
SIMULATION OF COMMUNITIES OF NODES
IN A WIDE AREA DISTRIBUTED SYSTEM

Saiho Yuen1, Peter Kropf1, Herwig Unger2, Gilbert Babin3

1University of Montreal, Montr´eal, Canada
fyuensaih,kropfg@iro.umontreal.ca

2University of Rostock, Rostock, Germany
hunger@informatik.uni-rostock.de

3HEC — Montréal, Montréal, Canada
Gilbert.Babin@hec.ca

ABSTRACT

The complex structure of the Web requires decentralised, adaptive mechanisms efficiently providing
access to local and global capacities. To facilitate the development of such mechanisms, it seems to
be reasonable to build clusters or grids of machines with similar structures and interests. In such a
manner, communities of machines can be built. In a community, every machine contributes to the overall
success through a division of management work and a respective collaboration. This article presents
and analyses experimental results for algorithms optimising service response times in a community. We
introduce a community simulation tool, which is used to experiment with optimisation algorithms. The
experimentation results are presented and analysed.

KEYWORDS

Performance evaluation, Simulation and optimisation, Internet computing, Ubiquitous computing.

1 INTRODUCTION

To access the huge amount of hard- and software resources in the Internet and to maintain this under-
utilized potential, new approaches are needed. The complex, heterogeneous and dynamic structure of
the world wide network requires decentralised, adaptive mechanisms, that provide access to both local
and global capacities in an efficient and transparent way. Since a correct load prediction for networks
and servers are difficult (Adler, Feldman, and Taqqu 1998), self-organization and adaptation appear to
be a promising way to make communication and computation in the Internet and large Intranets more
effective (Milojicic 1999). The necessary data updates and the required computation and communication
efforts are the reason why a lot of systems are based on decentralized management approaches (Foner
1997; Kramer, Minar, and Maes 1999; Menkov, Neu, and Shi 2000; Kropf, Unger, and Babin 2000).

In addition, it seems to be reasonable to build clusters or grids of machines with similar structures
and interests. In such a manner, communities (Plaice, Svoboda, and Alammar 2000) of client and server
machines can be built. These machines do not only share a common communication context, but also
sets of similar parameters and interests. Mostly, every machine contributes to the success of such a
community through a division of management work and a respective collaboration. The Web Operating
System (WOS) (Kropf, Unger, and Babin 2000; Unger 2000) was built to support such communities.
The WOS is an open middleware solution allowing for software services to be distributed over the In-
ternet. Typically, the WOS infrastructure provides the tools to search for and prepare all the necessary
resources that fulfil the desired characteristics for a service request (e.g., performance, storage, etc.).

In WOS, such a set of resources or nodes is called acommunityor WOSnet. Each node of a WOSnet
maintains a warehouse to keep information about the community (i.e., characteristics of other nodes of
the community). A WOSnet is dynamically formed, and nodes may join and leave a community. An
initial bootstrap procedure (Babin, Kropf, and Unger 1998) is used by a WOS node to locate other WOS
nodes in its vicinity. The WOSnet evolves from that basic information stored in the nodes’ warehouses
through the location and execution activities performed by the different WOS nodes. The warehouses
are continously updated through these activities. For example, a service location request will leave its
result in the warehouses of the visited nodes.

This article presents and analyses experimental results for algorithms optimising service response
times in a community. In Section 2, a network community simulation tool is presented which is used
to experiment with optimisation algorithms discussed in Section 3. The experimentation results are
presented in Section 4. Finally, Section 5 concludes the paper with a discussion of the approach.

2 A NETWORK COMMUNITY SIMULATION

We have developed a tool which simulates a network by recreating the network’s environment. A ran-
domly generated graph placed in a 2D grid represents a WOSnet. Nodes act either as servers or clients,
the actual proportion in the network being defined by a simulation parameter. Each node has a unique
identifier. The initial network graph is constructed as follows: a certain number of node identifiers is
assigned to each node and stored in its warehouse. These warehouse entries represent a directed valuated
arc to the node represented by the identifier. In other words, a node is said to know the nodes identified
by its warehouse entries. The valuation of the arcs depends on the distance between the nodes in the 2D
grid of the network simulation. All nodes, clients and servers, are only connected to server nodes. The
resulting directed graph represents acommunity. It corresponds to a virtual network structure superim-
posed onto the real network structure, where the virtual structure reflects the knowledge of each node
about the others. We further assume that each node may potentially know each other node, as it is the
case for IP networks. There are therefore no restrictions imposed as far as the construction of the virtual
graph, or community, is concerned. However for constructing the initial community, the maximal num-
ber of warehouse entries (i.e. known nodes) is restricted by a simulation parameter. As the simulation
progresses, the client nodes generate service requests to the server nodes they know. We define a request
as the action of asking for data, like a file transfer. Therefore, when servers deliver a service, they deliver
the requested data to the clients. There is only one kind of service, but the response time to a request
may vary.

The request generation follows a sawtooth function, using the simulation time as its parameter. This
way, we obtain request cycles, where the number of requests increase within a cycle. The simulation is
run for a number of such request cycles. The simulation time is measured in units of times (ut) created
by the simulation tool. Thus, each action of the nodes is measured using that simulated time scale.

During the simulation it may happen that clients are not satisfied with the response times of the
currently used server nodes, or that a server node is overloaded. In either case, a community optimisation
is performed which reorganises the initial virtual network with the goal to minimise the response times.
A specific client seeking for a more suitable response time to his requests performs an optimisation
process by recursively searching for server nodes it does not know yet by inspecting the warehouse
entries. During this process the visited warehouses are updated, thus dynamically restructuring the virtual
network or community. In this context, we define theoptimisation of the networkas the optimisation of
the response time for every client node of that network. This means, that new arcs with better valuations
are created while others will disappear.

The simulation tool records and monitors every action of the nodes and the algorithms. With the data
collected, we are able to evaluate optimisation algorithms and the global behaviour of the nodes in the
network. The following sections present two optimisation algorithms and experimental results.

3 OPTIMISATION OF NETWORK COMMUNITIES

The response time for a service request of clientc to servers may be defined as :

t(c; s) = k(s) � tcpu+ d(c)=b(c; s)

wherek is the CPU speed normalisation factor,tcpu is the execution time,d(c) is the amount of data to
be transferred andb(c; s) is the communication bandwidth of the channel used.

The computation time (k(s)�tcpu) normally corresponds to the execution time of the client’s request.
However, to simplify our model, we only consider the response time of the communication layer (e.g.,
TCP/IP). Therefore,tcpu is the average response time of the communication layer to reach the servers
andk(s) normalises the speed differences between machines. As a consequence, a strong bandwidth
between two nodes yields a short response time for a request. To further simplify our model, we use the
actual distance between two nodes in the 2D grid representing the network as the value for the bandwidth.
Thus, when we optimise the response time for a node, we look for a server which is closer to the client
than the server currently used by that node.

3.1 Optimisation algorithms

We experienced with two different optimisation algorithms: theWhipalgorithm and theWandereralgo-
rithm (Unger 2000). Each algorithm uses a different strategy to locate potential server nodes. However,
they follow the same pattern that may be divided into three distinct stages: initialisation, search, and
update stages.

At the theinitialisation stage, the algorithm is initialised with the information available in the node
requesting the optimisation. We will refer to that node as starting node. The Whip algorithm uses a
centralised approach, and therefore all the processing will be done by the starting node. The Wanderer
algorithms uses mobile agents (Russell and Norvig 1995; Kramer, Minar, and Maes 1999). At this first
stage, it creates an agent, the wanderer, that will “wander” in the network and collect information on
other nodes.

At thesearch stage, both algorithms explore the network to gather useful information about potential
servers. The exploration is done by requesting information from a certain number of nodes and by using
their warehouse information to obtain more information about the whole network. Depending on the
algorithm used, the strategy to determine the next node to query will be different.

For theWhip algorithm, the strategy is based on a random selection method. The search takes
place along a chain of nodes beginning at the starting node. At each node in the chain, the next node
to interrogate is selected randomly from information currently available to the algorithm (i.e. in the
respective warehouses). One of the parameters of the Whip algorithm is the maximal number of nodes
queried. Each time a node queries a server node, it records information about that server node. The
search ends when the required number of queries have been performed.

For theWandereralgorithm, the wanderer agent will do a complete search of the network using a
depth first strategy. At each node, the wanderer adds server node information from the local warehouse
to its list of nodes to visit. The agent therefore realizes a deterministic search in the community. It stops
when there are no more nodes to visit.

At the update stage, both algorithms select a server node with a shorter response time than the
response time of the server currently used by the starting node.

3.2 Performance Evaluation

We evaluate the performance of an algorithm with two parameters: effectiveness (E) and convergence
time (tc). Effectiveness (E) is defined as the ratio of the minimum response time available on the network
(ravail) over the minimum response time obtained by the algorithm (rmin):

E = ravail=rmin � 100

Table 1.E andtc for the Whip Algorithm vs # of nodes and diameterd of the graph (at most 5 warehouse
entries; 2 % of server nodes)

Nodes d # Queries = 4 # Queries =d+ 1

E (%) tc (ut) E (%) tc (ut)
500 4 98.58 240 98.49 260

1000 4 96.34 300 97.69 340
2000 5 89.03 380 92.16 440
3000 5 85.07 420 89.48 440
4000 5 83.45 420 88.04 460
5000 6 83.40 420 89.06 460

Table 2.E andtc for the Whip Algorithm vs # of warehouse entries and # of queries (5000 nodes; 2 %
of server nodes)

Entries = 3 # Entries = 5 # Entries = 8 # Entries = 10
Queries E (%) tc (ut) E (%) tc (ut) E (%) tc (ut) E (%) tc (ut)

2 63.91 360 75.11 360 79.03 360
4 77.02 380 83.40 420 85.49 420
6 82.51 380 88.11 380 89.12 400 90.01 400
8 89.56 400 90.16 400 92.14 420

Diameter 9 6 4 4

The larger the value ofE, the more effective is the algorithm. We defineravail as the average response
time of requests, if all the clients of the network launch exactly one request simultaneously and the
clients are using the server with the strongest bandwidth in the network. We definermin as the average
response time of requests, if all the clients of the network launch exactly one request simultaneously and
the clients are using the server with the strongest bandwidth that the algorithm was able to find.

Convergence time (tc) is defined as the time required for reaching the minimum response time ob-
tained by the algorithm (rmin). It is measured in the units of time (ut). The smallertc, the faster the
algorithm.

4 EXPERIMENTATION

We tested both algorithms in randomly generated networks. For each experimental parameter, we ran 5
to 20 simulations. Each simulation was made on the same network and under the same condition.

For the Whip algorithm, we had three experimental parameters: network size, number of queries,
and number of entries in a warehouse. For every simulation, the network generated had 2 % of nodes
acting as servers and 98 % of nodes acting as clients. These percentages are arbitrary, but reflect typical
situations. Each simulation was run for the duration of one cycle of the sawtooth function for the request
generation. Table 1 presents the effectiveness and convergence time for varying network sizes. In each
case, the number of queries (i.e. length of search chains) was chosen such that it was larger than the
diameter of the graph, allowing each client to potentially reach each server node, though it is of course not
assured, because the search procedure is not guaranteed to use the shortest paths for the searches. Table 2
shows the influence of the number of queries and the number of warehouse entries on the algorithm’s
performances (effectiveness and convergence time). It also shows the influence of the number of queries
with regard to different diameters of the underlying graphs.

For the Wanderer algorithm, we used four experimental parameters: network size, percentage of
server nodes, number of entries in a warehouse, and percentage of wanderer agents over the number
of client nodes. Because the Wanderer algorithm is much slower than the Whip algorithm (due to the
complete search made), we limited the network size to 2000 nodes (Table 3). Tables 4, 5 and 6 respec-
tively show the effect of changing the percentage of nodes acting as servers, the number of entries in a
warehouse and the percentage of wanderer agents over the number of client nodes.

Table 3.E andtc for the Wanderer Algorithm vs
of nodes (2 % of server nodes; 5 entries; 100 %
wanderer/client)

Nodes E (%) tc (ut)
500 100.00 260

1000 99.99 340
2000 99.81 440

Table 4.E andtc for the Wanderer Algorithm vs
% of server nodes (2000 nodes; 5 entries; 100 %
wanderer/client)

% Servers E (%) tc (ut)
1 99.96 400
2 99.81 440
3 99.30 400

Table 5.E andtc for the Wanderer Algorithm vs
of entries (2000 nodes; 2 % server nodes; 100 %
wanderer/client)

Entries E (%) tc (ut)
4 99.74 440
5 99.81 440
6 99.91 440
8 99.77 440

Table 6.E andtc for the Wanderer Algorithm vs
% wanderer/client (2000 nodes; 2 % server nodes;
5 entries)

% wanderer/client E (%) tc (ut)
33 99.72 6000
66 99.66 600

100 99.81 440

5 DISCUSSION

5.1 Whip Algorithm

A number of conclusions may be drawn from an analysis of the Whip algorithm. The Whip algorithm
works better for a small network; as the results show (Table 1), the bigger the network, the poorer the
effectiveness and the larger the convergence time.

By increasing the number of queries or the number of the entries in the warehouse, we increase the
effectiveness of the Whip algorithm (Table 2). This increase is significant until the number of queries
is equal to the number of warehouse entries. After that point, however, the increase in effectiveness is
small. The only way to increase effectiveness is to increase both parameters simultaneously.

We experimented with a small number of queries and a small number of entries in the warehouse. It
turns out that the diameter of the networks generated by the simulation tool is always smaller than 10,
implying that on average two nodes are separated by at most 5 nodes. Hence, the algorithm is able to
reach most of the server nodes in the network in less than 4 queries. In addition, increasing the number
of entries in the warehouse decreases the diameter, since the number of entries is directly related to the
number of nodes currently known by a certain node. Recall here that knowledge of a node is reflected by
a directed arc to that node. There is thus no need to have large values for these parameters. A small value
for the number of queries also has the advantage of decreasing the computational resources required and
the convergence time of the algorithm.

Because of its simplicity, the Whip algorithm is inexpensive in terms of computing resources, com-
pared to the Wanderer algorithm.

5.2 Wanderer algorithm

From our experiments, we can see that the Wanderer algorithm is very effective, even when varying all
the simulation parameters. It turns out, however, that its convergence time changes greatly depending on
these same parameters. For instance, we observe that the convergence time increases when the number
of nodes increases. This can be explained by the “complete search” nature of the algorithm. We also
observe such an increase when the ratio of wanderer agents per client nodes increases. By limiting the
number of wanderer agents in the network, we limit the number of client nodes performing an opti-
misation at a given time. Furthermore, as the ratio is reduced, client nodes spend more time verifying
whether or not they can launch an optimisation, which degrades the convergence time even more. The
convergence times necessary to achieve the 99% effectivenesses shown in Table 6 are larger than those
of the other simulations. Indeed, the number of cycles of simulation was 20 and 3 for the 33% and 66%

wanderer/client ratios, respectively, as opposed to the 1 cycle simulations in all other cases.
Finally, convergence time is not the only drawback of the Wanderer algorithm. The algorithm is very

expensive in terms of computational resources; since a wanderer agent is mobile, it uses resources on
every node it visits. The quantity of resources required is proportional to the number of wanderer agents
active in the network. In a larger network, that number can be extremely high. As a consequence, the
Wanderer algorithm also runs into the possibility of congesting the network.

5.3 Final Remarks

In this paper, we demonstrated the possibility of optimising any network structure by using the exper-
imented algorithms. Both algorithms have their advantages and disadvantages. The Whip algorithm is
fairly efficient (E is fairly high). It is simple and almost costless. But the optimisation is limited by
the size of the network; the larger the network, the poorer the performance will be. The experiments
conducted so far indicate that the Wanderer algorithm can adapt more easily to changes in the network
than the Whip algorithm. The Wanderer algorithm has an almost constant efficiency, no matter the size
of network or the number of entries in the warehouse, but the high demands on computational and com-
munication resources as well as time must be carefully observed. We are therefore further investigating
the Wanderer algorithm to fully understand its limitations and to address those limitations with specific
changes in the algorithm. Preliminary results obtained with variations of the Wanderer algorithm indicate
that ressource, performance and congestion problems can be satisfactory allevited.

REFERENCES

Adler, R. J., R. E. Feldman, and M. S. Taqqu (1998). Heavy-tailed probability distributions in the
World Wide Web. InA Practical Guide to Heavy Tails: Statistical Techniques and Applications,
pp. 3–25. Birkhäuser.

Babin, G., P. Kropf, and H. Unger (1998). A Two-Level Communication Protocol for a Web Oper-
ating System (WOS). InIEEE 24th Euromicro Workshop on Network Computing, pp. 934–944.
Västerås, Sweden.

Foner, L.N. (1997). YENTA - A Multi-Agent Referral System for Matchmaking. InFirst Interna-
tional Conference on Autonomous Agents (Agents ’97). Marina del Rey, CA.

Kramer, K., N. Minar, and P. Maes (1999). Mobile software agents for dynamic routing.Mobile
Computing and Communications Review 3(2).

Kropf, P., H. Unger, and G. Babin (2000). WOS: an Internet Computing Environment. InWorkshop
on Ubiquitous Computing, PACT 2000 (IEEE International Conference on Parallel Architectures
and Compilation Techniques), pp. 14–22. Philadelphia, PA.

Menkov, V., D.J. Neu, and Q. Shi (2000). Ant world: A collaborative web search tool. In P. Kropf
et al. (Ed.),Distributed Communities on the Web (DCW 2000), LNCS 1830, pp. 13–22. Quebec,
Canada: Springer.

Milojicic, D. (1999). Operating systems - now and in the future.IEEE Concurrency 7(1), 12–21.

Plaice, J., P. Svoboda, and A. Alammar (2000). Building Intensional Communities Using Shared
Contexts. In P. Kropf et al. (Ed.),Distributed Communities on the Web (DCW 2000), LNCS 1830,
pp. 55–64. Quebec, Canada: Springer.

Russell, S. and P. Norvig (1995).Artificial Intelligence: A Modern Approach. Prentice Hall.

Unger, H. (2000). Distributed Resource Location Management in the Web Operating System. In
SCS A. Tentner (Ed.),High Performance Computing 2000 (ASTC), pp. 213–218. Washington,
DC.

