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s u m m a r y

Water is critical for economic growth in coastal areas. In this context, desalination has become an
increasingly important technology over the last five decades. It often has environmental side effects,
especially when the input water is pumped directly from the sea via intake pipelines. However, it is gen-
erally more efficient and cheaper to desalt brackish groundwater from beach wells rather than desalting
seawater. Natural attenuation is also gained and hazards due to anthropogenic pollution of seawater are
reduced. In order to minimize allocation and operational costs and impacts on groundwater resources, an
optimum pumping network is required. Optimization techniques are often applied to this end. Because of
aquifer heterogeneity, designing the optimum pumping network demands reliable characterizations of
aquifer parameters. An optimum pumping network in a coastal aquifer in Oman, where a desalination
plant currently pumps brackish groundwater at a rate of 1200 m3/h for a freshwater production of
504 m3/h (insufficient to satisfy the growing demand in the area) was designed using stochastic inverse
modeling together with optimization techniques. The Monte Carlo analysis of 200 simulations of trans-
missivity and storage coefficient fields conditioned to the response to stresses of tidal fluctuation and
three long term pumping tests was performed. These simulations are physically plausible and fit the
available data well. Simulated transmissivity fields are used to design the optimum pumping configura-
tion required to increase the current pumping rate to 9000 m3/h, for a freshwater production of 3346 m3/
h (more than six times larger than the existing one). For this task, new pumping wells need to be sited
and their pumping rates defined. These unknowns are determined by a genetic algorithm that minimizes
a function accounting for: (1) drilling, operational and maintenance costs, (2) target discharge and min-
imum drawdown (i.e., minimum aquifer vulnerability) and (3) technical feasibility of the solution. The
performance of the optimum pumping network is compared to that of a synthetic, tradition-based
hand-delineated design, where optimization is not performed. Results show that the combined use of sto-
chastic inverse modeling and optimization techniques leads to minimum side effects (e.g., drawdowns in
the area are reduced substantially) and to a significant reduction of allocation and operational costs.

� 2008 Elsevier B.V. All rights reserved.

Introduction

Approximately 44% of the world’s population inhabits coastal
areas, which represents more than the total world’s population in
1950. Water is a critical factor for economic growth in these areas.
Among the techniques devoted to providing freshwater in coastal
areas, desalination has become increasingly important, especially
during the last five decades. Actually, Delyannis (2003) found the
first reference to desalination in the Bible (Exodus, 15:25; it reads
of how Moses and the people of Israel came upon the waters of
Merra, which were bitter: ‘‘And he cried onto the Lord. And the
Lord showed him a wood and he put it into the water and the

water became sweet”). Being a simple technique, the use of desa-
lination has spread worldwide since 1950. Currently, growth is ex-
pected to be of 61% over a five-year period (from 39.9 million m3/d
at the beginning of 2006 to 64.3 million m3/d in 2010 and 97.5 mil-
lion m3/d in 2015; GWI, 2006). However, the use of desalination is
often controversial, for economic and environmental reasons. Dis-
advantages of desalination are the discharge of residuals, such as
concentrated brine, back to the sea and an extremely high energy
demand, which can add a significant contribution to greenhouse
gas emissions. Often, input water is pumped directly from the
sea through intake pipelines. This causes depletion of marine life
(Dickie, 2007) due to impingement (i.e., death or injury due to con-
tact with intake structures) and entrainment (i.e., marine life
‘‘sucked” by intake pipelines). Additional shortcomings are the
large cost of off-shore constructions and the need for a prior filtra-
tion of seawater. These disadvantages prompted the development
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of new strategies. Desalting brackish groundwater from beach
wells is usually more efficient (and therefore cheaper) than desalt-
ing seawater because (1) there is less suspended matter, so the fil-
tration processes (and consequently the cost of necessary
infrastructures) are reduced and (2) the pH of brackish groundwa-
ter is about 7 (8–9 for seawater), so no neutralization or additional
chemical treatment is necessary. In addition, one gains natural
attenuation and hazards due to anthropogenic pollution of seawa-
ter are reduced. Nowadays, desalted brackish water represents 24%
of the worldwide freshwater production (GWI, 2005).

In this context, the environmental impacts and the cost of
pumping brackish groundwater can be minimized by using optimi-
zation techniques (Gorelick, 1983; Ahlfeld and Heidari, 1994; Wag-
ner, 1995). For coastal aquifers, these techniques have been applied
either to optimize freshwater pumping networks (Cheng et al.,
2000; Mantoglou, 2003) or to design remediation systems (Ahlfeld
and Mulligan, 2000; Abarca et al., 2006). Here, we use optimization
techniques to design a pumping network for brackish groundwa-
ter. The aim is to achieve a target discharge while minimizing
the environmental side effects and the demand of energy, thus
minimizing the total cost of the solution. An important feature of
the design is that it must be reliable regardless of the degree of
aquifer heterogeneity and the corresponding uncertainty.

The need for a reliable design under uncertainty motivated the
use of stochastic approaches, as opposed to single ‘best’ determin-
istic models (see reflections in Tarantola, 2005, 2006; Renard,
2007b). For coastal aquifers, Alcolea et al. (2007) integrated tidal
fluctuation and injection tests in a stochastic model yielding a sin-
gle ‘best’ estimation of the transmissivity and storage coefficient
fields. Since tides can be viewed as large-scale aquifer tests, they
provide large-scale information on aquifer diffusivity and connec-
tivity patterns. Hydraulic tests improve the identification of local
connectivity (Carrera and Neuman, 1986b; Meier et al., 1998;
Weiss and Smith, 1998) and allow resolving diffusivity into trans-
missivity and storage coefficient (Carrera and Neuman, 1986a; Rot-
ting et al., 2006). In addition, geostatistical joint interpretation of
data at all boreholes provides a continuous description of the con-
nectivity structure (i.e., of diffusivity), rather than point values of
effective diffusivity at a given set of boreholes (Li et al., 2007). Also
the Monte Carlo type inverse framework is used frequently for the
simulation of transmissivity fields. Yet, little attention has been
paid to the joint simulation of transmissivity and storage coeffi-
cient (Hendricks Franssen et al., 1999).

The objective of this paper is to demonstrate through a case
study in Oman how stochastic modeling for aquifer characteriza-
tion and non-linear optimization techniques can be applied to
achieve a reliable design that can reduce both the environmental
impacts of a desalination plant and minimize the costs of allocation
and operation of the pumping system. The methodology suggested
by Alcolea et al. (2007) is extended to a Monte Carlo inverse frame-
work and is used to characterize the spatial variability of both
transmissivity and storage coefficient fields from the response to
tidal fluctuation and to three long term pumping tests. In that
manner, 200 equally likely simulations are conditioned to available
data using the regularized pilot points method (Alcolea et al.,
2006a,b). The 200 simulations are physically plausible and fit the
available data well. Next, transmissivity fields are used to deter-
mine the optimum pumping configuration using a genetic algo-
rithm (Popov and Filipova, 2004; Popov, 2005) that minimizes a
function accounting for: (1) the cost of allocation of wells and their
maintenance, (2) the cost of electricity, which depends on draw-
downs (i.e., minimum aquifer vulnerability) and (3) the technical
feasibility of the solution, because only three different types of
pump can be used.

The paper is organized as follows. First, the site is introduced.
Second, the application of the characterization methodology is de-

scribed and the results of the Monte Carlo analysis of the transmis-
sivity and storage coefficient fields are displayed. The value of
stochastic modeling is analyzed by comparing the outcomes of
the conditional simulations with the ‘single best’ characterization
obtained by conditional estimation. From that starting point, a
description of the optimization procedure and the (single) opti-
mum pumping configuration is presented. We then test the benefit
of using optimization by comparing the performance of the opti-
mum pumping configuration with the one obtained using a syn-
thetic, tradition-based, hand-delineated pumping network (i.e.,
no optimization is performed for the latter case). Last, some con-
clusions and recommendations are summarized.

Site description and conceptual model

The study area is located on the coast of Oman. The site is occu-
pied by a desalination plant (Fig. 1). Brackish groundwater is
pumped from beach wells at a rate of 1200 m3/h, for a freshwater
production of 504 m3/h. The purpose of the underlying study is to
design a pumping network that will allow increasing the overall
pumping to 9000 m3/h. This will provide a total freshwater pro-
duction of 3346 m3/h, sufficient to satisfy the growing demand of
potable water.

The aquifer is made of sub-horizontal layers of early Palaeo-
cene–Eocene fossiliferous limestone with interbedded conglomer-
ates laying on top of a marl deposit. Surface observations show a
primary porosity in the limestone due to the lack of compaction
of the sediment. Limestone often presents karstic cavities, some-
times filled with sandy silt. Thus, it is expected that most of the sec-
ondary porosity is due to karstification processes, suggesting the
presence of highly diffusive conduits in the area. This hypothesis
was partially confirmed by a preliminary geophysical campaign
(Fig. 1). Electrical resistivity data display the presence of structures
with a clear orientation toward North. However, hydraulic conduc-
tivity of these bodies could not be inferred directly from resistivity
data due to the presence of brackish water, both in the highly per-
meable (karstified zone) and in the clayey areas.

A preliminary drilling campaign revealed that groundwater in-
flows towards wells are located far underneath the groundwater
table. In addition, short pumping tests after drilling provided rela-
tively high estimates of transmissivity (between 0.01 and 0.3 m2/s)
not correlated with the saturated thickness. This clearly indicates
that transmissivity is governed by the karstic features in depth
but not by the rock matrix. Another important observation is that
groundwater is brackish all over the site. This is confirmed by the
set of measurements of electrical conductivity at available bore-
holes, which are very similar to that of local seawater. This is ex-
plained by the extremely low amount of recharge in the area. In
fact, the interface between fresh and brackish water is located sev-
eral kilometers inland. These two observations show that it is rea-
sonable to, first, neglect 3D density effects and, second, to assume
that the transmissivity does not depend on head variations. This al-
lows us to use a linearized 2D approximation of the groundwater
flow equation. As a consequence, the superposition principle ap-
plies during both the characterization and optimization stages.
This greatly accelerates all calculations. Yet, it is worth mentioning
that the techniques used in this paper can also be applied (without
too much modification) if the non linear groundwater flow equa-
tion is considered. In fact, we assume that the head variations
are small relative to the aquifer thickness.

Hydraulic characterization of transmissivity and storage
coefficient fields

The following is a detailed description of the characterization
methodology, which includes data filtering, well testing and sto-
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chastic inversion. First, 200 simulations of the transmissivity and
storage coefficient fields are conditioned to transmissivity, storage
coefficient and head variation data (i.e., response to tidal fluctua-
tion and to three long term pumping tests; Table 1) and their
uncertainty is evaluated. The four head data sets are arranged in
four independent flow problems, which are analyzed simulta-
neously. Second, for the sake of comparison, we also obtain a ‘sin-
gle best’ solution by conditional estimation to the aforementioned
data sets. This comparison illustrates the uncertainty overlooked
by conditional estimation. Outcomes of these two sets are com-
pared in terms of physical plausibility and fit to head variation
data.

Available data

Absolute pressure (pabs) was automatically recorded at the sea-
shore (sensors SEA-1 and SEA-2) and at 10 boreholes (Fig. 1) every
30 s. Sensor SEA-2 served only as a backup in case of failure of SEA-
1. First, very high frequency fluctuations of sea level due to waves

and wind were filtered out as they are assumed not to propagate
far away within the aquifer due to dampening effects and because
the aquifer works as a high pass filter. A moving average algorithm
was used to that end. Next, filtered measurements were trans-
formed into relative pressures by subtracting the barometric
pressure (prel = pabs � pbar), monitored with the same frequency at
sensor BAROM. Next, relative pressures were transformed into
pressure heads (prel/c, where c is the specific weight of groundwa-
ter). Average specific weight at available boreholes was 1021
kg/m3, very similar to that of local seawater (i.e., the entire study
area has already been intruded by seawater). Finally, heads are
calculated as the sum of pressure heads and sensor elevation. This
is obtained as the difference between the elevation of a reference
point at the well (e.g., top of casing) and the sum of the absolute
pressure and the groundwater depth (dipped manually) at a given
time in absence of pumping. It is good practice to calculate the
sensor elevation at different times, corresponding to low, mean
and high tide to ensure unbiasedness and statistical coherency of
the methodology.

Working with head fluctuations

Tidal response is expressed in terms of variation with respect to
natural heads. This simplifies the boundary and initial conditions
of the stochastic model, as one needs to simulate only the head
variations induced by sea level fluctuations, but neither the regio-
nal flows nor the existing pumping of the desalination plant. To
this end, head measurements at every borehole were corrected
by subtracting their mean value. This operation simply shifts the
recorded signal towards the horizontal axis (i.e., zero head fluctu-
ation). Thus, if the signal at a well is coherent, head variations are
bounded by sea level fluctuations. Calculated heads at sensors

Table 1
Data sets available for conditioning the stochastic model. Measurement periods of
pumping tests include the recovery. Transmissivity and storage coefficient measure-
ments arise from the (conventional) prior interpretation of hydraulic tests.

Data in response to Monitored
period (days)

Monitored wells OB – (Fig. 1)

Tidal fluctuation 7 1, 3, 5, 8, 10, 13, 15, 16, 18, 20
Pumping test at OB-6 4 1, 3, 5, 6, 8, 9, 10, 13, 14, 15, 16, 18, 20
Pumping test at OB-15 2 1, 3, 5, 8, 9, 10, 13, 14, 15, 16, 18, 20
Pumping test at OB-16 2.5 1, 3, 5, 8, 9, 10, 12, 13, 15, 16, 17, 18, 20
Transmissivity – All
Storage coefficient – 1, 3, 4, 5, 9, 10, 12, 13, 14, 15, 16

Fig. 1. Site description, observation (OB) and current production beach wells (BW). Some observation wells were automatically monitored and are depicted by black dots.
Two sensors (SEA-1 and SEA-2) were located at the sea-shore for measuring the sea level fluctuation. A barometer (depicted by a star) was located at the old desalination
plant. The background image depicts the ensemble mean of 100 simulations of (vertically integrated) electrical resistivity arising from a preliminary geophysical campaign.
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SEA-1 and OB-1 are displayed in Fig. 2. The large amount of data
(�246,000 at every borehole) demands prior filtering consisting
of the selection of one measurement every 15 min. This makes
the data set manageable while allowing the selected measure-
ments to capture the temporal variability of heads (Fig. 2).

Analysis of the tidal response

Analysis of the tidal response measured during two months be-
fore the start of the pumping tests allows us to estimate point val-
ues of effective diffusivity (Deff = T/S, being T transmissivity and S
storage coefficient). It is worth mentioning that diffusivity values

at monitored boreholes will not be used as hard data for condition-
ing the stochastic model. Yet, they are valuable for checking the
plausibility of the simulations. We follow roughly the steps of
the tidal response method (TRM hereinafter, Jacob, 1950; Ferris,
1951; Hvorslev, 1951):

DHi
well ¼ DHi

sea exp �
ffiffiffiffiffiffiffiffiffiffiffiffi
px2

ti
0Di

eff

s !
ð1Þ

where DHsea and DHwell are the amplitudes of head fluctuations at
the sea and at a well at distance x inland from the coast, respec-
tively, and t0 is the period of the sea level fluctuation. A multi-com-

Fig. 2. Filtering the sea level fluctuation. Grey dots depict the measured sea level oscillation, containing high frequency fluctuations (i.e., due to waves and wind). The solid
line is the result from a moving average filter for removing those undesired fluctuations. Finally, one measurement every 15 min is selected (black dots). Dashed line depicts
the filtered head variation at observation well OB-1.
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ponent analysis is carried out considering the main harmonics ‘i’ of
the sea level fluctuation. Five main harmonics were considered,
with dominance of the semi-diurnal lunar principal wave (M2). Cor-
responding amplitudes were identified by analyzing the Fourier
spectrum of the sea level fluctuation measured at sensor SEA-1
(Fig. 3). Following the same procedure, the corresponding harmon-
ics of measured signals at monitored wells were identified. Next,
effective diffusivity for a given harmonic can be obtained from Eq.
(1). Table 2 summarizes the geometric average of estimated effec-
tive diffusivities (at monitored wells) using TRM, by prior interpre-
tation of short term pumping tests and by the stochastic model. The
large variability of estimated effective diffusivities confirms the

highly heterogeneous character of the aquifer. A key issue in the
application of TRM is the uncertainty on the knowledge of the dis-
tance between the well and the seashore. In this study, we have as-
sumed the mean surface of seashore as boundary. Yet, the (true)
contact between sea and aquifer should be accounted for. A 3D
analysis of temperature profiles at the seashore may help to locate
that contact.

Prior interpretation of pumping tests

Standard interpretation of drawdown data (i.e., assuming
homogeneity) allows us to obtain a prior estimation of the hydrau-
lic parameters characterizing the aquifer. Unfortunately, hydraulic
test data are not suitable for standard analysis due to the superpo-
sition of pumping and tidal effects (Trefry and Johnston, 1998;
Chen and Jiao, 1999). The difficulty consists of estimating what
should have been the natural heads during the pumping periods.
Several alternatives can be used for separating these effects. Alco-
lea et al. (2007) used kriging with external drift. TRM estimated
diffusivities can also be used to this end. None of these two meth-
odologies yielded good results for available data sets, as confirmed
by cross-validation. Instead, we used records at wells not affected
by pumping and signal filtering algorithms. Natural heads hi

nðtÞ at a
well ‘i’ are estimated by:

(1) Selecting the signal at another (reference) well href(t), such
that, first, signals href(t) and hi(t) are highly correlated in
periods not affected by pumping and, second, href(t) is not
affected by pumping.

(2) Iteratively correcting the amplitude and the phase of href(t):

hi
nðtÞ ¼ a hef ðt � sÞ � hhref i

h i
þ b ð2Þ

where s is the time lag between both signals, <href> denotes
the mean head at reference well, ‘a’ is a dampening factor
of amplitudes and ‘b’ is a constant term that allows us to shift
the heads. Parameters a, b and s are estimated so that the dif-
ferences between the reconstructed signal hi

nðtÞ and the mea-
surements hi(t) are minimal in absence of pumping (i.e., we
fit all measurements before and after pumping periods). Fi-
nally, drawdowns are calculated as the difference between
natural heads and measured heads (See section ‘‘Available
data”). The pumping tests are interpreted by conventional
analysis assuming homogeneous medium. This allows us to
obtain prior estimates of transmissivity and storage coeffi-
cient at monitored wells. These values will condition the sto-
chastic model. Prior interpretation of pumping tests was
carried out using the open-source software HYTOOL (Renard,
2007a), a Matlab plug-in for the interpretation of hydraulic
tests. This toolbox contains analytical solutions used to de-
scribe groundwater radial flow (e.g., Jacob, Boulton, Papado-
poulos-Cooper, etc.), and functions for importing, displaying
and fitting a model to available data. Table 2 summarizes
the estimated values of transmissivity and storage
coefficient.

Measurement errors

Acquisition errors were accounted for by assigning a standard
deviation of 0.005 m to tidal response data (i.e., in absence of
pumping). The filtering process described in previous sections
was also accounted for by assigning a larger standard deviation
of 0.01 m to the estimated drawdowns during pumping periods
(Table 1). Prior information arising from the conventional interpre-
tation of pumping tests was also uncertain. Main sources of uncer-
tainty were the conceptual model (homogeneous) and those
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Fig. 3. Fourier spectrum of the sea level fluctuation and tidal response measured at
sensors SEA-1 and OB-1, respectively. Five main harmonics are identified. From left
to right, these are O1 (influence of lunar declinational diurnal wave), K1 (lunar–
solar declinational diurnal), N2 (larger lunar elliptic semidiurnal), M2 (lunar
semidiurnal) and S2 (solar semidiurnal). The tidal response at OB-1 is almost
immediate, due to the proximity to the sea.

Table 2
Summary of effective diffusivities obtained by the tidal response method, by prior
(conventional) interpretation of pumping tests and by the stochastic model (average
of all simulations).

TRM Pumping tests (HYTOOL) Model

Deff (m2/s) T (m2/s) S (–) Deff (m2/s) Deff (m2/s)

OB-1 0.33 0.16 0.16 1.0 0.37
OB-2 – 0.05 – – –
OB-3 0.95 0.09 0.13 0.70 0.97
OB-4 – 0.33 0.08 4.07 –
OB-5 1.95 0.17 0.21 0.81 1.28
OB-6 – 0.16 – – –
OB-7 – 0.05 – – –
OB-8 3.35 0.18 – – 2.05
OB-9 – 0.05 0.18 0.26 –
OB-10 2.12 0.28 3.8�10�4 737 1.36
OB-11 – 0.19 – – –
OB-12 – 0.05 0.10 0.52 –
OB-13 0.75 0.22 0.16 1.38 0.92
OB-14 – 0.12 0.10 1.20 –
OB-15 0.52 0.03 0.09 0.30 0.41
OB-16 0.40 0.08 0.02 3.33 0.72
OB-17 – 0.05 0.34 0.14 –
OB-18 2.33 0.30 – – 1.58
OB-19 – 0.01 – – –
OB-20 4.85 0.23 – – 1.73
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related to the short duration of the experiments. We assigned
rather large error variances of 3 (in log scale) to the transmissivity
and storage coefficient measurements used for conditioning the
stochastic model (Table 2).

Spatio-temporal discretization

Two finite element codes have been used in this work: TRANSIN
and GROUNDWATER. TRANSIN (Medina et al., 2000; Medina and
Carrera, 2003) solves the geostatistical inverse groundwater flow
and contaminant transport problem. It was used (as modified by
Alcolea et al., 2006a,b) for characterizing aquifer parameters.
GROUNDWATER (Cornaton, 2007) provides an exhaustive mathe-
matical representation of physical processes governing groundwa-
ter flow and contaminant transport. It is used at the optimization
stage of this work. Both TRANSIN and GROUNDWATER allow solv-
ing groundwater flow under different assumptions. In this work,
the codes are used to solve the 2D groundwater flow equation
assuming that T is not affected by head changes. This is equivalent
to assuming a standard 2D confined aquifer hypothesis (see section
‘‘Site description and conceptual model”). The finite element mesh
is designed using the code 2DUMG (Bugeda, 1990). It honors the
relevant geometric features (e.g., seashore, wells, etc.) and consists
of 2585 nodes, arranged in 5074 triangular elements (Fig. 4). It is
refined in the vicinity of the existing observation wells and close
to the seashore. The element size increases as the mesh progresses
outside the area encompassing the existing wells and/or inland.
Temporal behavior is modeled with a forward in time finite differ-
ences scheme. The time step is constant (15 min, equal to the mea-
surement frequency). Simulation periods are listed in Table 1.

Boundary and initial conditions

The methodology suggested by Alcolea et al. (2007) works with
head fluctuations rather than with absolute heads. In this way, one
needs to simulate only head variations induced by tidal fluctuation
or pumping, but neither the regional flow in the aquifer nor the
existing pumping. Therefore, boundary and initial conditions are
homogeneous (i.e., zero head variations and fluxes) and only the
boundary conditions governing the test must be modeled explicitly
by means of time functions. These are the sea level fluctuation for

the tidal response and the prescribed flow rates for the pumping
tests. Boundary conditions are summarized in Table 3. Likewise,
areal recharge does not need to be calculated (in fact, recharge in
the entire study area is negligible).

Spatial variability of unknown fields

Transmissivity and storage coefficient fields are highly hetero-
geneous, as revealed by the geophysical campaign (Fig. 1) and
the prior estimation of effective diffusivities (Table 2). We use a
geostatistical model consisting of a set of hard measurements (Ta-
ble 2) and a correlation (covariance) structure arising from a preli-
minary study. The covariance structure is represented by a single
anisotropic exponential variogram, without nugget effect and sill
of 0.011 (log10 (m2/s)). Ranges are 600 m along the direction of lar-
ger correlation (N4W, Fig. 1) and 290 m in the orthogonal one. This
covariance structure applies to both transmissivity and storage
coefficient, as they are assumed to be highly correlated. The spatial
variability of these parameters is characterized using the regular-
ized pilot points method (Alcolea et al., 2006a,b). To this end, an
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Fig. 4. Spatial discretization of the domain. The finite element mesh consists of 2585 nodes arranged in 5074 triangular elements. In the inset, existing (monitored) wells and
pilot point locations are depicted by filled circles and open circles, respectively.

Table 3
Boundary conditions of the geostatistical model. PT denotes pumping test and the
corresponding recovery. DHsea(t) is depicted by dots in Fig. 2.

Boundary Type Problem 1.
Tidal
response

Problem 2.
PT at
OB-6

Problem 3.
PT at
OB-15

Problem 4.
PT at
OB-16

East Prescribed
flow

Q = 0 Q = 0 Q = 0 Q = 0

West Prescribed
flow

Q = 0 Q = 0 Q = 0 Q = 0

South Prescribed
flow

Q = 0 Q = 0 Q = 0 Q = 0

North,
seashore

Prescribed
head

Dh(t) =
DHsea(t)

Dh = 0 Dh = 0 Dh = 0

OB-6 Prescribed
flow

– Q = 0.1
(m3/s)

– –

OB-15 Prescribed
flow

– – Q = 0.1
(m3/s)

–

OB-16 Prescribed
flow

– – – Q = 0.1
(m3/s)
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unstructured network of pilot points (69 for each unknown field)
has been designed. These are clustered in the zone encompassing
the existing wells, where the majority of the information comes
from (Fig. 4).

Results

Results are evaluated in terms of fits to available head variation
measurements and plausibility of the solutions. The latter is eval-
uated both qualitatively (by visual comparisons with the resistivity
map in Fig. 1) and quantitatively. To this end, we compare the dif-

fusivities estimated by the model with those obtained by TRM (Ta-
ble 2). Four out of two hundred simulated transmissivity and
diffusivity fields (and the corresponding fields obtained by condi-
tional estimation) are displayed in Figs. 5 and 6, respectively. Note
that the unknowns are transmissivity and storage coefficient. How-
ever, observation of diffusivity (D = T/S) facilitates interpretation.
In the 200 conditional simulations and the ‘single best’ conditional
estimation, the monitored wells lay on a zone of medium diffusiv-
ity, connected to the sea and embedded between two parallel
channels of high diffusivity. These present a clear orientation to-
ward North and are also well connected to the sea. All character-

Fig. 5. Four out of two hundred conditionally simulated (above) and estimated (below) log-transmissivity fields.
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izations reveal the presence of a low diffusivity zone close to the
seashore. This can be explained by the deposition of fine, less per-
meable, materials along the coast line in the study area, where the
marine currents are normally weak. Possibly, a Cauchy type
boundary condition (i.e., leakage) at the seashore would have mod-
eled this effect better. Yet, the fine discretization used close to the
seashore (Fig. 4) helps to alleviate this problem.

Fits to head variation data are displayed in Fig. 7. They are all
satisfactory, even for the simulation yielding the worst match to
measured head variations. Very similar fits are obtained by condi-
tional estimation. In spite of the smoothness of the estimated

transmissivity and storage coefficient fields, conditional estima-
tion captures the large scale patterns of heterogeneity, which
are known to control groundwater flow (Alcolea et al., 2008).
However, seeking a ‘single best’ characterization by conditional
estimation is not a good option because it does not allow us to
evaluate uncertainty. The quality of the fits to measured head
variations is best observed in Fig. 8. There, we depict the Box
and Whisker plots (boxplots hereinafter) of the averaged-in-time
standardized residuals for all conditional simulations and all
observation wells and problems listed in Table 1. Normalization
factors are the amplitude of the tide (2.62 m) and the maximum

Fig. 6. Four out of two hundred simulated (above) and estimated (below) log-diffusivity fields, calculated as D = T/S.
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drawdown caused by pumping at wells OB6, OB15 and OB16
(1.22, 7.99 and 3.35 m, respectively). In addition, mean residuals
obtained by conditional estimation are depicted. Three observa-
tions arise from Fig. 8. First, all boxplots are centered on a small
value, regardless of the forcing term. Thus, the median of the
residuals is small. This reflects the good quality of the fits for all
the realizations. Second, mean residuals obtained by conditional
estimation are, in general, slightly larger than those obtained by
conditional simulation. However, these differences are not signif-
icant in any case. Third, the wings of the boxplots are short. This

manifests the striking similarity between the simulated fields dis-
played in Figs. 5 and 6 (i.e., similar fits are obtained by different
realizations). None of the simulations deviate significantly from
the field obtained by conditional estimation. This convergence to-
ward similar fields is even more striking when considering that
the 200 initial simulations, conditioned only to T and S data
(not depicted here) were all very different. After conditioning to
head variations, they all became very similar. We argue that the
information contained in the head variation measurements is suf-
ficient to reduce uncertainty.

Conditional simulation

Conditional estimation

Measurements
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Fig. 7. Calculated and measured head variations at selected points in response to tidal and pumping effects. In the insets, MSE denotes mean square error (mean square
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From a qualitative point of view, all transmissivity (and diffu-
sivity) fields resemble vaguely the directional features of connec-
tivity as observed in the resistivity map (Fig. 1). This comparison
also reveals the presence of highly conductive bodies well con-
nected to the sea in the resistivity map and all simulations. We fur-
ther tested the physical plausibility of the simulated fields by
comparing the values of effective diffusivity obtained by the TRM
(see section ‘‘Analysis of the tidal response”) with those obtained
by the stochastic model (Table 2). It is worth mentioning that the

former data set was not used as conditioning data for the geostatis-
tical inversion. The fact that both the TRM and the geostatistical
model yield similar values of effective diffusivity is a good indica-
tion of the physical plausibility of the simulations.

From the above we conclude that the available data sets and the
techniques used for aquifer characterization are available to iden-
tify the main patterns of heterogeneity. The surprising finding was
the limited degree of variability of the simulated fields. Yet, there is
still room for uncertainty due to errors in the conceptual model
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Fig. 8. Box and Whisker plots of standardized residuals (averaged in time). Normalization factors are the amplitude of the tide (2.62 m) and the maximum drawdown at the
pumping well (1.22, 7.99 and 3.35 m for pumping at wells OB-6, OB-15 and OB-16, respectively). Crosses depict mean standardised residuals obtained by conditional
estimation.

Table 4
Parameters required by the genetic algorithm used for the optimization of the pumping network.

Value
Cunit 77,169 Euro/(m4/s). Assuming 22 years of exploitation and an unitary cost of 0.0399 Euro/kWh.

Category D (Euro/well) D + P (Euro / well)

Drilling cost (D)/Cost of Pump (P) 360 m3/h 23,650 224,327
252 m3/h 23,650 190,678
108 m3/h 0 (existing wells) 100,000

Number of potential wells 126
Population at each generation 30
Number of generations 250,000
Maximum drawdown allowed 15 m
Penalty factor for drawdowns 100
Target discharge 10,000 m3/h (security factor of 1.111)
Penalty factor for discharge 1000
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that were not accounted for in this study (e.g., the choice of corre-
lation structure defining the geostatistical model, the boundary
conditions and the position of the seashore, etc.).

Optimum pumping network

The 200 equally likely hydraulic characterizations are used to
find a unique optimally-robust design of the pumping network, de-
fined by the number of wells, their location and the corresponding
discharge rates. In this optimization framework, a robust design
(Watkins and McKinney, 1997) is defined such that, first, it satisfies
the design constraints for all the hydraulic characterizations gener-
ated at the previous step. Second, it minimizes the total expected
costs of set up, operation and maintenance of the solution (mean
over all the simulations). More precisely, constraints of the design
are:

– A target discharge of 9000 m3/h. In fact, the solution is slightly
over-designed, in order to ensure the groundwater supply to
the desalination plant, so as to warrant the required production
of 3346 m3/h of freshwater. This also accounts for potential
stops at some wells for maintenance or repairing. Finally, the
applied target discharge is 10,000 m3/h.

– The solution must be technically feasible. Only three types of
pump capable of handling highly aggressive brackish water with
pumping rates of 360, 252 and 108 m3/h are available.

The objective is then to minimize the impacts of pumping and
the costs of drilling, maintenance and exploitation. This is partly
achieved by minimizing drawdowns, which reduces impacts to
the aquifer, electrical costs, risks of well collapse, etc.

Problem formulation and genetic algorithm

Under the aforementioned constraints, we solve a discrete (only
three pumping rates can be considered), non linear (i.e., costs are
not a linear function of pumping rates) optimization problem in
a stochastic framework. Two techniques are applied. On the one
hand, we used genetic algorithms to solve the aforementioned
problem (Goldberg, 1989; Siegfried and Kinzelbach, 2006). On
the other hand, a stacking approach (Wagner and Gorelick, 1987;
Chan, 1993, 1994; Morgan et al., 1993; Feyen and Gorelick, 2004)
accounts for the inherent stochastic uncertainty. In order to keep
calculation times reasonable, 126 mesh nodes have been selected
as potential locations for the wells. Nodes at existing wells
(Fig. 1) are included in the set of potential well locations. These
are located in the highly diffusive bodies (Fig. 6) and within the
lot owned by the desalination company. The 126 unknowns are
the type of pump at each potential well, ranging from 0 (no pump)
to 3 (maximum flow rate of 360 m3/h). These are arranged as a vec-
tor of integers x, termed individual.

By virtue of the superposition principle, one can compute the
drawdowns associated to a given individual x with the aid of a re-
sponse matrix A (i.e., the element aij being the drawdown at well ‘i’
in response to a unitary pumping at potential well ‘j’). The compo-
nents of A are calculated by running the model for a given trans-
missivity field successively considering all potential locations for
the pumping wells. A steady state regime with pumping was used
to consider the worst case situation. Only 100 out of 200 transmis-
sivity fields were considered for the optimization network, as
increasing the stack size adds more constraints, which makes it
more tedious to find a robust solution (Feyen and Gorelick,
2004). In fact, the stack size was reduced due to CPU considerations
(an optimization run using 100 transmissivity fields already takes
24 h in a high performance computer). A stacked matrix Astack

(Feyen and Gorelick, 2004) accounts for the response matrices cor-
responding to the 100 transmissivity fields. Drawdowns can then
be expressed as

s ¼ AstackQ ðxÞ ð3Þ

where s is a vector containing the drawdowns at all potential wells
and for all stochastic simulations due to the pumping configuration
x and Q is a vector containing the flow rates associated to the cat-
egories defined by the individual x. The use of Astack warrants that
the constraints are met for all considered transmissivity fields.

Given an individual x and its associated drawdowns, the cost
function over all wells and all stochastic simulations can be defined
as

C ¼
XNsimu

j¼1

XNwells

i¼1

ðDi þ Pi þ Ei;jÞ ð4Þ

where ‘Nwells’ and ‘Nsimu’ denote the number of potential wells and
stochastic simulations, respectively. Di, Pi and Ei,j are the drilling
cost, the cost of the pump and its maintenance and the electrical
costs at well ‘i’ and simulation ‘j’, respectively. Note that only the
electrical costs depend on the simulation. Calculating D and P is
straightforward, as they depend only on the category of the pump
and the position (already existing wells have a drilling cost equal
to zero). Electrical costs can be expressed in terms of potential en-
ergy of groundwater Ep:

Epi ¼ mgh ¼ ðQiqtÞgsi ½Joule� ð5Þ

Q = 360 m3/h
Q = 252 m3/h
Q = 108 m3/h

Q = 360 m3/h

Fig. 9. Synthetic (above) and optimum (below) pumping networks. On the
background, a shaded relief of the average diffusivity field (Fig. 6, on bottom).
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where Epi is the potential energy at well ‘i’, m is mass of water [kg],
g is gravity [m/s2], h is the required height of elevation [m], Qi is the
flow rate at well ‘i’ [m3/s], q is density (1032 kg/m3), t is time [s] and
si [m] is the drawdown at well ‘i’. Time is set to 22 years, the ex-
pected life of the desalination plant. Finally, grouping all constant
terms, Ei is expressed as

Ei ¼ Epi½kWh�b½euro=kWh� ¼ Q isiCunit ð6Þ

where b denotes the unitary cost of electricity (0.0399 Euro/kWh)
and Cunit is 77169 Euro/(m4/s). Fixed costs and other parameters
of the genetic algorithm are summarized in Table 4.

Posed in this way, the problem of minimizing the electrical
costs E is equivalent to that of minimizing the drawdown at the
pumping wells. Once the individual x has been designed, addi-
tional constraints due to target discharge and maximum allowed
drawdown are addressed by multiplying the cost function by a
penalty factor when these criteria are not met. Actually, the max-
imum drawdown allowed (15 m in this case) was not attained for

any simulation in the stack.The optimum individual x is deter-
mined by the GaMin Matlab toolbox (see a detailed description
in Popov, 2005). After performing a sensitivity analysis to study
the convergence and the reliability of the solution, the size of the
population has been set to 30 individuals. We used a conventional
scattered cross-over mechanism. The mutation range and the part
of the population copied to the next generation (elite coefficient)
have been set to 20% and 7%, respectively. The part of the popula-
tion with largest objective functions is replaced by new individuals
(7%). Finally, the number of generations was set to 250,000.

Optimization results

The benefit of optimization is analyzed by comparing two
pumping configurations. First, we test a tradition based, hand-
delineated, pumping network arising from a preliminary study
not accounting for optimization. In that solution, it was planned
to locate 27 pumping wells along three lines parallel to the sea-
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shore, following current practice. Pumping rate is identical at all
wells (i.e., target discharge of 10000 m3/h divided by the number
of wells). Second, we optimize the pumping configuration for 100
transmissivity fields. Results are evaluated in terms of cost of the
solution and drawdowns at the pumping wells, at all nodes of
the finite element mesh and at those defining the inland boundary.
Fig. 9 displays the synthetic and optimum pumping configurations.
Fig. 10 displays the cumulative distribution functions (cdf herein-
after) of costs and drawdowns. Statistics of those cdfs are summa-
rized in Table 5. It is worth emphasizing that the optimization was
performed using 100 transmissivity fields. However, the perfor-
mance of the optimum and synthetic networks is evaluated for
the complete stack of 200 realizations. The optimum transmissivity
field obtained by conditional estimation was not considered for
optimization as it does not allow us to evaluate the uncertainty
of the suggested solution.

The optimum distribution of wells (and corresponding flow
rates) is reasonable, as observed in Fig. 9. In general, largest pump-
ing rates of 360 m3/h correspond to wells along the two high diffu-
sivity channels. This causes little drawdowns and a superior yield
of the system. Flow rates of 252 and 108 m3/h are assigned mainly
to existing wells. We attribute this to the fact that drilling costs are
zero at existing wells.

The effect of the optimization is best analyzed observing Fig. 10
and Table 5. First, the total cost of the system is reduced substan-
tially (Fig. 10a). In average, the reduction is of about 10% of the to-
tal cost. The underlying uncertainty is very small, as measured by
the standard deviation of the cost function. Second, it reduces sig-
nificantly the drawdowns (at the pumping wells, at all nodes and
at those defining the inland boundary; Fig. 10 b, c and d, respec-
tively). Thus, the optimum pumping configuration minimizes the
total cost and the inherent environmental hazards. This effect is
best observed in Table 5. On average, the optimum configuration
reduces the drawdown at pumping wells by approximately 8 m.
This minimizes both the risk of the pump failure and of well col-
lapse. This reduction is not dramatic in terms of generalized draw-
downs or drawdowns at nodes defining inland boundary (average
reduction of 2.5 m and 0.75 m, respectively). These magnitudes are
more sensitive to the amount of water being removed rather than
to the location/configuration of the removal. A maximum draw-
down of 10 m (30 m for the synthetic network) is barely achieved
at a few transmissivity fields which were not considered for the
optimization. This confirms that the optimum pumping network
also accounts for minimum aquifer vulnerability.

Conclusions

This work summarizes the application of stochastic inverse
modeling and optimization techniques to the management of a
pumping system at a coastal aquifer in Oman. A stochastic charac-
terization of hydraulic parameters from tidal fluctuation and
pumping test data was used to design an optimum pumping net-
work of brackish groundwater. This would allow an increase in

the current production of a desalination plant, which will satisfy
the growing demand of freshwater within the area.

The applied methodology consists of two main steps. First,
transmissivity and storage coefficient fields are characterized from
available data using a stochastic model. Spatial variability of these
parameters is addressed by the regularized pilot points method.
We obtain 200 equally likely simulations of the transmissivity
and storage coefficient fields that are plausible (i.e., fit the diffusiv-
ities obtained by TRM and resemble the connectivity features of a
resistivity map obtained by geophysics) and fit well the indirect
head variation measurements.

Second, an optimum pumping network is designed with the
help of a genetic algorithm. The aim is to obtain a reliable solution
that minimizes the expected cost and that allocates the pumping
wells in such a way that the drawdowns are small. This minimizes
the electrical costs and the environmental side effects. Constraints
of the design are the target discharge (10,000 m3/h) and the tech-
nical feasibility of the solution (i.e., predefined pumping rates of
360, 252 and 108 m3/h).

The performance of the optimum solution is compared to the
one of a synthetic, tradition based, hand-delineated, pumping net-
work. Results show that the use of the optimization technique
leads to a reduction in operational costs of more than 10%. In addi-
tion, drawdowns are reduced dramatically. Certainly, this cannot
be considered as a fair comparison, since different reduction fac-
tors could be obtained when comparing the optimum solution
with other configurations, traditionally designed in a subjective
way by water managers.

Much remains to be done. Uncertainties on the conceptual
model were neglected in this work. Among them, the location of
the contact between aquifer and sea may have a large impact on
the calibration results. Geophysics and tracer tests can provide
valuable information for the identification of the karstic conduits.
These data sets could be considered as conditioning data for the
stochastic model. Non multi-Gaussian techniques, such as multiple
point geostatistics could be useful to infer patterns of heterogene-
ity in a more realistic manner. Yet, this work demonstrates the va-
lue of combining stochastic inverse modeling to infer aquifer
heterogeneity and optimization techniques to determine (objec-
tively) the optimum pumping configuration. This is a promising
methodology for designing pumping networks in highly heteroge-
neous aquifers while also minimizing the environmental impacts
of desalination plants.
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