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Abstract The need for combining different sources of information in a probabilistic
framework is a frequent task in earth sciences. This is a need that can be seen when
modeling a reservoir using direct geological observations, geophysics, remote sens-
ing, training images, and more. The probability of occurrence of a certain lithofacies
at a certain location for example can easily be computed conditionally on the values
observed at each source of information. The problem of aggregating these different
conditional probability distributions into a single conditional distribution arises as an
approximation to the inaccessible genuine conditional probability given all informa-
tion. This paper makes a formal review of most aggregation methods proposed so
far in the literature with a particular focus on their mathematical properties. Exact
relationships relating the different methods is emphasized. The case of events with
more than two possible outcomes, never explicitly studied in the literature, is treated
in detail. It is shown that in this case, equivalence between different aggregation
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formulas is lost. The concepts of calibration, sharpness, and reliability, well known
in the weather forecasting community for assessing the goodness-of-fit of the aggre-
gation formulas, and a maximum likelihood estimation of the aggregation parameters
are introduced. We then prove that parameters of calibrated log-linear pooling for-
mulas are a solution of the maximum likelihood estimation equations. These results
are illustrated on simulations from two common stochastic models for earth science:
the truncated Gaussian model and the Boolean. It is found that the log-linear pooling
provides the best prediction while the linear pooling provides the worst.

Keywords Data integration - Conditional probability pooling - Calibration -
Sharpness - Log-linear pooling

1 Introduction

The problem of aggregating probability assessments coming from different sources
of information is probably as old as statistics and stochastic modeling. In geosciences,
Tarantola and Valette (1982) and Tarantola (2005) developed the concept of conjunc-
tion and disjunction of probabilities in the context of inverse problems. Benedikts-
son and Swain (1992) adopted consensus theoretic classification methods to aggre-
gate geographical data like satellite images coming from different sources. Journel
(2002) proposed the Tau model in a very broad perspective. This model was subse-
quently used by Strebelle et al. (2003) to map lithofacies using seismic information
and multiple-point statistics, and by Comunian et al. (2011) to combine the probabil-
ity assessments derived from different two-dimensional geostatistical models to sim-
ulate three-dimensional geological structures. Okabe and Blunt (2004, 2007) used a
linear probability combination method to simulate three-dimensional porous medium
from two-dimensional multiple-point statistics extracted from microscope images of
a rock sample. Mariethoz et al. (2009) used the probability conjunction method to
develop a collocated co-simulation algorithm allowing the modeling of any com-
plex probability relationship between the primary and secondary variable. Ranjan
and Gneiting (2010) combined weather forecasts coming from different models with
the Beta-transformed Linear opinion Pool (BLP). In the context of risk analysis, Gen-
est and Zidek (1986) and Clemen and Winkler (1999, 2007) provide detailed reviews
about probability aggregation methods and their properties.

The diversity of approaches one can find in the literature may be surprising, but
this is because aggregating probabilities is usually an ill-posed problem: there is of-
ten in practice a lack of information to describe accurately the interactions between
the sources of information. In that framework, we are left with making assumptions
and select a method without being able to check the accuracy of the estimations. Es-
sentially, there is neither a single method nor a single set of parameters (as several
methods are parametric) that can aggregate probabilities accurately under all pos-
sible circumstances. Instead, the selection of the most suitable aggregation method
depends on the specific problem which is addressed; a clear understanding of the
properties characterizing each aggregation method is therefore an important step.

Clemen and Winkler (1999) proposed a classification of the probability aggre-
gation methods into mathematical combination methods and behavioral approaches.
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Behavioral approaches are based on the interaction among experts. The aggregation
process concludes with an agreement about a common probability term. Note that
in the context of behavioral approaches the word interaction has a meaning strictly
related to the fact that the experts are human beings who can exchange advice and
discuss their assessments. In geosciences, there is no such exchange of information
between different sources. We thus restrict ourselves to mathematical aggregation
methods which are functions or operators aggregating probability distributions P;
coming from different sources into a global probability distribution Pg.

In this paper, we provide a formal review of most of the available techniques to
aggregate probability distributions as well as a few novel methods. We then discuss
their properties in the perspective of earth sciences applications. The paper is struc-
tured as follows. In Sect. 3, we define the main mathematical properties of the ag-
gregation methods. We then describe and compare formally the different methods
(Sect. 4). Section 5 contains an overview of the main statistical measures of perfor-
mances; because most methods are parametric, we then describe how the parameters
can be estimated. That section contains a new result: if a (generalized) log-linear
pooling formula is calibrated, its parameters must be those estimated from maximum
likelihood. Through a series of numerical examples, Sect. 6 illustrates the different
behaviors of the methods. Finally, Sect. 7 provides guidelines for the selection of a
suitable aggregation method and discusses the implications of our study.

2 Set-up and Notations

We wish to assess the probability of an event, denoted A, conditional on the occur-
rence of a set of data events, D;, i = 1,...,n. This means that we wish to approxi-
mate the probability P(A | Dy, ..., D;,) on the basis of the simultaneous knowledge
of the n conditional probabilities P(A | D;). The event A can for example be a litho-
facies category at a specified location, while the data D; can represent information
provided by core samples at surrounding wells, a seismic survey, lithofacies patterns
on training images, or any other source of information. For categorical events or finite
discrete data, the formal probabilistic set-up is the following. We need to consider a
sample space £2 such that all events A and D; are subsets of £2. In the case of cate-
gorical data, let A be the finite set of events in £2 such that the events A1, ..., Ag of
A are mutually exclusive and exhaustive, that is A forms a finite partition of §2. For
continuous data, the set-up is slightly more technical, but still straightforward in the
context of probability measures. For the clarity of exposition, we will focus on the
finite discrete set-up above; most if not all results presented in this paper still hold for
continuous probability density functions.

The computation of the full conditional probability P(A | Dy, ..., D,) necessi-
tates a probabilistic model of the joint distribution of (A, Dy, ..., D,), a task which
is rarely achievable. Instead, we will build an approximation of the true conditional
probability by the use of an aggregation operator Pg, also called pooling operator or
pooling formula, such that

P(A|Dy,...,Dy)~ Pg(P(A|Dy),..., P(A| Dy)). (1)
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Aggregating the probabilities is an ill-posed problem because there is not a unique
way of constructing the event D N --- N D, from the knowledge of the conditional
probabilities P(A | D;), i =1, ...,n. One of the aims of this paper is to discuss the
mathematical properties of such operators and, elaborating from a subset of desirable
properties, to build and compare some of them, both from a theoretical point of view
and on the basis of performances on simulated cases.

In some circumstances, it will be necessary to include a prior probability on the
events A € A, which will be denoted Py(A). This prior probability is independent on
any other probabilities P(A | D;). It can be thought of as arising from an abstract and
never specified information Dy with Py(A) = P(A | Do). Equation (1) can thus be
generalized in the following way

P(A|Dy,...,Dy)~ Pg(P(A|Dy),..., P(A| Dy)). 2)

In geoscience, such a prior probability could be for example a proportion of a lithofa-
cies varying in space and/or imposed by the user. Note that not specifying explicitly
a prior distribution is equivalent to specifying an evenly distributed prior. In the fol-
lowing, the more concise notation P; will sometimes be used to denote P(A | D;)
and the RHS of Eq. (2) will often be rewritten as: Pg(Po, P1, ..., P,)(A). At the
price of a small abuse of notation, we will adopt the more concise notation Pg(A)
for Pg(Py, P1, ..., P,)(A) when the context permits.

Some probability aggregation methods are formulated in terms of odd ratios, de-
noted O, defined as

P(A)

O(A):71—P(A)’

0<P(A) <1, 3)
with the convention O(A) = +0o when P(A) = 1. In the simple case of a binary
outcome, where A = {A, A}, it is easy to check that O(A)O(A) = 1. When there are
more than two elements in A, ]_[f:1 O (Ax) can be any fixed value, but Eq. (3) will
still be used for defining odd ratios.

3 Mathematical Properties

In this section, we first recall and discuss the main properties that can be used for
characterizing aggregation methods. Axiomatic approaches (Bordley 1982; Dietrich
2010) use some of these properties as a starting point to derive classes of aggregation
operators.

3.1 Dictatorship
Definition 1 (Dictatorship) A method is dictatorial (Genest and Zidek 1986) when
the probability P; provided by the ith source of information is always taken as the

group assessment, that is Pg(Py,..., P;,..., P,)(A) = P;(A), forall A € A.

Dictatorship is clearly a pathological property. From now on, we will focus on
non-dictatorial aggregation operators.
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3.2 Convexity

Definition 2 (Convexity) An aggregation operator Pg verifying
Pg € [min{Py, ..., P}, max{Pi,..., P,}], 4)
is convex.

Definition 3 (Unanimity) An aggregation operator Pg verifying P = p when
Pi=pfori=1,...,nissaid to preserve unanimity.

It is easy to check that when Pg is convex, P; = p for i = 1,...,n implies
Pc = p. Thus, any convex operator preserves unanimity, but the converse is not al-
ways true. Unanimity, and thus convexity, is not necessarily a desirable property, as
we illustrate now in the two following cases. As a first case, consider that all sources
of information yield the same probability because they are all induced by the same
event of £2, for example D| = - -- = D,,. Then the true conditional probability can be
calculated exactly: P(A| D1 N---N D,) = P(A | D1). In this first case, unanimity
arises because the D;s are all the same.

As a second case, consider that §2 is finite and consider two information
Di # D; and an event A C (D1 N Dy). Then, P(A | D;) = P(A)/P(Dy), and
P(A| DN Dy)=P(A)/P(Dy N Dy). Now, (D1 N Dy) C Dy implies that P(D; N
Dy) < P(Dy1). Hence P(A | D; N Dy) > P(A | Dy). Thus, in this second case, the
full conditional probability of A is larger than any partial conditional probability. In
this situation, unanimity, and thus convexity are not desirable properties.

These examples show that whether the pieces of information are similar or differ-
ent, one should expect the aggregation operator to preserve unanimity or not. Quite
often in geosciences, unanimity (and convexity) is a limitation because the condi-
tional probabilities we want to aggregate correspond to very different sources of
information. In other words, in geoscience, we are essentially in the second case.
Therefore, unanimity, and hence convexity, are properties that should not be sought
per se.

3.3 Independence Preservation

Consider two events A and B of §2 such that A N B # @. Note that since A is a
collection of disjoint events, B is not an element of .A.

Definition 4 (Independence Preservation) A method preserves the independence if,
whenever we choose two events A and B for which P;(A N B) = P;(A)P;(B) is
valid for every i = 1, ..., n, the aggregated probability operator Pg preserves inde-
pendence

Pg(P1,....P))(ANB) = Pg(Py1,..., Py)(A) Pg(P1, ..., P)(B) 5)

holds.
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Many authors (Lehrer and Wagner 1983; Genest 1984; Wagner 1984; Genest and
Wagner 1987) faced without success the challenge of finding a pooling formula which
preserves independence. Independence preservation is of no direct interest in the con-
text described above, since one usually wants to asses the probability of disjoint
events A. Together with Genest and Zidek (1986), our conclusion is that indepen-
dence preservation is not a reasonable requirement to impose on consensus-finding
procedures.

3.4 Marginalization

Consider a vector of events A = (A1, A>)" and P(A) = (P(A}), P(A3))". For each
component, k = 1,2 of A one can define the marginalization operator My,

Mi{PA)} = P(Ap). (6)

Definition 5 (Marginalization) A pooling operator P verifies the marginalization
property if, for each component k = 1, 2, the operator M} commutes with the pooling
operator

PG{Mk(Pl), ceeh Mk(Pn)} = Mk{PG(P1, . ..,Pn)}. @)

There is only one pooling operator satisfying the marginalization property, namely
the linear pooling method. But we will see below that it does not verify other more
interesting properties.

3.5 External Bayesianity

The external Bayesianity property is related to the behavior of an aggregation oper-
ator when additional information becomes available. Consider that the probabilities
can be updated by a likelihood, L, common to all sources of information. We thus
consider now the probabilities

L(A)P;(A)

Ligy .
P; (A)_ZAGAL(A)Pi(A)’ i=1,...,n,

where L(A) is such that ), 4 L(A) < o0.

Definition 6 (External Bayesianity) An aggregation operator is said to be external
Bayesian if the operation of updating the probabilities with the likelihood L com-
mutes with the aggregation operator, that is if

PG(PE, ..., PE)(A) = PE(Py, ..., P)(A). ®)

Essentially this means that it should not matter whether new information arrives
before or after pooling. This property is equivalent to the weak likelihood ratio prop-
erty in Bordley (1982). External Bayesianity is a very compelling property, both from
a theoretical point of view and from an algorithmic point of view. We will see that
imposing this property leads to a very specific class of pooling operators.
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3.6 Certainty Effect

An interesting feature of an aggregation method is its response to situations where a
source of information provides a conditional probability equal to O (impossible event)
or 1 (certain event). Let us suppose that there exists i such that P(A | D;) =0 and
P(A|Dj)#1for j#i.

Definition 7 (0/1 forcing property) An aggregation operator which returns
Pc(A) =0 in the above-mentioned case is said to enforce a certainty effect, a prop-
erty also called the 0/1 forcing property (Allard et al. 2011).

Note that the same is true if P(A | D;) = 1, since in this case P(A’ | D;) =0, for
all A’ #£ A € A. In geoscience, this property is convenient to reproduce depositional
sequences or catenary patterns. The drawback is that deadlock situations are possible,
when P(A | D;) =0and P(A| D;) =1 for j #i. Deadlocks can arise when data
are inconsistent with each other. A practical solution can be to consider probabilities
in a constrained interval, for example [0.001, 0.999].

4 Aggregation Methods

Aggregation methods can be divided into methods derived from axiomatic ap-
proaches and methods derived from model considerations. Genest and Zidek (1986),
Bordley (1982) and Dietrich (2010) restricted themselves to the binary case, that is
when there are only two possible outcomes, namely A and A in A. Bordley (1982)
showed that there is only one class of aggregation operator verifying at the same time
a set of structural axioms always verified in geoscience (weak ordering of the O;(A)
with respect to A, non-interaction between source of information, continuity) and the
weak likelihood ratio condition (or external Bayesianity). The associated pooling for-
mula, hereafter called Bordley formula, combines odds multiplicatively. In the same
spirit, Genest and Zidek (1986) show that the unique aggregation operator verifying
the same structural axioms and external Bayesianity is the log-linear pooling. These
two results turn out to be equivalent in the binary case, but lead to different pooling
formulas in the general case of more than two possible outcomes. Still in the binary
case, Dietrich (2010) shows that for a very close set of structural axioms, the only
pooling formula verifying the property of independent information is a particular
case of the log-linear pooling formula.

Following a model-based approach, Journel (2002) proposed the Tau model,
which turns out to be equivalent to the Bordley formula (Krishnan 2008). In
Polyakova and Journel (2007), the Nu-model is proposed as an alternative to the Tau
model. Although no mentions are explicitly made in these papers to any restriction to
the binary case, it must be noted that it is, in fact, the case for all considered examples.
It turns out that it is equivalent to work with probabilities or with odds in the binary
case. This equivalence is lost if there are more than two possible outcomes in .A. We
will show that there are two quite different routes for generalizing the Nu model to
the non-binary case. We will also show how this Nu-model is related to log-linear
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pooling methods and that following a maximum entropy principle or equivalently a
conditional independence assumption, entails a specific, parameter-free form of the
Bordley formula. The resulting pooling formula is similar to the Markovian-type Cat-
egorical Prediction (MCP) equations in Allard et al. (2011).

There is yet another enlightening dichotomy. Some methods combine probabilities
in an additive way, leading to a linear pooling formula and its generalization, in the
spirit of the disjunction operation of probability distributions (Tarantola and Valette
1982; Tarantola 2005). Other methods combine probabilities or odds in a multiplica-
tive way, which corresponds to the conjunction operation of probability distributions
(Tarantola and Valette 1982; Tarantola 2005). This last criterion defines two very dif-
ferent groups within which the aggregation methods share many common properties.
The next subsections, following and extending the work of Genest and Zidek (1986),
Clemen and Winkler (1999), and Clemen and Winkler (2007), provide a summary of
some of the most important aggregation methods in earth sciences.

4.1 Additive Methods and Transformed Additive Methods
4.1.1 Linear Pooling

Probably the most intuitive way of aggregating the probabilities Pi,..., P, is the
linear pooling, proposed by Stone (1961) and attributed to Laplace by Bacharach
(1979)

PG(A) =) wiPi(A), ©)

i=1

where the w; are positive weights verifying > i, w; = 1 in order to have a mean-
ingful global probability. Since the linear pooling is simple to understand and to im-
plement, it is probably the most common aggregation method. However, Ranjan and
Gneiting (2010) demonstrated that the linear pooling is intrinsically sub-optimal. This
point will be detailed in the next sections.

Linear pooling neither verifies independence preservation, 0/1 forcing properties,
nor external Bayesianity unless it is dictatorial (for example w; = 1 for one source D;
and w; =0, for all j # i). It is a convex aggregation method, and as a consequence,
it does preserve unanimity. As already discussed in Sect. 3.2, this property might be
considered as a serious limitation in the context of geoscience modeling. If we pro-
vide an equal weight w; to every probability P; the method reduces to an arithmetic
average; in this case it coincides with the disjunction of probabilities (Tarantola and
Valette 1982; Tarantola 2005).

Genest (1984) proved that all pooling operators verifying the marginalization
property are of the form

n
PG(A)=) w; Pi(A), (10)
i=0
where Py is a prior probability and where the weights wy, ..., w, € [—1, 1] add up to

one and must satisfy other consistency conditions to ensure that Pg is a probability
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measure. The aggregation operator defined by Eq. (10) is called generalized linear
pooling. The possibility of negative weights is in theory interesting, but we are faced
with the problem of finding weights w; insuring that Pg is a probability on A. A safe
option is to restrict ourselves to weights wo, ..., w, € [0, 1] adding to 1. If wy =0
we are back to the linear opinion pool.

The resulting probability distribution Pg is very often multi-modal, a not so de-
sired situation. The reasons are profound. From a probabilistic point of view, Egs. (9)
and (10) represent mixture models in which each probability P; represents a different
population; the aggregated probability Pg is then the result of the following hierar-
chical random experiment: first select a population i with the probability distribution
defined by w = (wy, ..., wy); then select an event A according to probability distri-
bution P;. In general, this mixture of population model does not correspond to our
geoscience context in which we wish to aggregate partial information on the same
object.

4.1.2 Beta-Transformed Linear Pooling

Ranjan and Gneiting (2010) proposed to apply a Beta transformation to linear pool-
ing operators in order to improve their performance, thereby defining the Beta-
transformed Linear Pooling (BLP)

PG<A>=Ha,ﬁ<ZwI-P,-<A>), (11)

i=1

where the weights must be positive and add up to one. The function Hy g is the
cumulative density function of a beta distribution with shape parameters o > 0 and
B>0

Hy g(x) = B(a, ,3)_1/ 1A —nflar

’ \ (12)

with x €[0,1] and B(«, B) :/ A —nflar.
0

BLP includes the linear pooling (LP) when o = 8 = 1, since Hj j(x) = x, for
0 < x < 1. For other values of the parameters, the marginalization property veri-
fied by LP is lost because of the Beta transformation. However, as it is the case for
LP, the 0/1 forcing property is not verified unless dictatorship holds. In general, this
transformation leads to non-convex aggregation probabilities. In their work, Ranjan
and Gneiting (2010) show, on simulations and on real case studies, that the BLP con-
stantly outperforms LP and that it presents very good performances.

4.2 Methods Based on the Multiplication of Probabilities
We have seen in the previous section that additive aggregation methods correspond to
mixture models. They are related to union of events and to the logical operator OR.

In our context, the information conveyed by the events D; should rather be aggre-
gated by the logical operator AND, related to the intersection of events. Intuitively,
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aggregation operators based on multiplication seem therefore more appropriate than
those based on addition. We now present and discuss different aggregation methods
based on the multiplication of probabilities.

4.2.1 Log-Linear Pooling

Definition 8 A log-linear pooling operator is a linear operator of the logarithms of
the probabilities

n

lnP(;(A)zan+Zwi In P;(A), (13)

i=1

or equivalently

Po(A) o[ [ Pi(A™, (14)

i=1

where Z is a normalizing constant.

Genest and Zidek (1986) showed that all pooling operators verifying exter-
nal Bayesianity must be of the form Eq. (14) with the additional condition that
> !_,w; = 1. This condition also implies that unanimity is preserved. Log-linear
pooling does not preserve independence and does not verify the marginalization prop-
erty. Unlike linear pooling, it is typically unimodal and less dispersed. Since it is
based on a product, it verifies the 0/1 forcing property. One particular possibility
consists in setting w; = 1 for each i # 0. This corresponds to the conjunction of
probabilities (Tarantola and Valette 1982; Tarantola 2005).

If a prior probability Py(A) must be included, Eq. (14) becomes Pg(A) x
[T/_y Pi(A)"™ with the restriction > ;_,w; = 1 to verify external Bayesianity, yet
better written

n
PG (A) o< Po(4)! ~Xi= v T Py (a)™. (15)
i=1
In Eq. (15), there is no restriction on the weights w = (wy, ..., w,), and Z?:o w; =1
is always verified. Note that if neither external Bayesianity nor unanimity are prop-
erties that must be verified, there are no constraints whatsoever on the weights wj,
i=0,...,n.
It is always possible to write the conditional probability P(A | Dy, ..., D;) with
a log-linear formalism. Let us introduce the following convenient notation. We will
denote D_; ={D; N---N D;_1}, with the convention D_; = £2. Then

_ Py(A)P(Dy,...,D, | A)
ZAeA Py(A)P(Dy,...,D, | A)

__ PWIIL, P(Di| A. D)
Yoaca PATT/Z, P(D; | A, D)

P(A|D17"'5Dll)

(16)
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a7

p, =InP(D; | A, D.;)/In P(D; | A). This decomposition is exact if
there is one weight w per combination (A, Dy, ..., D,). Log-linear pooling, as in
Eq. (15), amounts to making the simplifying assumption

InP(D; | A, D<i)/In P(D; | A) = w;, (18)

for all A, all D; and all D_;, which can be verified for some, but not all, probability
models.

The sum Sy = Y ;_, w; plays an important role in Eq. (15). If Sy = 1, the prior
probability Py is filtered out since wyg = 0 and unanimity is preserved. Otherwise,
unanimity is not preserved. Suppose that P, = p foreachi =1, ...,n.If Sy > 1, the
prior probability has a negative weight and Pg will always be further from Py than p.
This corresponds to the second case illustrating convexity in Sect. 3. Conversely, if
Sw < 1, Pg is always closer from Py than p. And of course, Pg = p if S, = 1. The
influence of the prior probability Py on the aggregated result Pg can thus be tuned
by changing the value of Sy,.

4.2.2 Generalized Logarithmic Pooling

Genest and Zidek (1986) showed that if we allow the explicit form of Pg to depend
upon A, that is if we allow Pg to be of the form

PG(Pi, ..., P)(A) xG(A, Pi(A),..., P,(A)),

the only pooling operator verifying external Bayesianity is

PG(A) o H(A) ] P(A | D)™, 19)

i=1

with Y7, w; = 1 and H(A) being an arbitrary bounded function playing the role
of a likelihood on the elements of A. In this case, if all conditional probabilities are
equal, the aggregated probability is proportional to p updated by H(A): Pg(A) x
H(A)p.

4.2.3 Maximum Entropy Approach

Instead of establishing a pooling formula from an axiomatic point of view, one can
choose to optimize a criterion, for example to minimize the distance between the dis-
tribution P and its approximation. The Kullback-Leibler (KL) divergence (Kullback
and Leibler 1951) or relative entropy, between a distribution P and another distribu-
tion (here its approximation Pg) is

P
D(Pg || P)=Ep, [m ?G} (20)
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Although not a distance in the mathematical sense (it is not symmetrical), the KL
divergence is a measure of how much different two probability distributions are. It
is always positive and it is equal to zero if, and only if, P = P. There are strong
connections between entropy and KL divergence (Cover and Thomas 2006). In par-
ticular, let us assume that some quantities related to P are known, such as moments
or conditional probabilities. A natural approach, very common in information theory,
computer science, image, and language processing is to find the distribution Pg that
shares properties (moments or conditional probabilities) with P and minimizes the
KL divergence D(Pg||P). This can be shown equivalent to finding the distribution
P maximizing its entropy H(Pg) = Ep;[Pg], subject to the imposed constraints.
Allard et al. (2011) developed such an approach for the prediction of spatial categor-
ical variables leading to a Markovian-type categorical prediction (MCP), which was
shown to be a very good approximation of the Bayesian maximum entropy (BME)
principle (Christakos 1990) with the advantage of being computationally efficient.
Following a similar route, we obtain the following result. Here, we need to use the
full notation Pg(Py, ..., P,)(A).

Proposition 1 The pooling formula P maximizing the entropy subject to the fol-
lowing univariate and bivariate constraints Pg(Pp)(A) = Pp(A) and Pg(Po, P;)(A)
=PA|Dj)fori=1,...,nis

Po(A' " TT1, Pi(A)

PG(Py, ..., P)(A) = - .
G(P )A) Y aca PO TTI_, Pi(A)

21

The proof of this proposition is given in Appendix A. Notice that the maximum
entropy approximation Eq. (21) is a special case of the logarithmic pooling formula
withw; =1,fori =1,...,n.

The same formula can also be obtained as a result of the conditional independence
assumption. Let us assume that P verifies a conditional independence assumption,
that is

n
P(Do,...., Dy | A) =[] P(Di | A), (22)
i=0
for all events A, Dy, ..., D,. Conditional independence implies

P(Di | A, D<) =P(Di | A).
Hence, Eq. (16) becomes
P(A [T, P(Di | A)
Y aeA P, P(Di | A)

__ PoW)TTTL, P(A] D) P (D)
e P! [Tz, P(A| D) P (D)

_ P Pi(A)
Yaca PO T, Pi(A)

Pg(A) =
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Put together this last result and Eq. (21) allows us to state the following equivalence.

Proposition 2 Regarding the aggregation of probabilities considered in this work,
Maximum Entropy is equivalent to Conditional Independence.

4.2.4 Probability Multiplication Formulas in Summary

Multiplication of the probabilities offers a large class of pooling operators, with in-
teresting subclasses which can be summarized in the following way

{Max. Ent. = Cond. Ind. pooling} C {Ext. Bayes. pooling}
C {Log-linear pooling}. (23)

The pooling formula corresponding to the maximum entropy principle/conditional
independence assumption (21) is particularly easy to implement since it is parame-
ter free. The larger class of pooling formula (15) corresponds to pooling operators
verifying the external Bayesianity condition in which the weights are constrained to
add up to 1. For this class, the value of Sy, is the key factor regarding the behavior
with respect to the prior probability Py. The largest class of pooling operators is of
the same form but does not impose any restriction on the weights. This largest class
does not verify any mathematical properties presented in Sect. 3, but the 0/1 forcing

property.
4.3 Methods Based on the Multiplication of Odds

When using odds O (A), it will be important to distinguish two cases:

1. In the first, more restrictive, case there are only two possible outcomes, such as
A={A, A}. In this case, P(A) + P(A) = O(A) - O(A) = 1. This case will be
called the binary case hereafter.

2. In the second case, there are more than two possible outcomes in A. In this
case, there is no general relationships between the odds O(A), and in general

[Taca OCA) #1.

We will see that in the binary case, it is completely equivalent to consider operators
based on the product of odds and operators based on products of probabilities. In the
general case, this equivalence is lost.

4.3.1 Bordley Formula and Tau Model

Binary Case We first restrict ourselves to the binary case. Bordley (1982) showed
that in this case, the only pooling operator verifying the weak likelihood ratio axiom
(see Definition 6) in addition to other natural axioms is a pooling formula based on
the product of the odd ratios

0i(A)
Op(A)

) = opay T [T oi), @)

i=1

%w=%WWH(

i=1
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where the weights w; can vary in [0, 00). Now, using P;(A) = O;(A)/(1 + O;(A)),
and denoting P;(A) = P(A | D;), Eq. (24) becomes

Po(A) [Ti (Pi(A)/ Po(A))™i
Po(A) T2, (Pi(A)/ Po(A)™i + (1 — Po(A) TTP [(1 — Pi(A)) /(1 — Poy(A)]i
(25)

Pg(A) =

or equivalently

n
PG (A) o Po(A)! =i T Pi(A)™, (26)
i=1
which is nothing but Eq. (15). Hence, we can state the following equivalence in
Proposition 3.

Proposition 3 In the binary case, the Bordley formula is equivalent to a log-linear
pooling formula verifying external Bayesianity.

Journel (2002) derived a formula for aggregating probabilities that has been later
named the Tau model. For presenting this model, we will use our usual notations,
which are slightly different than those in Journel (2002), Polyakova and Journel
(2007) and Krishnan (2008). In particular, these authors use the inverse of odds-ratio
instead of odds-ratio, but since the formulae are purely multiplicative this point is of
secondary importance.

In a first step, Journel (2002) sets as an axiom the permanence of ratio principle,
which states (using our notations) that “the incremental contribution of data event D>
to the knowledge of A is the same after or before knowing D;”. Mathematically,

OG(A | Dy, D) _ Og(A | D)
O (A | Dy) OGg(A)

27)

From this principle, one can easily establish that

0G(A) = 0p(A)' "] 0i(4),

i=1

which is a Bordley formula with w; =1, for i = 1,...,n. Replacing O;(A) by
P;(A)/(1 + P;(A)), one gets Pg(A) x Py(A)! " ]_[;Ll P;(A), which is nothing but
Eq. (21). Hence, we established the following proposition.

Proposition 4 In the case of a binary event, the permanence of ratio principle is
equivalent to conditional independence, which is equivalent to a maximum entropy
principle.

In a second step, Journel (2002) reintroduced dependence between the source
of information by generalizing this formula thus obtaining the general Bordley for-

mula (24). Krishnan (2008) provides the expression of the parameters w; as a function

@ Springer



Math Geosci

of conditional probabilities obtained from the full joint probability, but this exercise
is unfortunately only of academic interest since if the full joint model was known, an
approximate formula such as the Tau model would not be necessary anymore.

General Case The general case with more than two possible outcomes in .4, was
not considered in Bordley (1982). In Journel (2002), Polyakova and Journel (2007),
and Krishnan (2008), the Tau model is exclusively presented in the case of bi-
nary event, either explicitly or implicitly. What happens in the general case with
K > 2 possible outcomes is rarely addressed explicitly. In this case, the quantities
O(Ay),..., O(Ak) in Eq. (24), although computable when the probabilities belong
to [0, 1), are not odds in the usual sense. Back-transforming the odds into probabil-
ities using Pg(-) = Og(-)/(1 + Og(-)) does not lead to quantities adding to one.
A normalization step is thus required to obtain a regular probability distribution.
A complete formulation of the Tau model in the general case is thus

PG(A) x 0G(A)/(1 4+ 0G(A)), with

0G(4) = 0g(A) 2= [T0;(A)™, AcA (28)

i=1

We thus obtain the following equivalence of Proposition 5.

Proposition 5 The Tau model is equivalent to the Bordley formula; only in the case
of a binary event, they both are equivalent to a log-linear pooling.

Note that since Og(A) =0 < Pg(A) =0, the Tau model (28) verifies the 0/1
forcing property, both in the binary and in the general case.

4.3.2 The Nu Model

The Nu model was proposed in Polyakova and Journel (2007) as an alternative to
the Tau model. We first re-derive its expression using our notations before discussing
its relationships with the other pooling methods. It will be useful to distinguish the
binary case from the general case.

Binary Case Let us first consider the binary case. We start from the exact decom-
position of Eq. (16)

PAIDy.... D= I PO A D)
> aea PATiZ P(Di | A, D)

and we denote vi(A) = P(D; | A,D.;)/P(D; | A). Then, defining v*(A) =

[T'=; v} (A), one can write
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__ P [T= v (A)P(Di | A)
2o aeA P Tz vi(A)P(Di | A)
PA)! v A TiZ P(A] D))

P(A|D17-7Dn)

S T PO, PA Dy
From this we obtain, the Nu model
PG(A) & Po(A)'~"v*(4) H P(A|D)). (30)
i=1
In terms of odds, denoting v(A) = v*(A)/(1 — v*(A))
Ot = — QNI 01(4) an

Yo aeA Oo(A)! (A [Ti; 0i(A)

which is the Nu model. Note that in Eq. (30) the factors v*(A) are defined slightly dif-
ferently than in Polyakova and Journel (2007). After transformation into v(A), they
lead, however, to the same analytical expression of Eq. (31) the only difference being
that our v(A) is the inverse of the factor v, Vin Polyakova and Journel (2007, Eq. 5).
Remember that when applying the Nu model in practice, the quantities v; (A) are not
known since P(D; | A, D;) are unknown. They must be considered as parameters to
be estimated or set by the user. From Eq. (30), one can see that v*(A) acts as a kind of
likelihood which updates the probability P(A) to P*(A)!™" = v*(A)P(A)'~". The
Nu model thus verifies the external Bayesianity condition. Since we are in the binary
case, Og (-) must satisfy OG(A).O(;(A) = 1, which implies that v(A).v(A) =1, that
is v(A) are odds.

Proposition 6 For the binary case .A = {A, A}, the Nu model is equivalent to:

(i) a maximum entropy pooling formula updated by the odds (v(A), 1/v(A));
(ii) a generalized logarithmic pooling formula with w; =1, fori =1, ..., n.

The maximum entropy formula corresponds to Eq. (30) with v*(A) =1 for all
A € A. Conditional independence in Eq. (22) is a sufficient condition for this, but in
theory it is not necessary. If v(A) is close to a constant ¢ for all A, the maximum
entropy pooling formula Eq. (21) is an excellent approximation of Eq. (30). Note
that in Eq. (31) the particular status of v(A) as compared to Py(A) is a little bit
unclear.

General Case 1In the general case with K > 2 possible outcomes in A (Egs. (30)
and (31)) are not equivalent. Two routes are possible for generalizing the Nu model.

1. The first route (Nu-1) consists in generalizing the pooling of the probabilities, as
in Eq. (30), thus obtaining a generalized or updated maximum entropy formula.
Would the full joint probability be accessible, the quantities v*(A) could be ex-
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Table 1 Aggregated probability computed according to the two possible generalization of the Nu model

Al A A3

Py 0.6 0.3 0.1

P 1/3 1/3 1/3

P, 0.6 0.15 0.25
(v(A1), v(A2), v(A3)) Pg
(1,1, 1) Nu-1 0.250 0.125 0.625
(1,1, 1) Nu-2 0.302 0.155 0.543
2,2,2) Nu-1 0.250 0.125 0.625
2,2,2) Nu-2 0.324 0.189 0.487
(1,2,3) Nu-1 0.105 0.105 0.790
(1,2,3) Nu-2 0.231 0.202 0.567
(0.28,0.68, 8) Nu-2 0.105 0.105 0.790

actly computed. This not being the case, v*(A), if not set equal to 1, acts as a kind
of likelihood, as already seen in the binary case.

2. The second route (Nu-2) considered in Polyakova and Journel (2007) consists in
generalizing the pooling of the odds, as in Eq. (31), thus leading to

PG (A) x Og(A)/(1+ O(A)),

0(A) ="v(A) T, 0i(A) (32)
Y s OATu(A) [, 0:(A)

In this second route, v(A) acts as an odd updating the product of odds. Increasing
V(A) leads to an increase of the probability Pg(A).

OG(A) =

It is important to stress that, when not in the binary case, these two routes will lead
to different values of the aggregated probability Pg(A) for given values of v(A). This
is illustrated in Table 1, in which Pg(A) is computed according to the Nu-1 or Nu-2
representation for several values of v(A). Note that since w; +wy =2 > 1, the aggre-
gated probability will always be further away from the prior Py than the probabilities
P; (see Proposition 6(ii)). Hence, for all considered cases, Pg is the highest for As.
One can also see that when v(A) is evenly distributed, the value of v(A) does not play
any role when following the first route, which can be seen from Eq. (30), while it does
play a role when following the second route. These results illustrate the fact that the
first route corresponds to the external Bayesianity condition, with v(A) playing the
role of an external likelihood. When v(A) is uneven, higher values of v(A) yield
to larger aggregated probabilities. For a given vector for v(A), the first route (v(A)
multiplying probabilities) leads to more extreme probabilities, while the second route
(v(A) multiplying odds) leads to more equilibrated probabilities. It is, however, pos-
sible to find a vector of values along the second route leading to approximately the
same aggregated probabilities.

It is also important to understand the profound difference between Bordley/Tau
and Nu aggregations. While in the former there is for each source of information a
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Table 2 General presentation of non linear aggregation methods

Weights Likelihood K =2 K>2
Probs = Odds Probabilities Odds
When v(A)=1 Log-linear Log-linear Tau model
2?21 w; =1, = Bordley
Ext. Bayesianity = Tau model
and un'flmmlty V(A) #1 Gen. log-linear Gen. log-linear -
are verified
Allw; =1 v(A)=1 Cond. Indep. Cond. Indep. -
= Max. Entropy = Max. Entropy
V(A) #1 Nu model Nu-1 Nu-2
= updated Max. (Polyakova and
Ent. Journel 2007)

single parameter w; independent on the event A, in the latter there is a one parameter
per event A without any mention to the source of information.

4.4 Multiplication Methods at a Glance

As seen in the previous sections, methods based on the multiplication of probabilities
or multiplication of odds are intimately related. Presenting all methods in Table 2
makes it possible to grasp the relationships between the multiplication methods in
one glance. At the first level, we make a distinction between the binary case and the
general case. We re-emphasize that most of the literature is concerned with the binary
case, either explicitly or implicitly, for which methods based on odds are equivalent
to methods based on probabilities. On the contrary, it is important to distinguish these
two cases when dealing with non-binary events.
A general formulation of all pooling methods is possible

To(A)=Z +U(A)+ (1 —Zwi>To<A>+ZwiTi<A>, (33)

i=1 i=1

in which T is related to probabilities in the following way: 7 = P for all linear
pooling methods; 7 = In P for methods based on the product of probabilities, and
T=InO =InP — In(1 — P) for methods based on the product of odds. U (A) is an
updating likelihood when considering the general log-linear pooling; it is the loga-
rithm of the Nu parameter for the Nu model. Ty(A) is the prior probability and Z is
a normalizing constant. The weight wq has been set equal to 1 — Y "_, w; in order
to respect external Bayesianity. Note that w; = 1 for the Nu model and the maxi-
mum entropy. When T = P, the Beta-transformed model can also be included by
transforming the right-hand side of Eq. (33) with the Beta cumulative probability
function Hy g.
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Table 3 Main properties of methods for aggregating n sources of information and a prior term when there
are K alternatives

Lin. BLP ME  Nu-1 Nu-2* Log.- Gen.
(o, B) # (1, 1)) linear Log-lin
Convexity yes no no no no no no
Marginalization  yes no no no no no no
0/1 forcing no no yes yes yes yes yes
Ext. Bayes. no no yes yes no* cond. yes  cond. yes

# of param. n—1 n41f 0 K-1 K-1 n n+K—1

Note that some properties not verified in the general case are verified for some very specific values,
which either reduce the method to a different method or to dictatorship. The no* are yes when K = 2;
Nu-2 = Nu-1 when K = 2. "Number of parameters in BLP is n if we impose o = . Cond. yes means yes
when the condition Sw = 1 is verified

5 Choosing a Pooling Formula, Estimating the Weights and Assessing the
Forecast

5.1 Introduction

Table 3 recapitulates the previous sections about the aggregation methods and their
properties. A first dichotomy is between methods based on addition and those based
on multiplication. BLP is intermediate. Unlike linear pooling, the BLP is not con-
vex and does not verify marginalization; at the same time, it is different than the
multiplicative methods because it does not verify the 0/1 forcing property. This last
property is verified by all multiplicative methods. External Bayesianity is verified by
the generalized log-linear model, the Nu model and the Bordley formula for binary
events. In the more general case, it is always verified by the first route generalizing
the Nu model. It is also verified by the log-linear model and the generalized log-linear
model, conditional on the sum of the weights being equal to 1.

The role of the prior deserves some discussion. All aggregation formula allow to
take into account some form of prior probability, which could for example represent
non-stationary proportions. As it can be seen in Eq. (33), in multiplicative methods
the role of prior is multiplicative. More precisely, since ratios P;/ Py are aggregated,
these methods can be very sensitive to the specification of the prior. The influence
of the prior depends on the sum Sy = >/, w;. When Sy = 1, the prior is filtered
out. When Sy > 1, the aggregated probability Pg will be further away from Py than
the P;s. Contrarily, if Sy < 1, Pg will be closer from Py than the P;s. Since maximum
entropy is a model with Sy = n, we can expect this method to greatly amplify the
departure to the prior.

At the exception of the maximum entropy approach which is parameter free, all
methods presented above have some parameters that need either to be estimated or
set by the user. In the Nu model, there are K — 1 parameters, where K is the cardi-
nality of A, while for the log-linear formula and the Bordley/Tau model there are n
parameters. The most general model is the generalized log-linear, with K +n — 1 pa-
rameters if not imposing external Bayesianity. In theory, if the full probability model
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was known, expressions for the parameters would be accessible. But in this case, the
conditional probability would also be accessible, and a pooling formula would not be
sought in the first place.

In the context of aggregating expert opinion, Winkler (1968) suggests four ways
of assessing the weights for the linear pool, which could also be applied to the other
methods:

(i) equal weights;
(ii) weights proportional to a ranking based on expert’s advice;
(iii) weights proportional to a self-rating (each source of information provide a rank
for itself) and;
(iv) weights based on some comparison of previously assessed distributions with
actual outcomes.

Setting equal weights is sometimes relevant when there is no element which allows
to prefer one source of information to another, or when symmetry of information
justifies it. But even in this case, the sum Sy needs to be set or estimated. Suggestions
(i1) and (iii) might be relevant in the context of human judgments, but of no great use
in a geoscience context.

When training data are available (case (iv)) it is possible to estimate the optimum
weights according to the optimization of some criterion. Heskes (1998) proposed an
algorithm based on the minimization of a Kullback-Leibler distance for selecting
weighting factors in logarithmic opinion pools. The optimal weights are found by
solving a quadratic programming problem. Ranjan and Gneiting (2010) minimized
the likelihood for finding the optimal shape parameters for the Beta-transformed lin-
ear opinion pool. Cao et al. (2009) used ordinary kriging to estimate the parameters
of the Tau model, but the concept of distance between source of information and
that of variogram of probabilities is not at all obvious. We will present the likelihood
approach for estimating the parameters for methods based on the multiplication of
probabilities in the next sections. A similar derivation for the linear opinion pool and
its Beta transform can be found Ranjan and Gneiting (2010).

5.2 Scoring Rules and Divergence

The aggregated probability distribution Pg(A) must be as close as possible to the (un-
known) conditional probability distribution P(A | Dy, ..., D), A € A. Scoring rules
(Gneiting and Raftery 2007) provide summary measures for the evaluation of the ag-
gregated probability distributions, by assigning a numerical value, a score, based on
P¢ and on the event that materializes. Specifically, a scoring rule is a function that as-
sociates a value S(Pg, Ax) € (—00, 0o) for each event Ay in A, when the forecasting
probability distribution is Pg. S(Pg, P) will denote the expected value of S(Pg, Ax)
under the true probability distribution P: S(Pg, P) = ZAkeA S(Pg, Ap) P(Ag).
In the following, we will only consider strictly proper scoring rules, for which
S(P, P) > S(Q, P) for all probability distribution Q, where equality holds if and
only if O = P. Essentially, the highest score is achieved when the aggregated prob-
ability distribution is equal to the true distribution. Under mild conditions, if S is a
proper scoring rule

d(Q, P)=S(P,P)—S(Q,P)
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is the associated divergence function. It is non-negative and it is equal to O if and
only if Q = P. Note that the order plays an important role in the definition of the
divergence, which is thus not necessarily symmetrical. Gneiting and Raftery (2007)
review some of the most important scoring rules for categorical variables. We mention
two scoring rules which will be important for us in the rest of this work.

Definition 9 (Quadratic or Brier score) The quadratic or Brier score (Brier 1950), is
defined by

K
S(P.AY == G — pp)*. (34)
j=1
where 8;, =1 if j =k and §; = 0 otherwise. The associated divergence is the

squared Euclidean distance, d(Q, P) = Z,f: 1Pk — qk)z. In this particular case, the
divergence is symmetrical (and hence is a distance).

Definition 10 (Logarithmic score) The logarithmic score corresponds to
S(P, Ay) =In py. (35)

The associated divergence is the Kullback—Leibler divergence, d(Q, P) =
S K gxIn(pi/qr). The highest achievable score is S(P, P) = Y&, prIn(py),
which is nothing but the entropy of the distribution P.

Scoring rules can be used for estimating the parameters of a pooling operator
according to the following general approach. Consider a pooling operator Pg ¢ de-
pending on some parameters 0 and a proper scoring rule, tailored to the problem
considered. The estimator § = argmaxy S(0), where S(0) is the empirical score built
from the data set, is the optimum score estimator. The logarithmic score is related to
the maximum likelihood estimation, while the Brier score is related to calibration and
sharpness, presented in the section after next.

5.3 Likelihood for Log-Linear Pooling Formulas

Maximum likelihood estimation is a special case of optimum score estimation, cor-
responding to maximizing the logarithmic score. We now describe the maximum
likelihood approach for estimating the parameters for the pooling formula based on
the product of probabilities, which is recalled in its most general form

V(Ag) Po(Ap) ' ~Zi=1 i [0, Pi(Ap)™i
SR v(AR) Po(A) =i T Pi(Ag)vi

PG (Ay) = (36)

This pooling formula includes the log-linear pooling, when all v(Ax) = 1 and the
Nu model (route 1), when all w; = 1. In the binary case it also includes all pooling
operators based on the product of odds.
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The setting is the following. We denote w = (wy, ..., wy) and v = (v(Ay),...,
V(Ag)) the parameters of the pooling formula and consider M repetitions of a ran-
dom experiment. For each experiment m =1, ..., M, the information Di(m) is avail-
able, allowing to compute the individual conditional probabilities Pi(m)(Ak), and to
estimate the aggregated probabilities Pg")(Ak) of occurrence of any event Ay. For
the sake of lighter notations, we will denote PI(Z’) = Pi(m)(Ak) P((;mk) = Pg")(Ak). In
addition to the input information, we also have access to the real occurrence of one

of the various possible outcomes. We denote it = 1 if the outcome is Ay

and Yk(m) = 0 otherwise. In the same spirit, we w111 further denote vy = v(Ag). The

full log-likelihood is

M K M K
L(w,v)=1In ]‘[ ]‘[ p<m> ZZ ™ In P(m) 37)
m: = m: :

Notice that the log-likelihood is nothing but the empirical score of the data-set when

applying the logarithmic scoring rule. Replacing P k in Eq. (37) by its expression
Eq. (36) yields

M K
L(w,v) = ZZY('"){lnvk+ (1 —Zw,)lnP0k+Zw,lnP(m)}

m=1 k=1 i=1 i=1

ym

M
- In :wa’o_z’ e l_[(Pif’i”)w"}- (38)

m=1 i=1

The parameters w and » maximizing the log-likelihood in Eq. (38) are the maximum
likelihood (ML) estimators of w and v. They are found by numerical methods. In
theory, it is possible to follow a similar approach for the pooling formulas based
on the multiplication of odds, but the expressions are lengthy, without bringing new
insight. They are not shown here.

When fitting models, adding parameters leads to increased values of the log-
likelihood. But doing so may lead to over-fitting. The Bayesian Information Criterion
(BIC) introduced in Schwartz (1978) resolves this problem by adding a penalty term
for the number of parameters in the model

BIC=-2L+JInM, (39)

where L is the log-likelihood, J the total number of parameters of the model consid-
ered and M the number of repetitions. Given any two estimated models, the model
with the lower value of BIC is the one to be preferred. Lower BIC implies either
fewer explanatory variables, better fit, or both. The models being compared need not
be nested.

5.4 Calibration and Sharpness

Calibration and sharpness are two particular aspects of the pooling operators which
can be used to evaluate their quality. We will follow Ranjan and Gneiting (2010) for
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a brief introduction to these notions. We need the following set-up: One considers
a random experiment, leading to random information Dy, ..., D, and thus random
probabilities P;. It is convenient to introduce (Y71, ..., Yk ) the random vector corre-
sponding to the outcome, in which Y; = 1 if the outcome is Ay and Y; = 0 otherwise,
hence P(Y; =1) = P(Ay) = E[Y].

Definition 11 (Calibration) The aggregated probability Pg(A) is said to be cali-
brated if

P(Yx | P6(AY) = Pc(Ay), k=1,....K. (40)

This definition is in accordance with economic, meteorological and statistical fore-
casting literature (Ranjan and Gneiting 2010). Sharpness refers to the concentration
of the aggregated distribution. The more concentrated Pg (-) is, the sharper it is. Ran-
jan and Gneiting (2010) proved that linear opinion pools lack calibration, even though
all conditional probabilities P (A | D;) are calibrated.

5.5 Calibration of Log-Linear Pooling

In the section presenting log-linear pooling, we showed that it is always possible to
write the conditional probability P(A | Dy, ..., D,) with a log-linear formalism and
that log-linear pooling is exact, thus calibrated, if there is one weight per combination
(A, Dy, ..., Dy). Log-linear pooling amounts to making the simplifying assumption
InP(D; | A, D<;)/InP(D; | A) =w; forall A, all D; and all D_;.

We are now ready to state our main result about calibration of log-linear pooling
and the relationship between calibrated log-linear pooling (if it exists) and maximum
likelihood.

Theorem 1 Suppose there exists a calibrated log-linear pooling. Then, asymptoti-
cally, it is the (generalized) log-linear pooling with parameters estimated from maxi-
mum likelihood.

Proof Let us first characterize the maximum likelihood solution. At the maximum,

the derivatives of the log-likelihood Eq. (38) with respect to the parameters v, and
w; are equal to zero. Let us first consider the derivatives with respect to v

M M oy on .
> v ™! = Yo P H(Pi(,':))wl
m=1 m=1

i=1

K
/ (ZwP&ZZ":‘ '"”"(Pi?”)’”") =o. @1

=1

Recognizing in the second term the probability P((;mlz in Eq. (41) can be better written

Z Y™ = Z P, k=1,....K. (42)
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Likewise, setting the derivatives with respect to w; to zero leads after some simplifi-
cations to

M K
ZZ y" P = ZZP('")I PR i=1,....n. (43)
el k=1

m=1 k=1

Let us multiply the left- and right-hand sides of Eq. (42) by the maximum likelihood
estimates Dy and multiply the left- and right-hand sides of Eq. (43) by w;. Then the
sum of the K + n equations yields

M K K
3 Z v n Py = Z > PGP, (44)
ml k=1

m=1 k=1

where Py , denotes the aggregated probabilities with parameters (9, W).

Suppose now that the M random experiments are simulated according to P and let
usdenote Y = (Y1, ..., Yx) and PG =(P Gl ’K). On the one hand, according
to the law of large numbers, Eq. (44) tends in probability to

E[Yf lnPG] =E[Pté 1nPG] (45)
as M — oo. On the other hand, according to the conditional expectation theorem,
E[Y'InP;| =E{E[Y' InP; | P;:]} = E{E[Y' | P;]InP}. (46)

If P is calibrated, that is if E[Y" | PG] = G’ it is clear that Eq. (45) is verified.
Hence, calibration implies that the weights in Pg are a solution of the maximum
likelihood. The theorem is thus proved because the maximum likelihood solution is
unique. g

5.6 Empirical Measure of Calibration and Sharpness

Calibration and sharpness of the pooling formulas will be assessed on simulations.
They arise naturally considering the Brier score. The empirical mean Brier score is
defined as

K M
SN (P A - v @7)

k=1m=1

where the superscript refers to the mth random experiment. Suppose that the proba-
bility Pg(Ax) takes discrete values fi(j) (for example from O to 1 by step of 0.01),
where j =1,..., J. Let n(j) be the number of times Pg(Ax) = fix(j) and let gx ()
be the empirical event frequency for Ay when Pg(Ax) = fi(j). If the pooling for-
mula is calibrated, one must have g (i) = P(Ax | Pg(Ax) = fr(i)) = fi(i). Reliabil-
ity diagrams plot the empirical event frequency against the aggregated probabilities
(Brocker and Smith 2007). Significant deviation from the diagonal must be inter-
preted as a lack of calibration.
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The Brier score can be decomposed in the following way

K
Z{ an(n (i) — () }

j=l

K J
Z{ Z k(D (gr() — Gx) }+qu(1—qk) (48)

where g = ﬁ ZZIZI Y, k(m) is the marginal event frequency.

The first term of the decomposition is the reliability term. It corresponds to the
calibration. The lower this term is, the better the pooling formula is calibrated. The
second term is a deviation around the re-calibrated probability. For a calibrated pool-
ing formula, it corresponds to the sharpness; in this case, the higher the sharpness,
the better. The last term depends on the observation alone; it is independent on the
pooling formula. To address the performance of the aggregation methods, Ranjan
and Gneiting (2010) proposed diagnostics based on the paradigm of maximizing the
sharpness, subject to calibration. With this paradigm, optimal weights can be found
using other scoring rules, such as the logarithmic scoring rule.

6 Simulation Study

We now conduct some simulations in order to compare the features of the differ-
ent aggregation methods. We will first consider three cases with binary outcomes. In
these cases, the Bordley/Tau formula is equivalent to a log-linear pooling to which
we will refer. In the first case, we consider the aggregation of close to independent
information for the prediction of the binary outcome. In this case, maximum entropy
(equivalent to conditional independence) should perform reasonably well. In the sec-
ond case, we will consider a truncated Gaussian model with correlation between three
information to be aggregated. In the third case, we will consider a Boolean model
with four information. We will then consider a pluri-Gaussian model in which there
are three possible categories. For comparing the different aggregation methods we
will use the Brier scores (Eq. (48)), BIC (Eq. (39)) and the reliability plots presented
in Sect. 5. In some examples, we will have access to the analytical expressions of all
conditional probabilities, to which the aggregation formula will be compared.

6.1 First Binary Case: Two Independent Sources of Information

For this first example, we adopt the same analytical setting as in Ranjan and Gneit-
ing (2010), in which the Beta-transformed linear pooling is shown to be superior to
linear pooling. The sources of information are two independent (0, 1) Gaussian ran-
dom variables D; and D,. Let @ denote the standard normal cumulative distribution
function and define p = @ (D1 + D>). Suppose Y is a Bernoulli random variable with
success probability p, and consider the event A = {Y = 1}. Then

P(A|p)=PY =1|p)=E[Y|pl=p, (49)
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and
Pi(A) = P(A|Dy) =E[Y | D1]=E[®(D:1 + D2) | D1]
= & (D1/V/3) = Pa(A). (50)

Note that P(A), P1(A), and P>(A) are naturally calibrated. A training sample of size
M = 10,000 is generated by simulating D1, D, and Y. The prior is the constant
value pg = E[p] = 1/2. Table 4 presents the log-likelihood, the BIC and the Brier
scores with their reliability and sharpness component for different pooling formula.
The log-likelihood is computed according to

M
L= y™mP"A)+(1-Y™)In(1- P (A)).

m=1

For the sake of comparison, it is also computed for P;(A) and P2(A) = P(A |
D1, Dj). The model with the lowest Brier score, or with the lowest BIC should be
preferred. In the case of binary events, remember that the log-linear pooling and Bor-
dley/Tau model are equivalent, and that the Nu model is the generalized log-linear
pooling formula with weights w; =1 for alli =1, ..., n. Optimal weights were ob-
tained with the maximum likelihood approach described in the previous section, with
the additional constraints of equality w; = w» to account for the symmetry between
D1 and D;. For the same reason, for the BLP parameters, we imposed o« = 8. From
Table 4, one can see that although P; being calibrated, it lacks sharpness. The exact
conditional probability Pj; is the best achievable prediction: it has the lowest log-
likelihood, the lowest Brier score and the highest sharpness. Linear pooling has a
lower Brier score than a single information, but at the price of a loss of calibration,
and it lacks sharpness. It has the highest BIC among all models considered. As ex-
pected from Ranjan and Gneiting (2010), BLP is well calibrated with a high sharpness
and the BIC decreases dramatically. Note that the parameter « is quite high, indicat-
ing that a strongly unimodal Beta density is necessary to calibrate the linear pooling.
Among the multiplicative pooling formula, maximum entropy performs surprisingly
well considering that it is parameter free. This is probably due to the fact that D and
D, are drawn independently. Introducing one parameter in the pooling formula, ei-
ther for the Nu model or for the log-linear formula decreases the Brier score and the
log-likelihood when they are estimated using maximum likelihood, while they can
increase when the parameters are away from their optimal values (results not shown
here). The log-linear formula leads to the best scores. In particular, it is almost per-
fectly calibrated. The generalized log-linear formula shows slightly better scores. The
lowest BIC is obtained for the log-linear formula, indicating that the extra parameter
in the generalized log-linear formula is not significant (note that its value is very close
to 1).

6.2 Second Binary Case: Truncated Gaussian Model with Three Data Points

We consider now a truncated model with three data points similar to the construction
described in Chugunova and Hu (2008). The prediction point sq is located at the
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Table 4 First binary case: two sources of close to independent information

Weight Param. —Log-lik BIC BS REL SH
Py - - 5751.5 0.1973 0.0011 0.0538
Py - - 4135.7 0.1352 0.0010 0.1158
Lin. - - 5208.7 10417.3 0.1705 0.0346 0.1141
BLP - a=79 4168.7 8346.5 0.1362 0.0011 0.1148
ME - - 5028.7 10057.3 0.1391 0.0045 0.1154
Nu - v=0.99 4294.8 8598.9 0.1388 0.0043 0.1155
Log-lin. 1.46 - 4139.4 8289.0 0.1353 0.0010 0.1156
Gen. Log-lin. 1.46 v=0.99 4138.8 8296.1 0.1354 0.0008 0.1154

Notes: Maximum likelihood weight and parameter, negative Log-likelihood, BIC, Brier score (BS), re-
liability term (REL), and sharpness (SH) for different pooling formulas: Linear pooling (Lin.), Beta-
transformed Linear Pooling (BLP), Maximum Entropy (ME), Nu-model (Nu), Log-linear pooling, and
Generalized Log-linear pooling

origin. The location of the three data points are defined by their distances (d1, d2, d3)
and their angles (61, 6>, 63) with the horizontal axis. We consider a random function
X (s) with an exponential covariance matrix; the range is set equal to 1 throughout.
We define a threshold ¢ and we are interested in the event A = {X (sg) <t — a} given
the information D; = {X (s;) <t}, i = 1,2,3. Since we know the full model, all
conditional probabilities can be numerically computed. A total of 10,000 thresholds
t are drawn according to a (0, 1) Gaussian random variable, and we set a = 1.35.
A Gaussian random vector (X (s;));=o,....3 is then simulated conditionally on X (s;) <
t, for i =1,2,3. With this setting, we sample the whole range of probabilities for
the event A = {X (so) <t — 1.35}, which on average will be close to 0.5. Figure 1
shows the histograms of the marginal and the conditional probabilities of A in one
of the cases considered below. Clearly, the whole range of probabilities is sampled,
allowing us a good calibration of the different pooling formulas.

6.2.1 Equal Distance: Symmetrical Information

In this experiment, the three data points s1, s2, s3 are located on a circle of radius
equal to the range, s being on the horizontal axis, hence Cor(X (sg), X (s;)) = 0.37
for all s;. We thus impose an equal weight to each data. The angles between s 3 and
s1 are set equal to 7r/3. Results are presented in the top part of Table 5. The Brier
scores, very close to each other, are not a good criterion for assessing the quality of
a pooling formula. The log-likelihood shows a more contrasted behavior. Because of
the symmetry, the linear pooling is equivalent to a single source of information. It
is, by far, the poorest pooling method. A Beta transform improves the performances.
The log-likelihood of BLP is intermediate between those obtained with Py and Pp5.
BLP has the lowest reliability term and a high sharpness. Among the multiplicative
formula, the Maximum entropy is the poorest pooling method; the Log-linear pool-
ing (symmetrical weights equal to 0.75) performs significantly better than the Nu
model. It has the lowest Brier score. It shares with BLP the lowest reliability term
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Fig. 1 Histograms of P(A), P(A| Dy), P(A | Dy, D), and P(A | Dy, Dy, D3)

and a slightly better sharpness. Its log-likelihood is however significantly higher. The
generalized log-linear model achieves a likelihood equal to the true conditional dis-
tribution but higher BIC than log-linear pooling and a v parameter very close to 1 are
a strong indication of over-fitting.

6.2.2 Different Distance: Uneven Information

In this situation, the three points are at distances (d1, d2, d3) = (0.8, 1, 1.2). The dis-
tances being different, we will consider different weights for the three sources of
information. For comparison purposes we will also include equal weight solutions.
Results are shown in the bottom part of Table 5. The method with the best indicators
related to the Brier score is the BLP. Interestingly, the optimal solution consists in
having a 100 % weight for the closest source of information and null weights for all
others. It is also the case for the log-linear pooling. When equal weights are imposed
for the log-linear pooling formula, the Brier score and the log-likelihood remain al-
most identical; but because the number of free parameters decreases, the BIC reaches
a minimum. In this example, the Brier score and the logarithmic score lead to differ-
ent selected models. BLP has the lowest Brier score and reliability term and highest
sharpness, while the log-linear formula have lower log-likelihood.
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Table 5 Second binary case: truncated Gaussian model with three symmetrical sources of information

Weight Param. —Log-lik  BIC BS REL SH

Same distance

P - - 57822 0.1943  0.0019  0.0573
P - - 5686.8 0.1939  0.0006 0.0574
P12 - - 5650.0 0.1935  0.0007  0.0569
Lin. - - 5782.2 115644  0.1943  0.0019 0.0573
BLP - a=067 5704.7 114187  0.1932  0.0006  0.0570
ME - - 5720.1 114402 0.1974  0.0042  0.0564
Nu - V=093 5695.9 11391.8  0.1952  0.0021  0.0566
Log-Lin. 0.75 - 5651.4 113120 0.1931  0.0006 0.0571
Gen. Log-Lin.  0.71 v=103 5650.0 113183 0.1937  0.0008  0.0568

Different distances

P - - 5786.6 0.1943  0.0022  0.0575
Pi - - 5730.8 0.1927  0.0007  0.0577
P13 - - 5641.4 0.1928  0.0009  0.0579
Lin.eq (1/3,1/3,1/3) - 5757.2 115144  0.1940  0.0018  0.0575
Lin. (1,0,0) - 5727.2 11482.0  0.1935 0.0015 0.0577
BLP (1,0,0) a=0.66 5680.5 11397.8 01921  0.0004  0.0580
ME - - 57277 114554 0.1972  0.0046  0.0571
Nu - V=092 5791.4 11592.0  0.1950  0.0023  0.0570
Log-Lin-eq.  (0.72,0.72,0.72) - 5646.1 113014 0.1928 0.0006 0.0576
Log-Lin. (1.87,0,0) - 5645.3 113183 0.1928  0.0007  0.0576
Gen. Log-Lin.  (1.28,0.53,0) v=1.04 5643.1 11323.0  0.1930  0.0010  0.0576

Notes. Same abbreviations as in Table 4. In addition: Lin-eq stands for linear pooling with equal weights;
Log-Lin-eq is a log-linear formula with equal weights

6.3 Third Binary Case: Boolean Model with Four Data Points

We simulated in the unit cube a Boolean model of spheres with radius r = 0.07.
Let us denote X (s) its void indicator function and A the mean number of spheres
per unit volume. Then it is well known (Lantuéjoul 2002) that the void probabil-
ity is g = P(X (s) = 1) = exp{—AV}, with V = 4773 /3. The prediction point s is
randomly located in the unit cube and the information points s;, i =1, ..., 4 are ran-
domly located around sp: two points are in the horizontal plane at a x and y distances
uniformly drawn between 0.004 and 0.02, and two other points are similarly located
in a vertical plane. The conditional probabilities are easily computed in this model

P(X(s0)=11X(s1) = 1) = k- (h),

P(X(0) =11 X6 =0) = 72— (1 =k ()
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Table 6 Binary case: Boolean model with four symmetrical data points

Weights Param. —Log-lik BIC BS REL SH
Py - - 29859.1 59718.2 0.1981 0.0155 0.0479
P; - - 16042.0 32084.0  0.0892 0.0120 0.1532
Lin. ~0.25 - 14443.3 28929.9 0.0774 0.0206 0.1736
BLP ~0.25 (3.64,4.91) 9690.4 19445.7 0.0575 0.0008 0.1737
ME - - 7497.3 14994.6 0.0433 0.0019 0.1889
Nu - v=0.96 7491.3 14993.4  0.0432 0.0018 0.1890
Log-Lin ~0.80 - 7178.0 14399.3 0.0416 0.0010 0.1897
Gen. Log-Lin. ~0.79 v=1.04 7172.9 14399.9 0.0417 0.0011 0.1898

Notes. Abbreviations as in Table 4. In addition, BLP(2) is the Beta-transformed Linear Pooling with « # 8

with k. (h) = exp{AV[—1.5||k|/r + 0.5(||k|l/r)?1}. The parameter A is also made
random such that ¢ is uniformly distributed in [0.05, 0.95], thus allowing a good
measure of the calibration. We performed a total of 50,000 repetitions. Results are
presented in Table 6. Since there is a symmetry between the data points, the op-
timal parameters were equal (up to small statistical fluctuations) for the four data
points.

On this example the linear pooling of the four data leads to scores only slightly
better than considering only one data point. As usual, BLP is a real improvement.
The prediction is calibrated and the Brier score is improved. Perhaps surprisingly, the
sharpness is only slightly improved, as compared to the linear pooling. Even more
surprising is the quite good performance of maximum entropy. This is perhaps due to
the Markovian nature of the Boolean model for which conditional expectation is not a
poor approximation. The Nu model performs only marginally better than Maximum
entropy. BICs are very close and v 2~ 1, indicating that this parameter is not really
necessary. Log-linear pooling leads to the lowest Brier score. It is almost perfectly
calibrated and very sharp. Generalized log-linear pooling has slightly better scores,
but at the cost of one additional parameter. Hence, BIC is the lowest for log-linear
pooling.

The calibration curve of the four pooling formulas are shown in Fig. 2. On these
plots, deviation from the first diagonal indicates a lack of calibration. It is visible for
the linear pooling and the maximum entropy. BLP and log-linear pooling have close
to calibrated curves. All in all, in this example, log-linear pooling presents the best
performances which are significantly better than those of BLP.

6.4 Trinary Events

We keep the same geometrical configuration as in Sect. 6.2. The trinary events are
defined by means of two independent (0, 1) Gaussian random functions U (s) and
V (s). The category C(s) will depend on U (s) and V (s) according to the following
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Fig. 2 Calibration curve for the Boolean simulation. BLP and log-linear formulas are computed with their
optimal parameters. Deviation from first diagonal indicates lack of calibration

scheme
I(s)=1 ifU(s)<tand V(s) <t, (€28
I(s)=2 ifU(s)>tand U(s) > V(s), (52)
I(s)=3 ifV(s)>tand U(s) <V (s), (53)

where ¢ is a threshold. The marginal probabilities are the following. First, P(I =k) =
P(U <t)P(V <1t) = G2(t) where G(-) denotes the cpf of a (0,1) Gaussian random
variable, and g(¢) its density. Then symmetry imposes P (I =2) = P(I = 3), which
leads to P(I =2)=0.5[1 — P(I =1)] =0.5[1 — G2(¢)]. The conditional probabili-
ties P(I(so) | I(s;)) are detailed in Appendix B.

The thresholds ¢ are drawn such that the probability of category 1 is uniformly
sampled between 0.1 and 0.8. A total of 20,000 random samples were drawn. It
should be remembered that for trinary experiments, the equivalence between methods
based on the product of probabilities and those based on the product of odds is lost. It
is thus necessary to distinguish between these methods. The Nu-1 route corresponds
to a product of probabilities updated by a likelihood on the events, while the Nu-2
route corresponds to a product of odds updated by odds. As expected, linear pool-
ing does not perform well (Table 7). We had some difficulties with BLP, which does
not have a straightforward generalization to non-binary events. We chose to pool the
three events together. The consequence is that the same parameters were applied to
the three categories, which is certainly not optimal. A generalized version, with one
parameter per category would probably lead to better performances. ME and v(1) do
not perform well at all. The reason being that they lead to probabilities very close
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Table 7 Trinary event

—Log-lik BIC BS REL SH
Lin. 24123.8 24123.9 0.2219 0.0271 0.0262
BLP 21517.9 43045.8 0.2187 0.0218 0.0241
ME 44358.3 88716.6 0.2736 0.0780 0.0254
Nu-1 44278.0 88575.9 0.2770 0.0812 0.0253
Log-Lin. 18744.4 37518.6 0.1890 0.0025 0.0345
Gen. Log-Lin. 18554.1 371578 0.1868 0.0004 0.0351
Bordley/Tau 18846.1 37721.9 0.1904 0.0019 0.0325
Nu-2 21732.6 43494.8 0.2242 0.0300 0.0269
GLO 18733.2 37525.8 0.1896 0.0011 0.0326

Notes. Same abbreviations as in Table 4 and in addition: Nu-1 and Nu-2, two possible routes for general-
izing the Nu model for K > 2; GLO, generalized log-linear pooling of odds

to 0 or 1, thus strongly penalizing the scores when the prediction is wrong. Methods
based on the product of probabilities tend to perform better than the corresponding
ones based on the product of odds. The optimal method is the Generalized log-linear
pooling formula (Table 7). Unlike the binary case, the extra parameters of this model,
as compared to log-linear pooling, offers the flexibility needed to fit to non-binary
outcomes. The generalized log-linear pooling of odds is a model, not yet proposed
in the literature, that combines w;, the weights on the sources of information with
the parameters v(A). It performs slightly better than the Bordley/Tau model, but it is
outperformed by the generalized log linear model on probabilities.

7 Discussion and Conclusions

We reviewed a majority of methods proposed in the literature for aggregating prob-
ability distributions with a focus on their mathematical properties. By doing so, we
were able to better understand the relationships between these methods. We were able
to show that conditional independence is equivalent to a particular maximum entropy
principle. It is also equivalent to a Nu model with v(A) =1 for all A € A and to a
log-linear formula with w; = 1 for all sources of information. We showed that binary
experiments must be distinguished from non-binary ones. In the latter case, the equiv-
alence between Bordley/Tau models (based on odds) and log-linear pooling (based
on probabilities) is lost. For this case also, there are two different ways for gener-
alizing the Nu model. The comparison study, illustrated in Table 2, leads us to the
definition of one model that has not yet been proposed in the literature: this model
would combine weights w; and v(A) on odds. It would be at the same time a gen-
eralization of the Tau model and a generalization of the Nu-2 model. This could be
called a generalized log-linear combination of odds.

When training are available, maximum likelihood provides an efficient method
for estimating the parameters of any chosen model. Our main result is Theorem 1,
which states that for (generalized) log-linear poolings, calibration implies parameters
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estimated with maximum likelihood. The converse is not true in all generality, but
it is verified for some probability models. All simulated examples have shown that
log-linear pooling formula with parameters estimated with ML are very close to be
calibrated. On one example, log-linear pooling achieved better calibration than the
Beta-transformed linear pooling proposed in Ranjan and Gneiting (2010).

On simulations, we were able to show that quadratic and logarithmic scores (the
Brier score and the likelihood, or its penalized version BIC) are efficient tools for
determining the models leading to the best forecasts. They usually increase or de-
crease together. However, sometimes they do not lead to the same selected model.
Maximum likelihood is related to the logarithmic score and to the Kullback—Leibler
(KL) divergence. Maximizing the likelihood, which is equivalent to minimizing the
KL divergence to the true unknown conditional probability, does not always lead to
the lowest Brier score. But in this case, it is very close to the minimum. In particular,
the reliability term REL will always be very close to O for the (generalized) log-linear
pooling with parameters estimated with maximum likelihood.

A first conclusion of this study is that linear methods should not be used alone
for aggregating probability distribution. They can be used if re-calibrated with a Beta
transformation whose parameters must be estimated, but methods based on product
of probabilities should be preferred. Simulations presented here and other ones not
presented here (Comunian 2010) have shown that among methods based on multipli-
cation, the Nu model performs generally worst than any other method. This can be
explained from the equations: the parameters v(A) act as a likelihood on the events
regardless of the information at hand, while other methods provide a transformation
of the conditional probabilities which accounts for the redundancy or the interac-
tion between information. This study also indicated that methods based on product
of odds (Tau model) are not to be recommended. For binary events, they are equiv-
alent to those based on product of probabilities. For non-binary events they usually
perform less well.

The main conclusion of this study is thus the following: for aggregating probability
distributions, methods based on product of probabilities (in other words linear com-
binations of log-probabilities) should be preferred. First, they are easy to implement
and to understand. Second, their parameters are easy to estimate using maximum
likelihood. According to Theorem 1, if a log-linear pooling formula is calibrated, it is
the solution of the maximum likelihood estimation. On all simulations performed so
far, we found that log-linear pooling formulas lead to excellent predictions, (slightly)
better than or equal to BLP predictions. If no data is available, the parameter free
maximum entropy solution is an acceptable approximation. This has profound im-
plications on the practice of spatial prediction and simulation of indicator functions.
It implies that the kriging paradigm based on linear combinations of bivariate prob-
abilities and its sequential indicator simulation (SIS) counterpart should probably
be replaced by a different paradigm based on the product of probabilities. Allard
et al. (2011) arrived at a somehow similar conclusion. We hope that this contribu-
tion, together with those cited in this work, will help geoscientists to adopt this new
paradigm.
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Appendix A: Maximum Entropy

Let us define Q(A, Dy, D1, ..., D) the joint probability distribution maximizing its

entropy H(Q) = — ZAeA Q(Dy, Dy, ..., Dy)(A)In Q(Dy, Dy, ..., D;)(A) subject
to the following constraints.

1. Q(A, Dg) = Q(A | Dy)Q(Dgy) ox Py(A), forall A € A.
2. Q(A, Dy, D;) = Q(A | D;)Q(D;)Q(Dg) o P;(A), for all A€ A and all i =
1,...,n.

We will first show that
n
Q(A, Do, Di. ..., Dy) o Po(A)' " [ ] Pi(A),
i=1

from which the conditional probability

P (Py, P P,) = O(A, Dy, Dy, ..., Dy)
G(Po, Py,..., Py >4 0(A, Do, Dy, ..., Dy)

__PW)TTL, Pi(A)
Yo Po(A) T, Pi(A)

is immediately derived. For ease of notation, we will use »_ 4 as a short notation for

ZAEA'

Proof The adequate approach is to use the Lagrange multiplier technique on the ob-
jective function

J=-)"0Q(A.Dy.Dy.....Dy)InQ(A, Do, Di. ... Dy)
A

+ > na{Q(A, Do) — aPy(A)}
A

+ ) 2ai{Q(A, Do, D)) — bi Pi(A)},

i=1 A

where a4 and A4 ; are Lagrange multipliers. For finding the solution Q optimizing
the constrained problem, we set all partial derivatives to 0. This leads to the system
of equations

n
INQ(A.Do.Di,.... D) =—=1+> pa+Y > Aai. (54)
A

A i=1
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Q(A, Do) = aPy(A), (55)
O(A, Dy, D;) = b; P;(A), fori=1,...,n. (56)

From Eqgs. (54) and (55), we get

Q(A, Do) ="' [ [ e o Po(A).
A

Similarly, from Eqgs. (54) and (56), we get

Q(A, Do, Di) = Q(A, Do) [ [ "4 o Pi(A), fori=1.....n,
A

from which we find

HE)LA'iOCPI(A)/PO(A)’ fori=1,...,n.
A

Plugging this in Eq. (54) yields

n

P; (A
Q(A, Dy, Dy, ...,Dy,) x Py(A) 1_[ POEA;
i=l

Hence,
Q(A7 DO: Dlv cery DVL)
ZA Q(Av D07 Dla RN} Dl’l)

__PAWTTL Pi(A)
a Po(P)! = Ty Pi(A) =

PG(PO,P],...,PH)(A)Z

Appendix B: Conditional Probabilities for the Trinary Event Example

1. Let us first compute the conditional probability

P(I(sY=111(s)=1)=P(U' <1,V <t|U =<1,V <1)

(
(U'<t,V <t,U<t,V<1t)/PU=<t,V<t)
(
2
2

U'<t,U=<t)P(V <1,V <1)/[P(U=<0)P(V <1)]

Il
Q v v

(t,1; p)/ G*(1),

where G%(t, t; p) is the bivariate cpf of a (0, 1) bi-Gaussian random vector with
correlation p. For symmetry reasons, one has P(I(s") =2 |1(s)=1)= P(I(s)) =
3| I(s) = 1), from which it follows immediately
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P(I(¢s"y=2|1(s)=1)=P(I(sh)=3|1(s)=1)
=0.5[1 - G3(t,1; p)/ G*(1)].

2. We consider now

P(IGsH)=1
==
2 . 2
=0,5|:1_G2(’:f:/0)] G*(1)
G%2(t) ]0.5[1 —G2(1)]
_ GX(0)—G3(1,1; p)
T 1-G

3. The picture is slightly more complicated for P(I(s") =2 | I(s) =2)

P(I(s)=211(s)=2)
=PU'>1t,U >V U>t,U>V)P(I(s)=2)

400 p4o0 u' u
= 0.5[1 — Gz(t)]/ / gz(u, u'; p)/ / gz(v, v’ p)dvdv/dudu/
t t —00 J —00

=0.5[1-G*(n] T ; ; ’
=0. gz(u, u ,p)Gz(u, u ,p)dudu .
t !

There is no closed-form expression for the double integral which must be evaluated
numerically. Then P(I(s") =3 | I(s) = 2) is computed as the complement to 1.

4. The conditional probabilities of I (s”) given that I (s) = 3 are then obtained by
symmetry.
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