
Snapshot Isolation for Software Transactional Memory

Torvald Riegel
Dresden University of
Technology, Germany

torvald.riegel@tu-dresden.de

Christof Fetzer
Dresden University of
Technology, Germany

christof.fetzer@tu-dresden.de

Pascal Felber
University of Neuchâtel,

Switzerland
pascal.felber@unine.ch

ABSTRACT
Software transactional memory (STM) has been proposed
to simplify the development and to increase the scalability
of concurrent programs. One problem of existing STMs is
that of having long-running read transactions co-exist with
shorter update transactions. This problem is of practical im-
portance and has so far not been addressed by other papers
in this domain. We approach this problem by investigat-
ing the performance of a STM using snapshot isolation and
a novel lazy multi-version snapshot algorithm to decrease
the validation costs - which can increase quadratically with
the number of objects read in STMs with invisible reads.
Our measurements demonstrate that snapshot isolation can
increase throughput for workloads with long transactions.
In comparison to other STMs with invisible reads, we can
reduce the validation costs by using our lazy consistent snap-
shot algorithm.

1. INTRODUCTION
Software transactional memory (STM) [20] has been in-

troduced as a means to support lightweight transactions
in concurrent applications. It provides programmers with
constructs to delimit transactional operations and implic-
itly takes care of the correctness of concurrent accesses to
shared data. STM has been an active field of research over
the last few years, e.g., [11, 13, 7, 12, 18, 17, 4, 10, 8].

In typical application workloads one cannot always expect
that all transactions are short. One would expect that ap-
plications have a mix of long-running read transactions and
short read or update transactions. One problem of exist-
ing STMs is that of having long-running read transactions
efficiently co-exist with shorter update transactions. STMs
typically perform best when contention is low. For trans-
actions one should expect that the probability of conflicts
increases with the length of a transaction. This problem
is of practical importance but has so far not yet been ad-
dressed by the other papers in this domain. We address this
problem by investigating the performance of a STM using
snapshot isolation [1].

The key idea of snapshot isolation (a more precise descrip-
tion is given below) is to provide each transaction T with
a consistent snapshot of all objects and all writes of T oc-
cur atomically but possibly at a later time than the time at
which the snapshot is valid. This decoupling of the reads
and the writes has the potential of increasing the transac-
tion throughput but gives application developers possibly
less ideal semantics than, say, STMs that guarantee serial-
izability [2] or linearizability [14].

Snapshot isolation (SI) has been used in the database do-
main to address the analog problem of dealing with long
read transactions in databases. STMs and databases are
sufficiently different such that it is a priori not sure that
(P1) SI will improve the throughput of a STM sufficiently
and (P2) SI provides the right semantics for application
programmers. In this paper we focus on problem P1 and
will only briefly discuss P2. Note that engineering is about
tradeoffs and typically application developers are willing to
accept weaker (or, less ideal) semantics if the performance
gain is sufficiently high over stronger (or, more ideal) alter-
natives. Hence, the answer to P2 will inherently depend on
the answer of P1.

next

value

next

value

next

value

next

value

next

value14 18 25

Node Node Node Node Node

head

IntSet

Figure 1: Integer set example.

T0 -
remove(14)

w(n⊥) w(n14)

T1 -
insert(15)

T2 -
contains(18) time

r(n⊥) r(n14) r(n18) w(n14) w(n15)

r(n⊥) r(n14) r(n18)

6
read/write conflict

?

Figure 2: Two sample transactions.

Example 1. We shall illustrate our work with the same
example as in [13], i.e., an integer set implemented as a
linked list. Specific values can be added to, removed from,
or looked up in the set. Figure 1 shows an instance of an
integer set with five nodes representing 3 integers (14, 18,
and 25) and two special values (⊥ and >) used to indicate
the first and last elements of the linked list. We shall denote
these nodes by n14, n18, n25, n⊥, and n>, respectively.

Consider transactions T1 inserting integer 15 in the set
and T2 looking up integer 18 (Figure 2). T1 must traverse
the first three nodes of the list to find the proper location
for inserting the new node, create a new node, and link it

to the list. Three nodes (n⊥, n14, and n18) are accessed but
only one (n14) is actually updated. T2 also traverses the first
three nodes, but none of them is updated.

STM systems typically distinguish read from write accesses
to shared objects. Multiple threads can access the same object
in read mode (e.g., node n⊥ can be read simultaneously by
T1 and T2) but only one thread can access an object in write
mode (e.g., n14 by T1). Furthermore, write accesses must be
performed in isolation from any read access by another trans-
action. For instance, assuming that T1 tries to write n14 af-
ter T2 has read n14 but before T2 completes (see Figure 2), a
STM system that guarantees linearizability or serializability
will detect a conflict and abort (or, in the most benign cases,
delay) one of the transactions. Typically, transactions that
fail to commit are restarted until they eventually succeed.

For a SI-based STM, the two transaction T1 and T2 will
not conflict because T2 is a read transaction that accesses a
consistent snapshot that is not affected by potentially concur-
rent writes by T1. Update transactions like T1 will also read
from a consistent snapshot that can become stale before the
time at which T1 writes to n14. The price an application pro-
grammer has to pay - in comparison to a serializable STM -
is that some read/write conflicts might have to be converted
into write/write conflicts (see [16] for more details). For
example, if an update transaction T0 removes node n14, we
need to make sure that T0 writes not only n⊥ but also n14 to
make sure that any concurrent transaction like T1 that in-
serts a new node directly after n14 has a write/write conflict
with T0. 2

Regarding problem P2, snapshot isolation avoids com-
mon isolation anomalies like dirty reads, dirty writes, lost
updates, and fuzzy reads [1]. Because snapshot isolation
circumvents read/write conflicts, application programmers
might need to convert read/write conflicts into write/write
conflicts if the detection of the former are needed to enforce
consistency [16]. On a very high level of abstraction, this
is similar to the inverse problem of deciding which objects
can be released early [13]: in early release a programmer
can remove the visibility of read objects while in SI a pro-
grammer might need to make certain objects in the read set
“visible” by dummy writes. However, SI guarantees that the
read snapshot always stays consistent which might simplify
matters in comparison to using an early release mechanism.

In this paper, we propose a software transactional mem-
ory SI-STM that integrates several important features to
ease the development of transactional applications and max-
imize their efficiency. We improve the throughput of work-
loads with both short transactions and long read transaction
by eliminating/reducing read/write contention, by investi-
gating a novel multi-version concurrency control algorithm
that implements a variant of snapshot isolation. We use a
variant because instead of letting always the first committer
win, we let a contention manager decide which transaction
wins a write/write conflict. We have developed an original
algorithm to implement a multi-version isolation level based
on snapshot isolation that can—if so requested—ensure lin-
earizability of transactions. This algorithm is implemented
without using any locks, which are known to severely limit
scalability on multi-processor architectures and introduce
the risk of deadlocks and software bugs.

Our experimental evaluation of a prototype implementa-
tion demonstrates the benefits of our architecture. The per-

formance of our prototype is competitive with lock-based
implementations and it scales well in our benchmarks.

The rest of the paper is organized as follows: Section 2
discusses related work and Section 3 introduces the principle
of snapshot isolation more precisely and describes efficient
algorithms to implement it, with or without additional lin-
earizability of individual transactions. Section 4 presents
our STM implementation and Section 5 describes its seam-
less integration in the Java language using only standard
Java mechanisms. We evaluate the efficiency of our archi-
tecture and algorithms in Section 6. Finally, Section 7 con-
cludes the paper.

2. RELATED WORK

2.1 Software Transactional Memory
Software Transaction Memory is not a new concept [20]

but it recently attracted much attention because of the rise
of multi-processor and multi-core systems. There are word-
based [11] and object-based [13] STM implementations. The
design of the latter, Herlihy’s DSTM, is used by several cur-
rent STM implementations. Our SI-STM is object-based
and thus uses some of DSTM’s concepts. However, SI-STM
is a multi-version STM, whereas in DSTM objects have only
a single version. Furthermore, existing STM implementa-
tions only provide strict transactional consistency, whereas
SI-STM additionally provides support for snapshot isola-
tion, which can increase the performance of suitable appli-
cations.

In the original STM implementations, reads by a transac-
tion are invisible to other transactions: to ensure that con-
sistent data is read, one must validate that all previously
opened objects have not been updated in the meantime. If
reads are to be visible, transactions must add themselves
to a list of readers at every transactional object they read
from. Reader lists enable update transactions to detect con-
flicts with read transactions. However, the respective checks
can be costly because readers on other CPUs update the list,
which in turn increases the contention of the memory inter-
connect. Scherer and Scott [19, 18] investigated the trade-
off between invisible and visible reads. They showed that
visible reads perform much better in several benchmarks
but, ultimately, the decision remains application-specific.
Marathe et al. [17] present an STM implementation that
adapts between eager and lazy acquisition of objects (i.e.,
at access or commit time) based on the execution of previ-
ous transactions. However, they do not explore the trade-off
between visible and invisible reads but suggest that adap-
tation in this dimension could increase performance. Cole
and Herlihy propose a snapshot access mode [4] that can be
roughly described as application-controlled invisible reads
for selected transactional objects with explicit validation by
the application. The only STM that we are aware of hav-
ing a design similar to ours is [3]. However, in their STM
design, every commit operation, including the upgrade of
transaction-private data to data accessible by other threads,
synchronizes on a single global lock. Thus, this design is
not fault-tolerant because there is no roll-back mechanism
for commits. Additionally, even in cases where write oper-
ations do not conflict, only a single thread can be used for
updating memory. No performance benchmark results are
provided.

Read accesses in our SI-STM are invisible to other trans-

actions but do not require revalidation of previously read
objects on every new read access. The multi-version infor-
mation available to each transactional objects provides in-
expensive validation by inspection of the timestamps of each
version (without having to access previously read objects).
We thus get the benefits of invisible reads but at a much
lower cost.

Most STM implementations support explicit transaction
demarcation and read and write operations, whereas only
a few provide more convenient language integration. Har-
ris and Fraser propose adding guarded code blocks to the
Java language [11], which are executed as transactions as
soon as the guard condition becomes true. SXM [9] is an
object-based STM implementation in C#, which uses at-
tributes (similar to Java annotations) for the declaration of
transaction boundaries but requires additional code to call a
transaction (i.e., the call is different from a normal method
call). They suggest extending the C# post-processor to im-
plicitly start transactions. In contrast, our SI-STM employs
widely used aspect weavers and Java’s annotations to trans-
parently add transaction support. It does not require any
changes to the programming language.

Most STM implementations are obstruction-free and use
contention managers [13] to ensure progress. Scherer and
Scott presented several contention managers [19, 18] includ-
ing the Karma manager used in Section 6. Guerraoui et
al. investigated how to mix different managers [9] and pre-
sented the Greedy [10] and FTGreedy [8] managers, which
respectively guarantee a bound on response time and achieve
fault-tolerance.

2.2 Snapshot Isolation
Snapshot isolation was first proposed by Berenson et al. [1]

and is used by several database systems. Elnikety et al.
present a variant [5] of snapshot isolation in which trans-
actions are allowed to read versions of data that are older
than the start timestamp of the transaction. They use this
weaker notion for database replication but require conven-
tional snapshot isolation for transactions running on the
same database node.

Conditions under which non-serializable executions can
occur under snapshot isolation are analyzed by Fekete et
al. [6]. They show how to modify applications to execute
correctly under snapshot isolation and show that the TPC-C
benchmark, an important database benchmark that is rep-
resentative for real-world applications, runs correctly under
snapshot isolation.

Lu et al. formalize in [16] the conditions under which
transactions can be safely executed with snapshot isolation.
They use a notion of semantic correctness instead of strict
serializability. This way, the checks that have to be per-
formed to ensure correctness are reduced to the combina-
tions between the postcondition of the set of all read op-
erations of a transaction and the write operations of other
transactions. No further intermediate states have to be con-
sidered. We have used their conditions to construct SI-safe
implementations of a linked list and a skip list.

3. SNAPSHOT ISOLATION
The idea of snapshot isolation [1] is to take a consistent

snapshot ST of the data at the time startT when a transac-
tion T starts, and have T perform all read and write opera-
tions on ST . When an update T tries to commit, it has to

get a unique timestamp commitT that is larger than any ex-
isting start or commit timestamp. Snapshot isolation avoids
write/write conflicts based on the first-committer-wins prin-
ciple: if another transaction T2 commits before T tries to
commit and T2’s updates are not in T ’s snapshot ST , i.e.,
commitT2 > startT , then T has to be aborted.

Snapshot isolation does not guarantee serializability but
avoids common isolation anomalies like dirty reads, dirty
writes, lost updates, and fuzzy reads [1]. Snapshot isolation
is an optimistic approach that is expected to perform well
for workloads with short update transactions that conflict
minimally and long read-only transactions. This matches
many important application domains and slight variations of
snapshot isolation are used in common databases like Oracle
and Microsoft SQL server [6]. Hence, we are investigating
if snapshot isolation could be a good foundation for STMs
too.

3.1 Design and Semantics
Our SI-STM provides the same properties as standard

snapshot isolation except that we do not enforce the first-
committer-wins principle. Instead, as in other obstruction
free STM implementations, we use contention managers to
arbitrate write/write conflicts. We also provide the option to
enforce linearizability for transactions: at commit time, we
check for read/write conflicts and only permit transactions
to commit if they have neither write/write nor read/write
conflicts.

Our major goal was to develop a lightweight snapshot al-
gorithm that can both decrease the overhead of snapshot
isolation and maximize the freshness of the objects used in
a transaction. The motivation behind the freshness require-
ment is twofold. First, to address the often heard critique
about snapshot isolation being difficult to use because it ac-
cesses old data. Second, to reduce the number of write/write
conflicts and the memory footprint of the system (by facil-
itating that old versions be discarded earlier). Indeed, the
fresher the data in the snapshot, the lower is the probability
of having a write/write conflict because it might contain the
newest data written by other transactions.

The main feature of our design is a lazy interval snapshot
algorithm. Instead of taking a snapshot at the start of a
transaction T , we lazily acquire a snapshot: we add a copy
of an object o to the snapshot just before T accesses o for
the first time. Preferably, we would like to add o’s latest
version, i.e., a copy taken after the most recent committed
transaction that updated o. However, this might not guar-
antee that the snapshot remains consistent. We say that
a snapshot ST is consistent iff there exists a time t such
that each copy ci of object oi in ST corresponds to the most
recent version of oi at time t.

To keep a snapshot consistent, one could perform a vali-
dation of the snapshot whenever adding a new object to the
read set. A naive validation would be quadratic in the size
of the read set. This would be unacceptable for large trans-
actions. To address this issue, we designed a new algorithm
to determine the consistency more efficiently.

Each transaction T lazily acquires a consistent interval
snapshot ST that is valid within an non-empty validity in-
terval VT = [minT ,maxT]: each copy ci of object oi in ST

is the most recent version of oi for any time in VT and no
other transaction can commit a newer version of oi in in-
terval (minT ,maxT]. The validity interval is computed on

the fly according to the objects read by the transaction and
their available versions. Of course different transactions will
share a copy ci as long as these transactions only perform
read accesses.

Let firstT be the time when transaction T accesses its
first object. Our algorithm constructs a snapshot ST with
validity interval VT = [minT ,maxT], where maxT ≥ minT .
We guarantee that the snapshot is valid at some point in
time that follows, or coincides with, the first access, i.e.,
maxT ≥ firstT . The validity interval of the snapshot can
be such that minT > firstT . This means that, unlike other
optimizations of snapshot isolation that use snapshots of
the past, we can actually take a snapshot of the future, i.e.,
not yet valid at the time the transaction starts processing.
To simplify matters, we define the effective start time of
transaction T as max (firstT ,minT). In that way, a snapshot
is conceptually taken at the start of a transaction—just as
expected by snapshot isolation.

3.2 Algorithm
Each update transaction T has a unique commit times-

tamp commitT . The timestamps used in our implementa-
tion are all based on unique and monotonically increasing
integer values for commit times. This allows us to associate
each object o with a history of object versions ov1 , ov2 , . . .
with vi+1 > vi and object version ovi being valid in the time
range [vi, vi+1 − 1]. We call this range the validity interval
of object version ovi . It indicates that o was updated by a
transaction that committed at time vi and no other transac-
tion has committed a new version of o within (vi, vi+1 − 1].

The validity interval of object versions allows us to asso-
ciate the snapshot ST , constructed lazily by a transaction T ,
with a validity interval VT = [minT ,maxT]. VT is the inter-
section of the validity intervals of all object versions in ST .
Hence, each object version in ST was committed no later
than minT and no transaction committed another version
within VT .

Read access: When a transaction T reads an object o that
is not yet in ST , we look for the most recent version ovi with
a validity interval V that overlaps VT . We compute the new
validity interval of the transaction as the intersection of V
and VT .

Write access: When a transaction T tries to update an
object o for the first time, a private copy of this object is
created. We only permit one transaction to acquire a private
copy of an object. If a second transaction T2 attempts to up-
date o before T committed its changes, we have a write/write
conflict. In this case, the contention manager is called to de-
termine which of the two transactions needs to be aborted
(or delayed). In that way, we perform a forward validation
of update transactions.

Commit: A transaction can commit as long as its valid-
ity interval VT = [minT ,maxT] is non-empty, i.e., maxT ≥
minT . If we keep a sufficiently long history of objects, the
validity interval will never become empty. When an up-
date transaction commits, it receives a unique timestamp
commitT . Read-only transaction do not have a unique com-
mit timestamp as they do not update objects.

Memory Overhead: In our measurements we keep a small
number k of old variants for each object. In future we will
change this and will use a fixed number of weak references
to old variants of an object instead. In this way, the Java
garbage collector will be able to automatically reclaim old

o1 -

o2 -

o3 -

T -

VT = [12, 13] -

o10
1 o14

1-
o12
2 o16

2-
o11
3 o14

3-

r(o1) = o10
1

11

r(o2) = o12
2

13

r(o3) = o11
3

15 time

Figure 3: A transaction reading three objects.

variants in case more memory is needed. The memory over-
head will then depend on the available memory, i.e., no ad-
ditional copies are kept in case no memory is available and
up to k variants if the Java virtual machine has sufficient
memory available.

Extension of validity intervals: When a transaction T
adds the most recent object version ovi to its snapshot ST ,
the time vi+1 at which ovi expires is not yet known (oth-
erwise, ovi would not be the most recent version). Thus,
we set the upper bound on ovi ’s validity temporarily to the
most recent commit time (commitTc , where Tc is the most
recently committed transaction).

To extend the validity range of transaction T , we check if
any temporary upper bound on the validity of the objects in
ST can be shifted to a later time. Our system tries to extend
the validity interval VT if VT becomes empty. The goal of
this extension is to decrease the abort frequency. Additional
proactive extensions could be useful in some cases. However,
deciding whether extension costs are justified by possible
throughput gains is nontrivial and remains a task for future
work.

Example 2. To illustrate the concepts of lazy snapshot
isolation, consider a transaction T that reads objects o1, o2

and o3 (see Figure 3). When T accesses o2 for the first
time at time 13, T reads the most recent version o12

2 of o2

even though this version did not yet exist when T read o1 at
11. When accessing o3 at 15, T cannot use the most recent
version o14

3 of o3 because the validity intervals of o10
1 and

o14
3 do not overlap. Therefore, the snapshot S of T consists

of object versions o10
1 , o12

2 , and o11
3 with a validity interval

VT = [12, 13]. 2

3.3 Linearizability
We have implemented an optimistic approach that can

enforce linearizability [2] of transactions. If a program-
mer requests linearizability, a transaction T can only com-
mit at time commitT if its validity interval contains time
commitT − 1, i.e., all objects read by T are still valid at
the time T commits. The intuition is that all object ver-
sions in T ’s snapshot are valid up to T ’s commit time and,
hence, there are neither read/write nor write/write conflicts
affecting T .

To minimize aborts, a transaction T will try to extend
its validity interval before committing. If there are no read-
/write conflicts, i.e., no objects of T ’s read-set have been
updated, T will be able to extend the validity interval to
the current time and consequently commit.

4. STM IMPLEMENTATION
We now describe the architecture developed to support

lightweight transactions in Java. Our transactional mem-

ory is implemented as a software library. The main compo-
nents exposed to the application developer are transactions
and transactional objects. In addition, it features a modu-
lar architecture for dealing with contention and transaction
management.

4.1 Transactions
Transactions are implemented as thread-local objects, i.e.,

the scope of a transaction is confined inside the current
thread of control. The application developer can program-
matically start a transaction, try to commit it, or force it to
abort.

As in [13], transaction objects (see Figure 4) contain a
status field, initially set to ACTIVE, that can be atomically
changed to either COMMITTED or ABORTED using a compare
and swap (CAS) operation∗depending on whether the trans-
action successfully completes or not. A transaction object
can additionally keep track of the objects being read and
updated (read-set and write-set) and maintains timestamps
indicating the transaction’s start and commit times. Times-
tamps are discrete values generated by a global lock-free
counter that can be atomically incremented and read.

4.2 Transactional Objects
Transactional objects are STM-specific wrappers that con-

trol accesses to application objects. They manage multiple
version of the object’s state on behalf of active transactions.
Regular objects being wrapped must be able to duplicate
their state, i.e., clone themselves, as transactional wrappers
need to create new versions.

Before being used by the application, a transactional ob-
ject must be “opened”, i.e., a reference to the current state
of the application object must be acquired. A transactional
object can be opened for reading or for writing. If a transac-
tion opens the same object multiple times, the same state is
returned. An object opened for reading can be subsequently
opened for writing (similar to lock promotion in databases).
Opening a transactional object may fail and force the cur-
rent transaction to abort.

4.3 Contention Management
Conflicts are handled in a modular way by the means of

contention managers, as in [13]. Contention managers are
invoked when a conflict occurs between two transactions and
they must take actions to resolve the conflict, e.g., by abort-
ing or delaying one of the conflicting transactions. Con-
tention managers can take decisions based on information
stored in transaction objects (read- and write-set, times-
tamps), as well as historical data maintained over time. In
particular, contention managers can request to be notified of
transactional events (start, commit, abort, read, write) and
use this information to implement sophisticated conflict res-
olution strategies.

4.4 Transaction Management
Our STM implementation currently supports two trans-

action management models. The first one is very similar
to the SXM of Herlihy et al. [9], which is in turn simi-
lar to DSTM [13] but uses visible reads. It allows multi-

∗A CAS operation on a variable takes as argument a new
value v and an expected value e. It atomically sets the value
of the variable to v if the current value of v is equal to e. It
returns the value of v that was read.

ple readers or a single writer—but not both—to access a
given object. Updates to a shared object are performed on
a transaction-local copy, which becomes the current version
when the transaction commits. A single consistent version
of each shared object is maintained at a given time. Support
for SXM has been implemented essentially for comparison
purposes and we shall not describe it further.

The second transaction management model, termed SI-
STM, implements multi-version concurrency control and snap-
shot isolation as described in Section 3. Shared objects are
accessed indirectly via transactional wrappers that can be
invoked concurrently by multiple threads and effectively be-
have as transactional objects.

Transactional objects maintain a reference to a descrip-
tor, called locator [13], that keeps track of several versions
of the object’s state (see Figure 4): a tentative version being
written to by an update transaction (tentative); a com-
mitted version (state) together with its commit timestamp
(commit ts); and the n previous committed versions of the
object (old versions) together with their commit times-
tamp. n is a small value that is typically between 1 and 8.
A locator additionally stores a reference to the writer, i.e.,
the transaction that updates the tentative version, if any
(transaction). Note that the locator does not keep track
of transactions that read the object.

References to a locator can be read atomically and up-
dated using a CAS operation. Once a locator has been reg-
istered by a transactional object, it becomes immutable and
is never modified. When a transactional object is created,
its locator is initialized with the state of the object being
wrapped as committed version, and 0 as commit timestamp;
other fields are set to null.

We define the current version of the object as follows: if
the transaction field of the locator is null, or if the last
writer has aborted, then the current version corresponds to
the committed version of the object (state) with its as-
sociated commit timestamp (commit ts); if the last writer
has committed, then the current version corresponds to the
tentative version of the object (tentative) with a commit
timestamp equal to that of the writer; finally, if the writer
is still active, the current version is undefined.

When a transaction accesses an object in write mode for
the first time, we check in the current locator whether there
is already an active writer. If that is the case, there is a con-
flict and we ask the contention manager to arbitrate between
both transactions before retrying. Otherwise, if a validity
condition to be described shortly is met, we create a new
locator and register the current transaction as writer. We
store references to the current and previous versions in the
new locator and we create a new tentative version by du-
plicating the state of the current version. Finally, we try to
update the reference to the locator in the transactional ob-
ject using a CAS operation. If this fails, then a concurrent
transaction has updated the reference in the meantime and
we retry the whole procedure. Otherwise, the current trans-
action continues its execution by accessing its local tentative
version.

Example 3. Consider the example in Figure 5. Trans-
action T1 is registered as writer in the locator of the trans-
actional object. As T1 has committed, the tentative version
corresponds to the current state of the object, with a commit
timestamp of 53. Transaction T2 accesses the transactional

transaction

commit_ts

state

tentative

commit_ts

read_set

write_set

commit_ts

commit_ts

state

state

[0]

[1]

45

38

31

old_versions[]

Locator

Data

Data

Data

Data

3

2

1

4

...

Object
Transactional

Transaction

start_ts

0

ACTIVE

48

Figure 4: Sample locator for a transac-
tional object with an active writer. The
latest consistent version is Data3 with va-
lidity starting at time 45.

Data

Data

Data

3

2

1Object
Transactional

commit_ts

commit_ts

state

state

...

[0]

[1]

commit_ts

read_set

write_set

COMMITTED

start_ts

53

48

commit_ts

commit_ts

state

state

[0]

[1]

38

31

...

transaction

commit_ts

state

tentative

45

old_versions[]

Locator

38

45

Data

commit_ts

read_set

write_set

start_ts

Data4 5

transaction

commit_ts

state

tentative

old_versions[]

53

New Locator ACTIVE

0

51

CAS

Copy

Transaction T Transaction T21

Figure 5: Sample locator for a transactional object with a
committed writer T1 (left). Another transaction T2 opens
the transactional object in write mode and creates a new
locator (right).

object in write mode and creates a new locator, with versions
shifted by one position with respect to the old locator (the
old tentative version becomes the new committed version).
Then, T2 creates a copy of the current state as tentative
version and uses a CAS operation to update the reference to
the locator in the transactional object. 2

One can note that the algorithm for accessing transac-
tional objects in write mode follows the same general prin-
ciple as in DSTM, with variations resulting principally from
versioning and timestamp management. In contrast, read
operations are handled in a very different manner. As a
matter of fact, the key to the efficiency of our SI-STM model
is that no modification to the locator nor validation of pre-
viously read objects is necessary when accessing a transac-
tional object in read mode.

Each version has a validity range, i.e., an interval between
two timestamps during which the version was representing
the current state. This range starts with the commit times-
tamp of the version and ends one time unit before the com-
mit timestamp of the next version. For instance, in Fig-
ure 4, Data1 and Data2 have validity ranges of [31, 38) and
[38, 45), respectively; Data3 has a validity range starting at
45 with an upper bound still unknown. For each transac-
tion, we also maintain a validity range that corresponds to
the intersection of the validity ranges of all the objects in
its read-set. A necessary condition for the transaction to be
able to commit is that this range remains non-empty.

When opening a transactional object in read mode, the
transaction searches through the committed versions of the
object starting by the most recent and selects the first that
intersects with its validity range. If there is no such version,
we try to extend the validity range of the transaction by
recomputing the unknown upper bounds of the objects in
the read set, as described in Section 3. If the intersection
remains empty after the extend, the transaction needs to
abort. In all other cases, we simply update the validity
range of the transaction and return the selected version.

We can now describe the missing validity condition on
write accesses. Tentative versions also have an open-ended
validity range, which starts with the commit timestamp of
the cloned state and must also intersect with the validity
range of the transaction. Therefore, a write access will fail
if the commit timestamp of the current version is posterior to
the validity range of the transaction (even after an extend).

5. LANGUAGE INTEGRATION
Most of the STM implementations we know of provide ex-

plicit constructs for transaction demarcation and accesses to
transactional objects. The programmer uses special opera-
tions to start, abort, or commit the transaction associated
with the current thread, as well as retry transactions that
fail to commit. Further, the programmer needs to explic-
itly instantiate transactional objects and provide support
for creating copies of the wrapped objects.

Our STM implementation is no exception and features
such a programmatic interface. It features a declarative ap-
proach for seamless integration of lightweight transaction
in Java applications. To that end, we use a combination
of standard techniques: the annotation feature of Java 1.5
together with aspect-oriented programming (AOP) [15]. An-
notations are metadata that can be associated with types,
methods, and fields and allow programmers to decorate Java
code with their own attributes. Aspect-oriented program-
ming is an approach to writing software, which allows devel-
opers to easily capture and integrate cross-cutting concerns,
or aspects, in their applications.

5.1 Declarative STM Support
Our language integration mechanisms provide implicit trans-

action demarcation and transparent access to transactional
objects. The programmer only needs to add annotations
to relevant classes and methods. He is freed from the bur-
den of dealing programmatically with the STM, which in
turn limits the risk of introducing software bugs in complex
transactional constructs.

5.1.1 Declaring transactional objects
Transactional objects to be accessed in the context of con-

current transactions must have the annotation @Transactional.
All accesses to their methods and fields are managed by the
transactional library so as to guarantee isolation. Specific
methods can be additionally annotated by @ReadOnly to in-
dicate that they do not modify the state of the target object;
the transaction manager relies on this information to distin-
guish reads from writes.

As mentioned in Section 4, transactional objects should
be able to clone their state. Support for object duplication is
added transparently to transactional objects, provided that
all their instance fields are either (1) of primitive type, or
(2) immutable (e.g., strings), or (3) transactional. If that is

not the case, the transactional object should define a pub-
lic method duplicate() that performs a deep copy of the
object’s state.

5.1.2 Specifying transaction demarcation
Our language integration mechanisms also feature implicit

transaction demarcation: methods that have the annotation
@Atomic will always execute in the context of a new trans-
action. Such atomic method are transparently reinvoked if
the enclosing transaction fails to commit due to conflicting
accesses to transactional objects. Transactions that span
arbitrary blocks of code must using explicit demarcation.

Alternatively, a method can be declared with the @Isolated
annotation. The difference between atomic and isolated is
subtle: if an exception is raised by an atomic method, the
enclosing transaction is aborted before propagating the ex-
ception to the caller; in contrast, isolated methods always
commit the partial effects of the transaction before propa-
gating the exception. The choice between atomic and iso-
lated methods depends on the application semantics.

Example 4. Figure 6 presents an implementation of the
integer set introduced in Example 1. Observe that the code
makes no reference to STM, with the exception of the anno-
tations. Transactional constructs are transparently weaved
in the application by AOP. Compare this code with the ex-
plicit approach presented in [13]. 2

5.2 AOP Implementation
Our STM implementation uses AOP to transparently add

transactional support to the application based on the an-
notations inserted by the developer. Each object declared
as transactional is extended with a reference to a transac-
tional wrapper, methods to open the object in read and
write mode, and support for state duplication.

We use AOP around advices to transparently create a new
transaction for each call to an atomic or isolated method.
Transactions that fail to commit are automatically retried.
Similar advices are defined on transactional objects to in-
tercept and redirect method calls and field accesses to the
appropriate version.

The AOP weaver integrates the aspects in the application
at compile-time or at load-time. In comparison with explicit
transaction management, an application that uses declara-
tive STM incurs a small performance penalty, mostly due to
the additional runtime overhead of advices and the extra in-
direction for every access to a transactional object (instead
of the first access only). Overall, the efficiency loss remains
very small and is easily compensated by the many benefits
of implicit transaction demarcation and transparent access
to transactional objects. Note finally that declarative and
programmatic constructs can be mixed within the same ap-
plication.

6. PERFORMANCE EVALUATION
To evaluate the performance of our STM with snapshot

isolation, we compared it with two other implementations.
The first one follows the design of SXM by Herlihy et al. [9],
an object-based STM with visible reads, with a few minor
extensions. The second follows the design of Eager ASTM
by Marathe et al. as described in [17]. Henceforth, we
shall call these STM implementations SI-STM, SXM, and

ASTM. Read operations in SXM are visible to other threads,
whereas they are invisible in ASTM and SI-STM. Where
appropriate, we show results for another variant of ASTM
that only validates the read objects at the end of a trans-
action (single-validate ASTM). All other STM implementa-
tions guarantee that all objects read in a transaction always
represent a consistent view. Note that we compare SI-STM
with similarly designed STMs so as to determine the per-
formance of snapshot isolation and SI-STM’s inexpensive
validation.

We use five micro-benchmarks: a simple bank application;
two micro-benchmarks to investigate the CPU time required
for the read and write operations of an STM; and an integer
set implemented as a sorted linked list ; and an integer set
implemented as a skip list.

The bank micro-benchmark consists of two transaction
types: (1) transfers, i.e., a withdrawal from one account fol-
lowed by a deposit on another account, and (2) computation
of the aggregate balance of all accounts. Whereas the former
transaction is small and contains 2 read/write accesses, the
latter is a long transaction consisting only of read accesses
(one per account). To highlight the advantages of STMs,
we additionally present results for fine-granular and coarse-
granular lock-based implementations of these transactions,
in which locks are explicitly acquired and released. The for-
mer uses one lock (standard monitor implementation) per
account while the latter uses a single lock for all accounts.
Note that the lock-based implementation has lower runtime
overhead as it uses programmatic constructs instead of the
declarative transactions of SI-STM; hence, comparison of
absolute performance figures is not exactly fair.

We executed all benchmarks on a system with four Xeon
CPUs, hyperthreading enabled (resulting in eight logical
CPUs), 8GB of RAM, and Sun’s Java Virtual Machine ver-
sion 1.5.0. We used the virtual machine’s default configu-
ration for our system: a server-mode virtual machine, the
Parallel garbage collector, and a maximum heap size of 1GB.
We set the start size of the heap to its maximum size. Re-
sults were obtained by executing five runs of 10 seconds for
every tested configuration and computing the 20% trimmed
mean, i.e., the mean of the three median values. All STMs
use the Karma [19] contention manager.

Figure 7 shows the throughput results for the bank ap-
plication with 50 and 1024 accounts, and with 0% and 10%
read transactions (other transactions are money transfers).
Note that throughput is the total throughput of all threads
and that the number of threads is shown with a logarithmic
scale.

Under high write contention workloads (50 accounts) and
without long read-only transactions, SI-STM has slightly
higher overhead than SXM and ASTM. For larger numbers
of accounts (not shown), throughput increases for the STMs
and fine-grained locks because of less contention.

SI-STM also scales well when there are long read-all trans-
actions, whereas SXM suffers from a high conflict rate be-
cause of visible reads and cannot take advantage of addi-
tional CPUs. Although both SI-STM and ASTM use invisi-
ble reads, the throughput of the ASTM version that always
guarantees consistent reads is very low because of the valida-
tion overhead. When ASTM only performs validation at the
end of a read-only transaction (single-validate), the through-
put is significantly higher. However, the transactions might
read inconsistent data. For example, if a transaction needs

1 @Transactional
2 public class Node {
3 private int value;
4 private Node next;
5
6 public Node(int v) { value = v; }
7
8 public void setValue(int v) { value = v; }
9 public void setNext(Node n) { next = n; }

10
11 @ReadOnly
12 public int getValue() { return value; }
13 @ReadOnly
14 public Node getNext() { return next; }
15 }
16
17 public class IntSet {
18 private Node head;
19
20 public IntSetOOP() {
21 Node min = new Node(Integer.MIN VALUE);
22 Node max = new Node(Integer.MAX VALUE);
23 min.setNext(max);
24 head = min;
25 }
26
27 // Continued in next column...

28 @Atomic
29 public boolean add(int v) {
30 Node prev = head;
31 Node next = prev.getNext();
32 while (next.getValue() < v) {
33 prev = next;
34 next = prev.getNext();
35 }
36 if (next.getValue() == v)
37 return false;
38 Node n = new Node(v);
39 n.setNext(prev.getNext());
40 prev.setNext(n);
41 return true;
42 }
43
44 @Atomic
45 public boolean contains(int v) {
46 Node prev = head;
47 Node next = prev.getNext();
48 while (next.getValue() < v) {
49 prev = next;
50 next = prev.getNext();
51 }
52 return (next.getValue() == v);
53 }
54 }

Figure 6: Integer set implementation using declarative STM support.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

32168421

10
00

 T
x/

s

Threads

50 accounts, 0% read-all

32168421

Threads

50 accounts, 10% read-all

32168421

Threads

1024 accounts, 10% read-all

Small locks
Large locks

SI-STM
Eager ASTM

Eager ASTM, single validate
SXM

Figure 7: Throughput results for the bank benchmark.

to read all elements of a linked-list–based queue, it needs
to validate its read set during the transaction to guarantee
that it terminates even when the queue is being modified by
other transactions.

If the number of accounts is large (1024) and, as a result,
write contention and the chance that an object gets updated
is low, SI-STM and single-validate ASTM outperform the
other STM variants. However, if there is more than one
thread per CPU, the throughput of the STMs using invisible
reads decreases because preemption of threads decreases the
chance of optimistically obtaining a consistent view.

To highlight the differences between STM designs that use
visible and invisible reads, Figure 8 shows the CPU time re-
quired for one read operation for read-only transactions of
different sizes. In this micro-benchmark, 8 threads read the
given number of objects. All transactions read the same ob-
jects (with the exception of the SXM benchmark run with
disjoint accesses) and there are no concurrent updates to
these objects. The fixed overhead of a transaction gets neg-
ligible when the number of objects read during the trans-

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 20 40 60 80 100 120 140

C
P

U
 ti

m
e

pe
r

re
ad

 o
pe

ra
tio

n
in

 m
s

Number of objects read by a transaction

SI-STM
Eager ASTM

SXM
SXM, disjoint accesses

Figure 8: SI-STM read overhead

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 5 10 15 20 25 30

C
P

U
 ti

m
e

pe
r

w
rit

e
op

er
at

io
n

in
 m

s

Number of objects written by a transaction

SI-STM
SXM

Figure 9: SI-STM write overhead

action is high. SXM’s visible reads have a higher overhead
than SI-STM’s invisible reads. This overhead consists of the
costs of the CAS operation and possible cache misses and
CAS failures if transactions on different CPUs add them-
selves to the reader list of the same object. ASTM has to
guarantee the consistency of reads by validating all objects
previously read in the transaction, which increases the over-
head of read operations when transactions get larger. Note
that, although not shown here, ASTM transactions with
only a single validate at the end of each transaction perform
very similar to SI-STM.

SI-STM requires a central counter for the timestamps that
it needs for update transactions. SXM and ASTM do not
need such a counter, which is a source of contention if the
rate of commits is high. Figure 9 shows the overhead of
write operations in SI-STM by means of a micro-benchmark
similar to the one used for Figure 8. However, now the 8
threads write to disjoint, thread-local objects. Acquiring
timestamps induces a small overhead, which, however, gets
negligible when at least 10 objects are written by a trans-
action. Furthermore, the overhead is smaller than the costs
of a single write operation. However, the results in Figure 8
and Figure 9 are of course hardware-specific.

Figure 10 shows throughput results for two micro-bench-
marks that are often used to evaluate STM implementations,
namely integer sets implemented via sorted linked lists and
skip lists. Each benchmark consists of read transactions,
which determine whether an element is in the set, and up-
date transactions, which either add or remove an element.
For SI-STM, we present two results. First, modified imple-
mentations of the integer sets that operate correctly when
the STM provides snapshot-isolation, labeled as SI-safe;
these variants were obtained by adding some write accesses
and using the correctness conditions given in [16]. Second,
the original (sequential) implementations (see Figure 6) that
require strict transactional consistency and for which SI-
STM is configured to ensure linearizability. Distinguishing
between these variants allows us to show the performance
impact of snapshot isolation and inexpensive validation sep-
arately. We do not release objects early. Although early
release decreases the possibility of conflicts, it can mainly
be used in cases in which the access path to an object is
known. We use the linked list to conveniently model trans-
actions in which a modification takes place, which depends
on a large amount of data that might be modified by other
transactions. Note that, for this type of transactions, lazily
acquiring updated objects makes not much of a difference
because the update operations are near the end of the trans-

action. Thus, using Eager ASTM should give representative
results.

For the skip list, STMs using invisible reads (ASTM and
SI-STM) show good scalability and outperform SXM, which
suffers from the contention on the reader lists. However, the
transactions in the linked list benchmark are quite large (the
integer sets contain 250 elements) and ASTMs validation is
expensive. SI-STM, on the contrary, uses version informa-
tion to compute the validity range much faster and scales
well up to the number of available CPUs.

The SI-safe variants perform better than the original im-
plementations if the number of objects read by a transaction
is large, as in the linked list benchmark. On the other hand,
the overhead of the validation phase required to ensure lin-
earizability is negligible in the skip list benchmark, where
the number of read objects is smaller. Furthermore, transac-
tions are shorter, which decreases the probability of concur-
rent updates resulting in a failed validation. SI-STM enables
the user to choose between both alternatives depending on
application specifics and performance requirements. Note
that SI-STM with linearizability still outperforms SXM and
ASTM in most cases: applications can benefit from SI-STM
even without using snapshot isolation and its additional en-
gineering costs.

For all benchmark results for SI-STM shown here, the
maximum number of versions kept per object was 8. During
several tests with these benchmarks, we have noticed that
the maximum number of versions often had only a small in-
fluence on the throughput. Keeping one or two versions was
sufficient to achieve similar and sometimes even better re-
sults than with 8 versions. We also found that, in our bench-
marks, single-version STMs and SI-STM are throughput-
wise similarly affected by garbage collection overheads when
the heap size is small. We are currently investigating how
weak references and proactively extending the validity range
affect the properties of SI-STM.

7. CONCLUSION
We have designed, implemented, and evaluated a soft-

ware transaction memory architecture (SI-STM) based on a
variant of snapshot isolation. In this variant we use a con-
tention manager to support the first-committer-wins princi-
ple. The performance of SI-STM is competitive even with
manual lock-based implementations that do not have the
overhead of AOP. Our benchmarks point out that SI-STM
shows good performance in particular for transaction work-
loads with long transactions. Our novel lazy snapshot algo-
rithm can reduce the validation cost in comparison to other
STMs with invisible reads like ASTM.

8. REFERENCES
[1] H. Berenson, P. Bernstein, J. Gray, J. Melton,

E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of SIGMOD, pages
1–10, 1995.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[3] J. Cachopo and A. Rito-Silva. Versioned boxes as the
basis for memory transactions. In Proceedings of
SCOOL, 2005.

 0

 10

 20

 30

 40

 50

 60

 70

32168421

10
00

 T
x/

s

Threads

Linked List, 0% writes

SXM
ASTM

SI-STM
SI-STM SI-safe

 0

 5

 10

 15

 20

 25

 30

32168421

Threads

Linked List, 20% writes

 0

 2

 4

 6

 8

 10

 12

 14

 16

32168421

Threads

Linked List, 100% writes

 0

 50

 100

 150

 200

 250

 300

 350

32168421

10
00

 T
x/

s

Threads

Skip List, 0% writes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

32168421

Threads

Skip List, 20% writes

 0

 10

 20

 30

 40

 50

 60

 70

 80

32168421

Threads

Skip List, 100% writes

SXM
Eager ASTM

SI-STM
SI-STM SI-safe

Figure 10: Throughput results for the linked list (top) and skip list (bottom) benchmarks.

[4] C. Cole and M. Herlihy. Snapshots and software
transactional memory. Science of Computer
Programming, 2005. To appear.

[5] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. In
Proceedings of SRDS, pages 73–84, Oct 2005.

[6] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Transactions on Database Systems, 30(2), 2005.

[7] P. Felber and M. Reiter. Advanced concurrency
control in Java. Concurrency and Computation:
Practice & Experience, 14(4):261–285, 2002.

[8] R. Guerraoui, M. Herlihy, M. Kapalka, and
B. Pochon. Robust contention management in
software transactional memory. In Proceedings of
SCOOL, 2005.

[9] R. Guerraoui, M. Herlihy, and B. Pochon.
Polymorphic contention management. In Proceedings
of DISC, Sep 2005.

[10] R. Guerraoui, M. Herlihy, and S. Pochon. Toward a
theory of transactional contention managers. In
Proceedings of PODC, Jul 2005.

[11] T. Harris and K. Fraser. Language support for
lightweight transactions. In Proceedings of OOPSLA,
pages 388–402, Oct 2003.

[12] M. Herlihy. The transactional manifesto: software
engineering and non-blocking synchronization. In
Proceedings of PLDI, 2005.

[13] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer
III. Software transactional memory for dynamic-sized

data structures. In Proceedings of PODC, pages
92–101, Jul 2003.

[14] M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of
ECOOP, 1997.

[16] S. Lu, A. Bernstein, and P. Lewis. Correct execution
of transactions at different isolation levels. IEEE
Transactions on Knowledge and Data Engineering,
16(9):1070–1081, 2004.

[17] V. J. Marathe, W. N. S. III, and M. L. Scott.
Adaptive software transactional memory. In
Proceedings of DISC, pages 354–368, 2005.

[18] W. Scherer III and M. Scott. Advanced contention
management for dynamic software transactional
memory. In Proceedings of PODC, pages 240–248, Jul
2005.

[19] W. N. Scherer III and M. L. Scott. Contention
management in dynamic software transactional
memory. In Proceedings of the PODC Workshop on
Concurrency and Synchronization in Java Programs,
Jul 2004.

[20] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of PODC, Aug 1995.

	1 Introduction
	2 Related Work
	2.1 Software Transactional Memory
	2.2 Snapshot Isolation

	3 Snapshot Isolation
	3.1 Design and Semantics
	3.2 Algorithm
	3.3 Linearizability

	4 STM Implementation
	4.1 Transactions
	4.2 Transactional Objects
	4.3 Contention Management
	4.4 Transaction Management

	5 Language Integration
	5.1 Declarative STM Support
	5.1.1 Declaring transactional objects
	5.1.2 Specifying transaction demarcation

	5.2 AOP Implementation

	6 Performance Evaluation
	7 Conclusion
	8 References

