to impose a similar organization
by defining shadow zone extents proportionally to fracture size. We have shown that our fracture simulation
strategy significantly impacts DFN properties at percolation (section 4). The sequential seeding produces hier-
archical DFNs that favor fracture connections and produce clusters. It allows to reach the percolation with a
reduced percolation threshold compared to classical Poisson simulations. The main limitation of the method
is that we simulate fractures in their final state and we neglect mechanical interactions and fracture nucle-
ation during the growth. This simplification reduces the complex geometry of fractures that result from the
growth and coalescence processes into planar objects. These can lead to an underestimation of the network
connectivity. Further studies should take into account an efficient model to reproduce the fracture growth and
initiation during the growth by considering ramified and curved objects [Gringarten, 1998; Srivastava et al.,
2005; Bonneau et al., 2013]. Incorporating curved fractures in the simulation process could have an additional
effect on connectivity properties. Generating realistic geometry for nonplanar fracture intersections in 3-D is
an issue hardly discussed in the literature. But, because the proposed method impacts the relative position of
fractures according to mechanical considerations, it may facilitate the representation of such 3-D branching
contacts.

The hierarchy and the spatial correlation of fractures in DFNs are set by the mechanical model associated
to each fracture. We propose parameters that describe a symmetrical shape that roughly approximates the
first-order stress anomalies around fractures. Such a parametrization needs to be simple in order to keep the
simulation computationally efficient. It would be interesting to investigate other shapes in order to reflect
the asymmetry of stress concentration near sliding fracture tips [Kim et al., 2004] or to use explicit mechanical
models [Paluszny and Zimmerman, 2013]. In the same spirit, new rules may be implemented in order to impose
spatial correlation on neighboring fracture orientations. This could be suitable to produce “wing-crack” struc-
tures often observed in nature. More generally, a comparison between simulated DFNs and independent
data (field, analogs) would be a valuable work to validate the simulation method. In this study, we modified
the parameters that set the stress concentration zone (or respectively the shadow zone) extent and inten-
sity to quantify their impact on the fractal dimension of DFN models (section 3). However, statistics on the
fractal dimension that emerges from hundred realizations show a relatively large standard deviation. As a con-
sequence, it seems difficult to constrain precisely the expected correlation dimension according to natural
network characterization. The shadow zone intensity factor (h) is the parameter that most impacts the value
of the emerging fractal dimension. An experimental model that links the value of the fractal dimension to the
value of h has been identified (section 3.2). This model is an interesting tool to set practically the fractal dimen-
sion for output DFNs. Further work has to be done in order to better understand this emerging behavior and
relate it to the physical fracturing process.
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Appendix A: Sequential Seeding Process Algorithm
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