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A B S T R A C T

Underground fluid flow in hydrocarbon reservoirs (or aquifers) is difficult to predict accurately due to geological
and petrophysical uncertainties. To quantify that uncertainty, several spatial statistical methods are often used to
generate an ensemble of subsurface models representing and sampling these uncertainties. However, to predict
the uncertainties in terms of flow responses, one needs to run a forward flow simulator (often multiphase flow in
transient state) on every model of this ensemble and this generally entails intractable computational costs.
Approximate solutions (flow proxies) can help addressing this challenge but introduce physical simplifications
whose impact on the uncertainty quantification is difficult to characterize. This paper proposes a workflow to
assess the dynamic reservoir behavior uncertainties from an input ensemble of realizations sampling geological
and geophysical uncertainties. Analytical reservoir production curves are estimated from proxy distances
computed between all ensemble members and from a few accurate flow responses computed on a subset of the
ensemble. A randomization process accounting for proxy quality and for model selection is used to assess
confidence intervals about reservoir production quantile curves. The process can use both static and dynamic
proxies and also permits to compare their efficiency. A case study on a real turbiditic reservoir shows the
applicability of the method, and highlights the value of even a simple proxy to increase the confidence about
future reservoir production.

1. Introduction

Dynamic reservoir simulations are used to help decision making in
the oil industry. Advances in computational methods make complex
flow simulation feasible nowadays on detailed deterministic reservoir
models honoring subsurface data (e.g., Obi et al., 2014; Wang et al.,
2015). However, there is often a practical gap between the number of
flow simulations that engineers would need to run to solve a field
management problem and the actual number of simulations that can be
managed with available computational resources. Indeed, a large
number of simulations are needed both to test multiple production
scenarios and to account for subsurface uncertainty (see for instance
Caers, 2011; Corre et al., 2000; Fetel and Caumon, 2008; Gross, 2012;
Manceau et al., 2002; Maschio et al., 2010; Schiozer et al., 2004;
Subbey et al., 2004, Zabalza-Mezghani et al., 2004). In this paper, we
focus on the specific problem of capturing efficiently the uncertainties
on the temporal evolution of field production under a fixed reservoir

production scenario. The knowledge of these uncertainties may affect
development decisions of green fields (reservoirs not yet in production
where no historical data are available), and also provides important
information for narrowing the search space during production history
matching of brown fields (mature fields with several years of produc-
tion history). As geological and geophysical interpretations may take
many forms, we choose to incorporate this expert interpretive knowl-
edge using a large ensemble of detailed static 3-D reservoir models.

Accurate flow simulation on each of these models being computa-
tionally prohibitive, one may need to select only a few models from the
initial ensemble to make flow forecasts. However, statistics derived
only from a few samples are not robust. This calls for carefully selecting
a set of representative models from the full ensemble using some prior
ranking of models (Ballin et al., 1992; Deutsch, 1998; Majdi Yazdi and
Jensen, 2014; Rahim et al., 2015) and using specific methodologies
such as bootstrap to assess confidence intervals around reservoir re-
sponses (Scheidt and Caers, 2010). To-date, several approximate
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solutions (proxies) have been proposed to help quickly select re-
presentative models. Upscaling computes equivalent petrophysical
properties at a coarser scale than the initial detailed model (Durlofsky,
2005). Alternatively, simplified physics such as streamline simulation
(Thiele et al., 1996) may be used on the fine-scale reservoir models. The
computational cost of upscaling and streamline simulation and the re-
lative complexity of these methods have motivated even simpler ap-
proximations of the dynamic reservoir response based on connectivity
(Alabert and Modot, 1992; Ballin et al., 1992; Deutsch, 1998; Renard
and Allard, 2013) or Fast Marching methods (Hovadik and Larue, 2011;
Xie et al., 2015). To investigate how far it is possible to go with the
simplification (and therefore with the reduction of the computing cost)
we can even consider using an extremely simple proxy such as the Stock
Tank Original Oil In Place (STOOIP). In this case, we will obtain only a
scalar value.

In all these cases, the surrogate or proxy responses cannot or should
not be used directly to characterize production and the corresponding
uncertainties. Instead, it should somehow be calibrated against accurate
flow simulations on a few models. Indeed, inaccuracies in the proxy
results may lead to biased reservoir forecasts and a possible under-
estimation of the associated uncertainties (Doherty and Christensen,
2011; Josset and Lunati, 2013; Josset et al., 2015a,b). In the extreme
case of a scalar proxy, no approximate recovery curves are available.

For this reason, combining proxy evaluation on all models and ac-
curate flow simulation on a few models seems to provide a good
compromise to obtain representative uncertainty assessment while
harnessing computational costs (Doherty and Christensen, 2011;
Effendiev et al., 2009; Ginsbourger et al., 2013; Josset and Lunati,
2013; Josset et al., 2015a,b; Maschio and Schiozer, 2014; Scheidt and
Caers, 2009; Scheidt et al., 2011). Yet, the choice of a particular proxy
can be consequential in practical case studies, and it is difficult to assess
which proxy provides the best compromise between the performance
and the quality of uncertainty assessment, which may vary from one
case study to another.

In this work, we build on a class of methods which exploit distances
between reservoir models, initially published by Suzuki and Caers
(2008). These distances can be defined from many possible proxies,
including simple scalar evaluations such as STOOIP, and do not ex-
plicitly call for a particular type of parameterization of the static
models. For instance, these approaches can be applied to reservoir
models of different geometries (Suzuki et al., 2008). The core idea is to
define a distance which is correlated to the flow response, then to use
this distance to explore the model space efficiently. Based on these
concepts, Scheidt and Caers (2009) proposed a general model selection
technique which forms the basis of the present paper and of other re-
cent works dealing with reservoir uncertainty assessment (Josset and
Lunati, 2013; Josset et al., 2015a; Scheidt and Caers, 2010; Scheidt
et al., 2018) and history matching (Ginsbourger et al., 2013; Josset
et al., 2015b; Scheidt et al., 2011). Essentially, this class of approaches
computes distances from proxies between all possible models, then uses
Multi-Dimensional Scaling (MDS) to map models in a feature space
where clustering and model selection is performed. Accurate flow si-
mulation is then performed on this small subset to assess reservoir
performance uncertainty. To account for limited sample size, Scheidt
and Caers (2010) propose a bootstrap method to assess the un-
certainties about reservoir responses derived from these small set of
samples. Josset and Lunati (2013) extend this methodology to estimate
true responses for all the models from multi-scale flow simulation on all
the models in order to obtain more robust uncertainty assessments and
confidence intervals about tracer breakthrough curves in aquifers. Their
method is partly similar to ours, but only considers flow simulation
proxies which account for time and space explicitly, as it relies on the
comparison of approximate and exact breakthrough curves at each si-
mulation time step. Our method, in contrast, can use the simpler and
faster proxies discussed above such as connectivity-based proxies and
static proxies such as STOOIP.

Our main contribution is to propose a methodology applicable to all
classes of reservoir proxies. For this, we present a technique able to
generate surrogate analytical production curves for all models of the
initial ensemble based on the full set of proxy distances and a few ac-
curate flow simulations on a few reference models. After defining the
problem in more formal terms, this paper presents an overview of the
method. We then introduce the real reservoir data set used to illustrate
the method before explaining in more details the three different steps of
the methodology: first, the reconstruction of full physics distances be-
tween models according to proxy distances; then the determination of
the mathematical curve which best fits the oil production profiles; and
last, the determination of the missing dynamic profiles by non-linear
optimization. Finally, we present the results and discuss the ability to
compute more accurate quantiles on production forecasting for un-
certainty evaluation.

2. Problem definition

We consider a large set S of N reservoir models Mi covering the
range of possible reservoir geometries and heterogeneities

S M= = …{ } .i i N1,2, , (1)

Each of these models can be generated using alternative inter-
pretations scenarios and Monte-Carlo sampling. This ensemble re-
presents the known structural and parameter uncertainty about the
reservoir. Reservoir production forecasts reflecting geological un-
certainties should ideally consider all these possible models. However,
to keep the computational cost realistic, multiphase flow simulation can
only be performed on a subset S1 of m models deemed representative of
the ensemble:
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Finding these m models is a problem per se, which calls for a priori
ranking of all the models of S based on their likely dynamic behavior.
In a second step, the analysis of the production scenarios is usually
based on production curve quantiles. The few selected models of S1 are
used to simulate the dynamic response and some specific quantiles
(Q10, Q50 and Q90) are computed from the production curves at each
time step (e.g., Subbey et al. (2004)).

The first limitation with this approach is that only the information
from S1 is taken into account and all the remaining models (from S2)
are discarded. The second limitation is that the quantiles are computed
from very few data and therefore they are very sensitive to the model
selection.

The goal of our methodology is to address these two challenges by:
(1) using the results of flow simulation proxies on the models of S2; (2)
providing confidence intervals around the quantiles of the production
curves, which reflect both the limited number of model realizations and
the quality of the proxy.

3. Overview of the proposed methodology

Fig. 1 illustrates the overall methodology proposed in this paper.
The general aim is to minimize the loss of information and the sensi-
tivity of the quantile estimation. This is attained by estimating surro-
gate oil recovery profiles for all the models belonging to S2 in order to
account for the entire set of models. This allows to estimate the un-
certainties more accurately while keeping the computational cost re-
latively low.

As illustrated on the top left of Fig. 1, we use a proxy for every
model belonging to S following the same philosophy as Josset and
Lunati (2013). Each physically-based simulation proxy provides an
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approximate production curve t( )i
P , where i N[1, ] refers to a given

reservoir model and t is a pseudo-time step. We use these data to
compute a distance between each pair of models. The notion of distance
between geomodels is presented by Suzuki and Caers (2008) to quantify
the dissimilarity between the models. Here, we compute the squared
distance between proxy curves as

=
=

d t t( ) ( ) ,i j
P

t

t

i
P

j
P

,
0

2f

(3)

where t( )i
P represents the proxy curve of the model i at pseudo-time

step t , t( )j
P the proxy curve of the model Mj at pseudo-time step t and

tf denotes the last time step of the simulation. Alternatively, proxies
may consist of simple scalar measures i

P, such as oil in place or pore
volumes connected to producing wells. In these cases, the distance
becomes:

=d ,i j
P

i
P

j
P

, (4)

The proxy distances are used to select m representative models (the
S1 ensemble). For each of the selected models, the complete and ac-
curate flow simulator is used to compute the dynamic flow response
(red rectangle in Fig. 1), following the methodology of Scheidt and
Caers (2009). The distances between the accurate flow responses are
computed as well.

Then the relations between the two sets of results are analyzed
statistically. Using a simple analytical expression for the production
profile (surrogate profile), the statistical analysis between the proxy
and full physics response distances, we estimate the surrogate profiles
for all the models belonging to S2 (distance reconstruction and profile
reconstruction in Fig. 1). This allows to generalize the workflow of
Josset and Lunati (2013) in the case of diverse types of proxies.

Finally, we estimate uncertainties on oil recovery by computing the
production quantiles Q10, Q50 and Q90 using both the accurate

Fig. 1. Proposed workflow. A few representative models
are selected from proxy simulation (Section 5) and ac-
curate simulations are performed. Using the correlation
between proxy distances and accurate distances, all
missing dynamic distances are determined (Section 6),
then an analytic profile (Section 7) is fitted to determine
the missing dynamic profiles (Section 8). Finally, oil re-
covery quantiles are computed (Section 9).

Fig. 2. Our case study is made of several reali-
zations (a–c: different geometry and facies dis-
tribution) in 3D view. Each realization is made
of several petrophysical properties simulated
successively (d: facies, e: porosity, f: perme-
ability). Injector (blue) and producer (green)
wells trajectory are also visible. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the Web
version of this article.)
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responses obtained for the models belonging to S1 and the surrogate
profiles for the models belonging to S2 (lower left corner in Fig. 1). All
the steps are described in detail in the following sections.

4. Test case

To illustrate the proposed methodology and test both the workflow
and its individual steps a real reservoir case study is used. The reservoir
consists of turbiditic channel deposits and is bounded laterally by pe-
lagic shales of negligible permeability. The reservoir layers have been
deformed and affected by several faults (Fig. 2). The field was devel-
oped with four producing wells. Three water injection wells and an
aquifer maintain the pressure during reservoir production. For con-
fidentiality reasons, we cannot disclose reservoir location, dimensions
and formation names.

In this case, the ensemble S contains 163 corner-point reservoir
models of 793 000 cells × ×(130 100 61) describing the static reservoir
uncertainties. This number of models corresponds to the subset of the
initial 200 generated models for which the full physics flow simulations
converged. We preferred to discard the models for which flow simula-
tion did not converge in order to have a set of comparable models.
Solving the convergence issues would require changing some numerical
parameters and it could lead to differences between the model re-
sponses that would not be related to the geology. The grid geometry
was generated from seismic interpretation and well tops. To reflect
structural uncertainties, the reference structural interpretation was
perturbed within bounds that reflect seismic time-to-depth conversion
uncertainties and uncertainties in picking the reservoir layers on the
migrated seismic image (Abrahamsen, 1993). As a result, all grids in the
set of realizations have distinct geometries. For the petrophysical
modeling, we first simulated lithologies using a multiple point simu-
lation technique, then we used sequential Gaussian simulation (SGS)
within each facies for net-to-gross, effective porosity and co-located
simulation for the permeability field. In the SGS, we used a proportion
cube from a seismic attribute. For the simulations, we honored the
target statistics inferred from the wells and spatial variability models
(variograms) obtained from available data (wells) and analogs. Finally,
the oil-water contact was sampled within a range of 20 m and corre-
sponding initial water saturations were simulated using again sequen-
tial Gaussian simulation (Fig. 2). The aim is to forecast field production
for 20 years.

Proxy simulation was performed on all models. In another study
(Bardy et al., 2014), we investigated the quality of several proxies on
the same ensemble of models. In this paper, we do not use an actual
flow proxy, but simply consider the Stock Tank Original Oil In Place
(STOOIP) as an indicator of reservoir production performance. STOOIP
characterizes every model by an integer value using the following
equation:

=
=

STOOIP GRV i NTG i i S
Bo

( ) ( ) ( ) (1 ) ,
i

n
water

1 (5)

where: n is the number of cells in the model, GRV (Gross Rock Volume)
is the effective part of rock in the cell, NTG (Net To Gross) corresponds
to the proportion of reservoir rock in the cell, Swater is the water sa-
turation in the cell and Bo the oil volume factor (volume ratio between
reservoir and surface conditions). Although STOOIP is not a direct re-
servoir production proxy, it can be taken as such by our distance-based
method. As expected theoretically and shown by Bardy et al. (2014),
this proxy is less accurate than upscaling to provide a good approx-
imation of model responses, but we chose it because it is very simple
and quick to compute. As a result, it is often used in the oil industry to
rank static reservoir models, even though the relationship between
static and dynamic reservoir attributes can be complex. This choice was
also made to evaluate to what extent our method can estimate pro-
duction curves from a scalar static proxy. As this proxy only provides a

single value per model, the distance was computed using Eq. (4).
The flow simulation forecast over 20 years were performed on all

the stochastic models using the finite volume based software ECLIPSE®

from Schlumberger®, configured with three fluid phases.
Note that another test case for the methodology is presented in

Bardy (2015).

5. Model selection

The selection of the subset S1 must be as representative of S as
possible to keep the diversity into the responses and to allow an ac-
curate uncertainty assessment on production. To achieve that, we use
the Distance Kernel Method (DKM) proposed and described in detail by
Scheidt and Caers (2009, 2009) as well as Josset and Lunati (2013).
Here we provide only a brief summary of this technique. The interested
reader is referred to the original papers for more details. The distance
matrix between each pair of model can be computed by Eq. (3) or Eq.
(4) depending on the retained proxy. Then the Multi-Dimensional
Scaling algorithm (MDS) takes the proxy distance matrix as input and
allows to plot the models in an abstract space of low dimensionality
relatively to the number N of models. In this space, a set of re-
presentative models can finally be selected with a K-medoid algorithm
(which is a clustering algorithm applied after a kernel transformation,
see Kaufman and Rousseeuw, 1987). This clustering algorithm finds m
models (medoids) which partition the model space so that the sum of
distances between each model and the closest medoid is minimal. The
main advantage of this method as compared to a classical K- means is
that it is returning the medoids (models closest to the center of each
cluster) which can be used directly, instead of the centers of each
cluster which do not correspond to an existing model. The choice of m is
important because it should neither be too high (which will be too time
consuming to simulate full physics) nor too small (which will not be
sufficiently representative). The selected models belonging to S1 on
which flow simulations will be performed correspond to these medoids.

In our case study, we chose to use ten models ( =m 10) as it is
sufficient to correctly calibrate the method while minimizing the
computational burden. As k-means, the k-medoid method solves a
global optimization problem iteratively; as a result, different sets of
models may be obtained depending on the starting points. Although
this can be a problem for some unsupervised clustering applications,
this feature is actually interesting in our case, as it allows to introduce
some randomness in the model selection process. Some examples shown
in Fig. 3 illustrate, in the data space, the distribution of the selected
models and the stochasticity of the technique. We will further exploit
this stochasticity in Sect. 9 to analyze the stability of the confidence
intervals around production curves.

6. Missing distance reconstruction

In the previous step, the distances between the proxy responses of
the models was used to select the models belonging to the subset S1.
The detailed and accurate flow simulation is performed only for the
models belonging to S1, and results in an oil recovery profile t( )j with
t t[0; ]f and j m[0, ]. In most approaches using model selection,
one would estimate the overall uncertainty on oil recovery by com-
puting directly the quantiles from this limited set of profiles.

Here, we propose to go a step further and use all the information
that was obtained by computing the proxies for all the models to im-
prove the overall uncertainty quantification. The idea is that the dis-
tances between the proxy responses can be correlated with the dis-
tances between the real flow responses. Using that correlation and using
in addition a simple expression for the shape of the profiles, it may be
possible to reconstruct the variability of the unknown profiles reason-
ably well without solving the accurate flow problem and then use them
to improve the uncertainty estimate. To do so, the first step consists in
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estimating the unknown distances between the true profiles from the
distances between the proxy responses.

More precisely, from the accurate data, it is possible to compute the
“true” squared distance (di j, ) between model responses:

=
=

d t t( ( ) ( )) .i j
t

t

i j,
0

2
f

(6)

For each pair i j( , ) of models belonging to S1, the distances between
the proxy curves di j

P
, and the distances between the full physics curves

di j, are available.
Fig. 4a presents the cross-plot between full flow simulation dis-

tances and proxy distances obtained in this case; note that m different
selected models provide m m( ( 1))

2
distinct distances.

A linear regression between the two types of distances could be
estimated but there is no theoretical reason to assume a linear re-
lationship. A non-linear correlation is confirmed by our experiments
(Fig. 4c), and therefore a piecewise linear correlation model on K in-
tervals is used instead. We choose these K domains in order to contain
approximately the same number of points (N K/ or + N K1 / , Fig. 4a).
We also take care of having enough points in each domain to be able to
compute reasonable statistics. As we have 10 simulated models, this
means = 4510 (10 1)

2 distinct differences which give 45 points, we
choose 5 domains of 9 points each. For each domain, we use a simple
linear model simulating the full flow simulation distance using a linear
function of the proxy distance and a random error term ki j, :

= + +d a d b with k K[1; ].i j
P

k i j
P

k ki j,
|

, , (7)

The coefficients ak and bk of this regression are given by ordinary
least squares.

Using equation (7), we simulate all the missing values of di j
P

,
| for all

the pair of models belonging to S . The random noise ki j, is randomly
sampled from a normal distribution whose parameters are given by the
linear regression model (centered Gaussian distribution) and corrected
to ensure that only positive distances are obtained. Additionally, we
force the coefficient b1 to be 0 so that the regression passes through the
origin in the first domain (a null distance corresponds to identical

model response according to both proxy and full physics simulations).
This piecewise regression allows for increasing variance with proxy
distance, but may have discontinuities between domains and is not
strictly consistent with regression theory.

In this work, we did not investigate more advanced regression
models. Indeed, when applied to our test case (Fig. 4b), this method
yields a set of acceptable possible full flow simulation distances which
are consistent with the reference plot generated from the reference flow
solution (Fig. 4c, Bardy et al., 2014) and which is sufficient for rea-
sonable uncertainty estimates as shown below.

Note also that a perfect proxy, showing no error at all, would re-
produce perfectly the true distances in the simulation space and would
lead to a perfect straight diagonal line in Fig. 4a. However, a perfect
proxy is very likely to be almost as computationally expensive as the
accurate forward flow simulation and will have therefore no compu-
tational interest. Instead, a fast proxy will for sure display some dis-
crepancies between the two distances as illustrated in Fig. 4a. The aim
of the proposed method is therefore to model properly those errors for
any kind of proxy and benefit from their numerical efficiency. In the
next sections, we explain how to produce confidence intervals around
the forecasted production curves; in principle, the width of these con-
fidence intervals should directly reflect the quality of the proxy.

7. Parametric model of oil production

Quantifying uncertainties about reservoir production calls for esti-
mating oil production profiles for all the models belonging to S2 (for
which full physics simulations are unavailable). The profiles of total oil
produced at field scale (FOPT) represent the cumulative oil production
of the field at each reported time-step. In a standard workflow, these
profiles are obtained from flow simulations, but proxies do not ne-
cessarily generate this type of curves. For example, when using STOOIP
as a proxy, we can compute the distances between the models but not
the FOPT curves.

This is why, in this work, we suggest estimating the FOPT profiles
from the set of distances (Eqs. (6) and (7)), the proxy simulations (Eq.

Fig. 3. Examples of models selection. The red
curves represent the 10 selected models while
the green curves represent the other models. The
vertical axis represents the cumulative oil pro-
duction or Field Oil Production Total (FOPT).
(For interpretation of the references to colour in
this figure legend, the reader is referred to the
Web version of this article.)

Fig. 4. (a) Cross plot of full flow simulation distances vs. proxy distances for S1. Vertical lines represent domain borders. Red lines represent domain regression
surrounded by the quantiles Q10 and Q90 of the residuals. (b) Cross plot of the reconstructed full flow simulation distances for S2 (obtained by random draw as
explained in the text) vs. proxy distances. (c) True cross plot of full flow simulation distance vs. proxy distance, used as benchmark. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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(3)) and the regression model (Eq. (7)) using a parametric model (Eq.
(8)). The aim of the current section is to present the parametric model
that we propose to use. In section 8, we will explain how the parameters
of these curves are determined from the value of the distances.

A parametric model of the FOPT curve should respect three criteria
imposed by the physics of oil recovery:

• It is a cumulative profile. The mathematical function must be
monotonically increasing – with a positive or null derivative.

• The first part of the profile corresponds to the maximum production
rate in which liquid rates are constrained by the production in-
stallation (e.g., pipe diameter) so the function must be linear at the
beginning and cross the origin.

• The reservoir is considered at the beginning of its production, with
no historical data and a constant number of production wells; after a
while (time td), production declines so the function must have a
strictly negative second derivative.

Rather than choosing between an exponential or hyperbolic analy-
tical production decline model (Fetkovich et al., 1996), we use a pie-
cewise parametric function (Fig. 5a). It consists first in a linear part
from the origin to a first control point =P t( , )d d d corresponding to the
beginning of the production decline, followed by a Cubic Hermite
Spline from Pd to a second final control point =P t( , )f f f .

=
<
>

t
t if t t before production decline

t if t t during production decline
( )

( )
˜ ( ) ( )

,A d

d (8)

where: = = + + +

=

P S P St h h h h for˜ ( ) ( ) ( ) ( ) ( ) ( )

,
d d f f

t t
t t

00 10 01 11

d
f d

= +h ( ) 2 3 100
3 2 , =h ( ) 210

3 2 , = +h ( ) 2 301
3 2,

=h ( )11
3 2,where h h h and h, ,00 10 01 11 are the Hermite functions.

Further symbols are defined below.
As shown in Fig. 5a, the slope in Eq. (8) corresponds to the peak

production rate and can be identified using the linear part on the m
simulated models during the early time steps. The final time td corre-
sponds to the duration of production so it is the same for all models.
Therefore, five unknown parameters remain in Eq. (8) to fully define
the analytical production profile t( )A :

- td - the time after which production starts declining. The cumulated
production at this time is given by = td d .

- f - the total production at the final simulation time ( =t tf ).
- Sd - the norm of the tangent vector Sd at the start of production

decline ( =t td), We assume a gradual production decline so the di-
rection of the tangent vector Sd is the same as in the linear part, i.e.,

=S
S
S

cos( )
sin( )d

d

d
. In the Hermite polynomial, this norm controls

how fast the production rate decreases after td.

- and Sf - respectively the slope and the norm of the tangent vector

Sf at the end of simulation ( =t tf ), i.e.: =S
S
S

cos( )
sin( )f

f

f
. The

slope corresponds to the production rate at the final simulation
time; and the norm controls how quickly this rate decreased in the
late phases of production.

To test the relevance of this analytical production model, we con-
sidered the set of FOPT curves obtained by flow simulation on the

=m 10 reservoir models ofS1, then we used least-squares minimization
to fit the parameters of the analytical model (Eq. (8)). Results (Fig. 5b)
suggest that the proposed function is able to adequately represent FOPT
under our simulation settings (continuous field production without
interruption). This step will also provide an ensemble of valid sets of
parameters that we will use in the next part of the workflow.

8. Reconstruction of profiles using the proxy distance

Let us consider a reservoir model Mi belonging to S2. The aim of
this section is to reconstruct a possible FOPT curve for this reservoir
model without running the flow simulation. We propose to do this by
identifying the five parameters of the analytical function given in Eq (8)
and described in the previous section. For this, we introduce a new
squared distance di j

A
, between the analytical production profile t( )i

A

for model Mi and the known profile t( )j of each of the m models Mj of
S1:

=
=

d t t( ( ) ( ))i j
A

t

t

i
A

j,
0

2
f

(9)

Ideally, the analytical profiles t( )i
A should be such that their dis-

tance di j
A
, to the known models Mj of S1 be equal to the distance di j

P
,

|

simulated from the piecewise linear regression (Eq. (7)). Note that we
assume that di j

P
,

| is a reasonable approximation of the unknown dis-
tance between the true profiles. Therefore, we propose to find the five
unknown parameters of each profile t( )i

A (Eqs. (3) and (4)) by
minimizing the following objective function:

=
=

F d d( ) ,i
j

m

i j
A

i j
P

1
, ,

| 2

(10)

This minimization is a non-linear problem; it can be solved using the
interior point method (Nocedal and Wright, 2006). In practice, to help
convergence, the curves are normalized so that the highest known
profile t( )i f is equal to 1.

Furthermore, to ensure an acceptable result, we prescribe bounds
one some parameters and adde some non-linear constraints. To force
the production decline to start before the end of the simulation period,
we constrain td to be in the interval ;0 1 . To reflect that production
rate is lower at the end of the simulation than during peak reservoir
performance, we constrain to be within [0, ]. We also assume that

Fig. 5. a) Graphical view of the analytical model and
parameters of analytical oil recovery profiles. b) Result of
least-squares fit of the analytical model (red curves) to
production profiles obtained by flow simulation (blue
curves). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web ver-
sion of this article.)
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the best model in terms of final production does not produce more than
two times the production of the best simulated models: [0; 2]f . Last,
Sd and Sf are bound within the interval t[0; 5 ]f to avoid sharp var-
iations of the production curve between times td and tf . In addition, we
set a constraint to respect the physics of the simulation by forcing the
second derivative of the mathematical model (Eq. (8)) to be negative
( t t( )/ 0i

A2 2 ).
In our study, we first applied this method to the set of ten reservoir

models of S1, for which we know both the FOPT curve obtained by
simulation and proxy results. For each model, we minimized Eq. (10) to
estimate the analytical FOPT curve from the distances to the nine other
models ( =m 9). Fig. 6a shows that the ranking of the estimated ana-
lytical curves is the same as the reference ranking for most time steps
(especially for long simulation times). However, some rank inversions
are visible for intermediate time steps. Also, the linear part of the ob-
tained production curves is often too short as compared to the true
profiles. This could be due to the relatively small number of samples, or
to the existence of local minima in the non-linear optimization. To re-
duce these errors we propose an optional kriging-based correction
method described in Appendix.

We then ran the non-linear minimization of Eq. (10) for all the
models of S2 based on the distance to all ten models of set S1 ( =m 10).
To speed up this optimization, we selected as starting point of the
minimization the parameters of the known curve for which the objec-
tive function value was lowest. Three individual comparisons between
the estimated analytical profiles and the true profiles from the reference
simulations are presented in Fig. 6b–d. In these cases, also, the analy-
tical profiles are correlated to the reference ones, but display some
variations. We think these deviations occur partly because of errors in
the proxy-based distances and partly because distances are unable to
uniquely characterize the shape of the production curves. Further re-
search is needed to characterize these sources of error and to

characterize the numerical properties of the minimization of Eq (10).

9. Production curve quantiles and confidence intervals

The above procedures produce a set of m true production profiles
(from flow simulation on models belonging to S1) and n m estimated
analytical profiles t( )i

A (from the minimization of Eq. (10) on all
models ofS2). The corresponding curves are shown on Fig. 7a. For each
time step, we create a discrete probability distribution function from
these N profiles. Final surrogate quantile curves are obtained by linking
the quantiles of these distributions across all the time steps.

Fig. 7b shows the results of quantile curves estimation for our case
study. The curves estimated with our methodology are closer to the
reference than the production profiles of the models in S1. This con-
firms experimentally that proxies integrated with the proposed method
reduce uncertainty quantification errors as compared to uncertainties
estimated only from a few representative models. However, the errors
discussed in Section 8 are still visible when comparing the computed
quantiles and the reference quantiles obtained from flow simulation on
all models. In particular, the Q10 and Q50 curves underestimate the
time when production starts declining, yielding more conservative
production scenarios.

To remove these systematic errors, we applied the correction de-
scribed in Appendix. As shown on Fig. 7c, this correction introduces
some non-admissible behaviors in individual curves. For instance, some
cumulative production curves locally have a negative slope. However,
these local inconsistencies are filtered by the quantile estimation pro-
cess and the final quantile curve estimates (Fig. 7d) are closer to the
reference curves.

In all cases, quantile curve estimations are prone to several sources
of uncertainty. First, there is no guarantee about the representativeness
of the subset of models S1 selected for full flow simulation. This could

Fig. 6. (a) Minimization of the analytical model parameters for the models
belonging to S1, dashed curves correspond to the reference profiles obtained
with a full physics flow simulator and the purple ones are obtained after
minimization. (b–d) Examples of minimization procedure results. Red dashed
curves correspond to the real response profile of models belonging to S1, green
curves to the analytical curve of a model belonging to S2 and blue curves to
corresponding real profile (computed with full physics flow simulator and not
known in operational context). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Final analytical production curves and corresponding quantiles (a)
Analytical curves obtained after minimization applied to each model of S2 (full
green lines) and accurate curves obtained by flow simulation on S1 models
(dashed red lines). (b) Quantiles (Q10 in blue, Q50 in black and Q90 in red)
computed with all models (S ) (reference, dashed lines); quantiles computed
only with models belonging to S1 (doted lines); quantiles computed with our
methodology (S S+1 2) (full lines). (c) Minimized profiles after correction (see
Appendix). (d) Quantiles updated with corrected profiles for our methodology
(full lines). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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ideally be addressed by increasing the number m of models in S1 until
the output statistics converge. Because this can be computationally
infeasible, another option is to repeat the k-medoid clustering process
(Section 5) starting from different initial models. Indeed, the k-medoid
algorithm is sensible to the choice initial models, as mentioned by
Josset and Lunati (2013). This option is computationally expensive but
can provide a practical way to assess confidence intervals around the
quantile curves for a fixed number of models in S1.

A second source of uncertainty relates to the nature of the chosen
proxy which, as the name suggests, only approximates the actual flow
response. Indeed, more accurate proxies should in principle lead to
better confidence in the quantile curve estimates. In our method, this
proxy error is sampled during the missing distance reconstruction
(Section 6). Resampling alternative distances from the piecewise re-
gression model provides an efficient way to address this source of un-
certainty without need for additional flow simulations.

In this study, we first applied our methodology 200 times. Due to
the stochasticity of the k-medoid algorithm used in the DKM (Section
5), we were able to generate 200 different sets of quantile profiles (Q10,
Q50 and Q90) and then computed the confidence interval around them
with ten representative models (Fig. 8a). The confidence intervals ob-
tained with our method do not always include the actual quantile
curves generated from the reference simulations due to proxy error or
workflow limitations. We suspect that the correction step described in
the appendix could explain why these confidence intervals are too low.
Indeed, this correction may artificially lower the profiles. Therefore, we
chose to increase the number of representative models to twenty and
ran the randomized workflow 200 times to obtain new confidence in-
tervals (Fig. 8b). The results in this case are better in the sense that
confidence intervals are slightly narrower and include the reference
quantile curves. In contrast, we applied 200 random selections of re-
presentative models, and aggregated the true production curves to
compute the associated confidence intervals (Fig. 8c). When our
methodology is used, the confidence intervals are narrower due to the
integration of proxy knowledge.

10. Conclusions

Estimating the uncertainties on the flow response of a reservoir by
performing full physics flow simulation on a large ensemble of models
implies often prohibitive simulation time. To overcome this problem,
some approaches consider an approximation of the dynamic simulation

response which is obtained faster by simplification of the physics of the
simulator. The use of these proxies leads to a delicate issue of balancing
acceleration with accuracy of the response. Another problem is that
proxies are very often case-dependent; choosing the proxy which is best
suited to a given case study can be a long procedure (Bardy et al.,
2014). Other approaches consider selecting only a few models from the
initial set and run the accurate flow simulation only on this small
subset. Our approach aims at integrating the dynamic behavior of the
whole set of models to capture the uncertainties, as also proposed by
Josset and Lunati (2013). The method proposed in this paper allows for
a larger class of proxies to be considered, but it calls for the explicit
definition of analytical production profiles, which depend on the type
of reservoir simulation output. From a reservoir management stand-
point, it could be interesting to use other types of production curves
such as water production or pressure, because it can also be important
to adjust surface facilities. Looking at the well by well response would
also be important as this is where proxies lack accuracy. Applying this
methodology to any other kind of curve like water profile is possible but
relies on the availability of compact analytical models for the con-
sidered reservoir response curve.

In this paper, the model selection was performed using the Distance
Kernel Method (Scheidt and Caers, 2009) but other selection techniques
could be considered. For field development studies, further research is
also needed to assess how to address more complex development sce-
narios where multiple well locations are considered and well schedule
changes though time.

Nonetheless, the results obtained show that the methodology can
assess reservoir oil production uncertainty even with a very simple
proxy. It would be interesting to assess the value of this method to
accelerate history matching tasks in the same spirit as Scheidt et al.
(2011) and Josset et al. (2015a,b). It would also be interesting to test
this methodology on a case study where the full flow simulation re-
sponses are more chaotic and with a less regular dispersion.
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Appendix. Error correction

We propose an optional correction stage to reduce the errors between the surrogate curves and the true curves. This correction makes the
assumption that errors have zero mean, are smooth, and can be characterized only from the models of set S1. It is similar in spirit to the “gobal error
model” introduced by Josset and Lunati (2013), but it considers production profiles instead of breakthrough curves and uses time-dependent
weighting instead of a global distance-based weighting. This correction takes the form of a vertical shift map (Section 8), computed as follows:

Fig. 8. Quantiles dispersion over 200 iterations of the methodology. (a) With a S1 subset of 10 models. (b) With a S1 subset of 20 models. (c) With 10 models in S1
but without using proxies from S2 in the quantile computation.
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- For every known model (belonging to S1) the difference between the true profile and the reconstructed one is computed (Fig. 9a).
- These differences are projected on the analytical curves in the plot space (Fig. 9b)
- The differences are then interpolated for each time step using simple kriging with a 0 mean. The juxtaposition of all the 1D corrections over all the

time steps covers the entire domain FOPT versus time (Fig. 9c).

The final corrected production profiles are finally obtained by subtracting the error estimate from the reconstructed analytical profiles.

Fig. 9. (a) Error computed between simulation profiles and analytical profile for two models belonging toS1. (b) Mapping error on analytical model. (c) Interpolation
of the error on the entire plot domain to create an error map.
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