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ABSTRACT
We investigate to which extent data partitioning can help
improve the performance of software transactional memory
(STM). Our main idea is that the access patterns of the var-
ious data structures of an application might be sufficiently
different so that it would be beneficial to tune the behav-
ior of the STM for individual data partitions. We evaluate
our approach using standard transactional memory bench-
marks. We show that these applications contain partitions
with different characteristics and, despite the runtime over-
head introduced by partition tracking and dynamic tuning,
that partitioning provides significant performance improve-
ments.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms, Performance

1. INTRODUCTION
There exist a large variety of transactional memory de-

signs (e.g., [8, 9, 7, 10]), each of which has different perfor-
mance tradeoffs. Our experience with transactional memory
indicates that there will be no “one size fits all” implementa-
tion. In particular, we expect that different workloads will
require different optimizations and even different transac-
tional memory designs. For example, one classical design
decision in software transactional memory (STM) is the use
of visible vs. invisible reads. The former makes readers visi-
ble to writers and hence, typically performs better than the
latter on workloads with a high percentage of update trans-
actions; it performs worse, however, for most other work-
loads. Another example is that of the granularity of conflict
detection: memory regions that suffer from high contention
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might benefit from coarse-grained detection (e.g., at the ob-
ject level, or even at the granularity of the whole region),
while one would rather use fine-grained detection for non-
contended regions.

One can expect that large applications will use different
data structures that require different optimizations. For in-
stance, a linked list might have a high update transaction
rate and would benefit from visible reads, while a red/black
tree in the same application with a low update transaction
rate should rather use invisible reads. In reality, matters
will likely be even worse: there might be multiple red/black
trees, each of which might experience a different workload.
This implies that optimizations of the transactional mem-
ory based on individual data types might not be sufficient
to achieve good performance.

We believe that optimizing an STM for heterogeneous
workloads is best addressed using a divide-and-conquer ap-
proach. Our key assumption is that the transaction work-
load is more homogeneous within rather than across “data
partitions”. Therefore, optimizations on a per-partition ba-
sis are more effective than optimizations on individual trans-
actions alone and allow the STM to provide performance
composability. For example, we could decide to use visible
reads in highly contended partitions and invisible reads in
partitions with low contention.

For our approach to be effective, we have to solve several
problems. First, we need to find a good partitioning among
all data structures of an application. Once partitions have
been identified, we need to integrate the partitioning with
the underlying STM and finally perform per-partition tun-
ing.

Figure 1 illustrates our approach, which is based on a
combination of compile-time and runtime techniques. We
first automatically partitioning memory using the approach
described in [6], thus allowing the STM to perform con-
currency control separately for each partition. Second, we
explain how STMs can be extended to use different kinds
of concurrency control for different partitions, and how to
tune the transactional memory system at runtime on a per-
partition basis. In our current STM, tuning decisions are
driven by runtime heuristics. We implemented our approach
by extending Tanger [11] and TinySTM [10].

Using a hybrid compile-time/runtime approach allows us
(1) to move most of the costs for establishing partitions to
compile-time and (2) to still be able to support dynami-
cally changing workloads (e.g., different workload phases)
because tuning decisions and STM algorithms are chosen
dynamically at runtime.
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Figure 1: Our approach on a conceptual level.

We assume a model in which programmers only declare
transaction boundaries and the compiler transforms mem-
ory accesses inside transactions into calls to the underly-
ing STM. Several of the mechanisms proposed in this paper
could also be introduced as manual optimizations, but this
would be neither composable nor easy to achieve.

As we also aim to support transactions in systems software
(which is often written in low-level languages like C), we
specifically target unmanaged environments with pointers
for which we cannot, for example, assume that memory is
already partitioned into objects.

The remainder of the paper is organized as follows: We
first describe related work in Section 2. We then describe
the memory partitioning in Section 3 and introduce our
partitioning-aware STM and its dynamic tuning approach
in Section 4. We evaluate our approach in Section 5 and
finally conclude in Section 6.

2. RELATED WORK
Partitioning is an intensely investigated topic in other ar-

eas such as distributed shared memories or resource schedul-
ing. To the best of our knowledge, in the context of trans-
actional memories there are only few works that use parti-
tioning techniques. The most notable is the partitioning of
workloads in [1] . Since the focus of this paper is to investige
partitioning in the context of transactional memories, we do
not discuss partitioning techniques in other areas.

Our goal is to reduce the cost of software transactional
memory via partitioning. The underlying idea is that the
access behavior of partitions can vary and, hence, we have
the potential to optimize the cost on a per-partition basis.
The major part of the overheads for uncontended transac-
tions are per-access costs. For write accesses, these consist of
undo/redo log maintenance, lock acquisition (for lock-based
STMs), and write set maintenance. For read accesses, an
STM can either use visible reads and acquire locks, or it
can use invisible reads and perform validity checks. A read
set/log is typically maintained by the STM, although this is
not always necessary in time-based STMs [13, 7, 2].

The question of access granularity (e.g., word-based vs.
object-based) can be seen as a partitioning problem. Al-
though the decision for choosing one approach over the other
has usually practical reasons (e.g., it may be difficult to de-
termine the object that some arbitrary memory address be-
longs to), this of course also affects performance. For exam-
ple, accessing large objects such as arrays with an object-
based TM implementation could result in poor performance
because of copying overheads or false sharing. Large objects

could be split into smaller parts (i.e., partitioned) but this is
far from trivial and we do not know of any implementation
that currently does this.

Object-based TMs usually store transactional metadata in
place, in the object itself. In word-based designs, one must
be able to quickly locate the metadata associated with ar-
bitrary memory addresses. To keep access overheads small,
TMs usually use a simple hash function to associate meta-
data with memory addresses. This hash function splits all
the memory into equally-sized blocks (e.g., machine words
or cache lines) and associates them with entries in a pre-
allocated metadata array. In all the TM implementations
that we know of (except in [10]), this single hash function
is defined globally for all accesses and cannot be changed at
runtime. Obviously, optimizing such a fixed hash function
for a specific workload may produce degraded performance
for other workloads due to problems like false conflicts or
too fine-granular locking [10].

Zilles and Rajwar use the birthday paradox to highlight
the problem of false conflicts in hardware TMs [14]. They
propose to use tagged ownership tables, which keep detailed
ownership information to be able to distinguish false con-
flicts from real data conflicts. While this approaches fixes
the problem once it has occurred, it would be better if we
could remove its cause, i.e., the simplicity of the hash func-
tion.

Workload partitioning is proposed in [1] for dictionary-like
data structures; a good partitioning will assign transactions
to processors in such a way that the load is balanced and
data locality is exploited.

In [12], Shpeisman et al. showed how an STM can use
compile-time analysis and runtime mechanisms in a man-
aged environment to track whether an object is thread-local
or not accessed in transactions. This information is tracked
per object, so memory is always partitioned into individual
objects.

3. DATA PARTITIONING
In this section, we first give a high-level overview of our

data partitioning approach before describing in detail its
design and implementation.

3.1 Overview
We refer to functions that map entities from a given do-

main to a set of partitions as partitioning functions. For
example, the hash function in word-based STMs that maps
memory addresses to locks (or other metadata) is a parti-
tioning function.



1 typedef struct node {
2 intptr t k, v;
3 struct node ∗p, ∗l, ∗r;
4 intptr t c;
5 } node t;
6

7 typedef struct rbtree {
8 node t∗ root;
9 } rbtree t;

10

11 typedef struct manager {
12 rbtree t ∗car, ∗room, ∗flight, ∗customer;
13 int nextCustomerId;
14 } manager t;
15

16 void main(int argc, char ∗∗argv)
17 {
18 manager t∗ manager;
19 // ...
20 }

Figure 2: Data structures in STAMP’s Vacation ap-
plication.

%struct.manager_t

%struct.node_t* %struct.node_t* %struct.node_t* %struct.node_t*

%struct.node_t %struct.node_t %struct.node_t %struct.node_t

%struct.reservation_t %struct.customer_t

Figure 3: Simplified DS graph for STAMP’s Vaca-
tion application. Each node represents one parti-
tion.

As an illustration of our data partitioning approach, con-
sider the code in Listing 2 that shows a portion of STAMP’s
Vacation STM benchmark application [3] used in our eval-
uation (see Section 5). One can observe that the manager_t

structure holds references to four different red/black trees.
Each tree has a single root, as well as inner nodes with ref-
erences to their parent and children.

Figure 3 shows a simplified Data Structure (DS) graph
that was automatically inferred for the code shown in List-
ing 2. Informally, the nodes of a DS graph represent the
memory partitions that a program creates and the edges of
the DS graph specify to which partition (i.e., node in the DS
graph) a pointer stored in a field within the partition can
point to.

3.2 Identifying Partitions
To identify the partitions of an application, we first need

to construct its DS graph. This is achieved using Lattner’s
Data Structure Analysis (DSA) [4], which is implemented as
an analysis pass in the LLVM [5] compiler framework.

The DS graph is determined by analyzing where the point-
ers in a program are permitted to point to. The analysis is
field sensitive in the sense that pointers stored in different

fields of a data structure can point to different nodes (i.e.,
partitions) within the DS graph. However, a field can point
to at most one node. To guarantee this property, when-
ever it is discovered that pointers stored in the same field
point to disjoint nodes, these nodes are unified. This simple
unification approach makes DSA fast and scalable.

The analysis is also context-sensitive, i.e., data structures
are distinguished based on call graphs and not just allocation
sites, for example. DSA can cope with calls to external
functions, which implies that one does not need to analyze
the complete program.

More precisely, our implementation is based on Poolal-
loc [6], which in turn uses DSA. Poolalloc operates as a
transformation pass in the LLVM compiler framework. It
construct a DS graph for every function encountered in the
program. The graph lists the relationships between instances
of data types used in the function. The information con-
tained in DS graphs of callees of a function is merged with
the graph of that function. A DS graph node is marked
as complete in a function if DSA has analyzed all its uses.
For example, a node is not complete if a pointer associated
with it escapes to an external functions that has not been
analyzed (i.e., it is passed as a parameter to an external
function, returned by an external function, or accessible via
an externally visible global variable). If two pointer values
in a function are associated with different DS nodes marked
as complete, then it is guaranteed that they point to non-
overlapping memory regions. Otherwise, DSA would have
unified the DS nodes to a single node.

Poolalloc then uses the DS graphs to create pools for com-
plete DS nodes in each function and changes function calls
and signatures such that callers pass pointers to pools that
are required by callees. We can thus detect whether two
pointers might address overlapping memory regions simply
by comparing the pools associated with the pointers. Note
that this relies both on compile-time and runtime infor-
mation: the association between pointers and per-function
pools is known at compile time, but callers of a function
supply pointers to pools for incomplete DS nodes to callees
at run-time and might pass the same pool for several argu-
ments. Two separate data structures created using the same
initialization function can thus be assigned to two different
pools.

We can use Poolalloc’s pools as partitions for the STM be-
cause distinct pools are guaranteed to contain non-overlap-
ping memory regions. Looking at Figure 3, for example, an
individual partition would be created for the sets of nodes
in each red/black tree. Sets of nodes are not further parti-
tioned because of unification.

Partition descriptors are instantiated at runtime when the
control flow reaches a pool creation point in the program.
These small data structures store the STM metadata for
partitions (see Section 4). The STM’s functions for trans-
actional loads and stores receive a pointer to the partition
descriptor of the target memory address. This information
is used to handle memory accesses differently for each parti-
tion. If no particular partition is associated with the target
address, a default partition is used.

3.3 Implementation Details
We have added data partitioning support to Tanger, our

open-source STM compiler implementation [11] that also
uses LLVM for “transactifying” C/C++ code. Therefore,



the code analysis, data partitioning, and transactification
phases are all integrated in the same tool chain. The code
transformations target a typical word-based STM interface.

The original motivation for Poolalloc was to improve per-
formance by increasing the locality of heap objects belonging
to one data structure. To achieve that goal, Poolalloc uses a
custom per-pool memory allocator. In our implementation,
we do not use custom allocators as this would add another
dimension to the problem space and would exceed the focus
of this paper.

We had to perform several modifications to Poolalloc and
DSA to adapt them to STM partitioning. Most of these
modifications are related to multi-threading, e.g., we need
to allocate pool descriptors on the heap rather than on the
stack as they are shared between threads, we added garbage
collection for pool descriptors since they are now allocated
on the heap, we have to handle pool descriptors that are
passed as parameters to functions that create new threads,
etc. Our compiler can also detect transaction-local parti-
tions (i.e., partitions which are created and destroyed in
the same transaction) and thread-local partitions in simple
cases.

Our current implementation creates one pool/partition for
each complete node of the DS graph, although it would be
possible to group several nodes in the same partition. Com-
ing back to the example of Figure 3, it might make sense to
use one partition per red/black tree, i.e., one might want to
collapse the root and inner nodes of each tree.

We also do not partition data structures for which Poolal-
loc uses only a single node in the DS graph, but we could of
course sub-partition memory in a Poolalloc-based partition
using alternate mechanisms.

4. PARTITIONING-AWARE STM AND DY-
NAMIC TUNING

Our main objectives with partitioning are (1) to isolate the
partitions with respect to concurrency control and (2) to fa-
cilitate the tuning of the STM by considering each partition
independently. The underlying idea is that a typical appli-
cation will have a variety of data structures, each of which
has different transactional workloads. Hence, by selecting a
concurrency control mechanism suitable for each partition
and by tuning each partition individually, we can improve
the overall transactional throughput.

For our prototype implementation, we use TinySTM [10],
a word-based STM design that uses versioned locks to pro-
tect shared memory locations and invisible reads with time-
based validation [13] (please refer to [10, 7, 2] for details
on the operation of such an STM). It relies upon a shared
array of locks to manage concurrent accesses to memory.
To obtain the lock associated with a memory address, the
STM first shifts off a certain number of least-significant bits
and then masks the most-significant bits: lock = (addr >>
#shifts) mod #locks. The number of locks is a power of
2 and the number of shifts determines how many contigu-
ous memory locations are protected by a single lock. Both
parameters have a large influence on the performance of an
STM and the optimal setting depends on the workload [10].

The original STM implementation is not aware of par-
titions (it uses a single partition) and has to choose one
configuration for controlling concurrency in the whole appli-
cation. Also, all transactions have to use the same global

lock array, which can result in false conflicts and makes tun-
ing more difficult.

Using multiple partitions allows us to perform various
kinds of optimizations that would be ineffective with a sin-
gle partition. For example, it is unreasonable to assume
that a single global partition would be read-only, but it is
not unlikely that some partitions in an application would be
read-only (see Section 5).

Table 1 shows the types of concurrency control for parti-
tions that our partitioning-aware STM currently supports.
They offer various tradeoffs in terms of concurrency and
overhead. Note that even though the STM can use a differ-
ent algorithm in each partition, it still provides transactions
with the same guarantees as the original STM does. The
integration of other concurrency control mechanisms than
those shown in Table 1 should be straightforward because
partitions are guaranteed to not overlap.

When a partition is created at runtime, the STM stores
metadata for the partition in the partition descriptor, which
is passed by reference upon every access to the partition
(see Section 3). The descriptor structure consists of fields for
(1) the partition’s type (see Table 1), (2) a single lock for the
Shared Lock and Exclusive Lock types, (3) a pointer to the
lock array, the number of locks, and the number of shifts for
the Multiple Locks type, and (4) a few counters to maintain
statistics (e.g., the number of aborts in the partition).

The STM also provides a default partition for every trans-
actional memory access that is not associated with a parti-
tion. This is the fall-back implementation for accesses that,
for example, target incomplete DS nodes (e.g., data that
is also accessed in external functions, see Section 3) or ac-
cesses that are assumed to be associated with a partition by
a callee but not by the caller. The default partition is of
type “Multiple Locks”.

On each transactional memory access, the STM loads the
type of the partition from its descriptor and dispatches exe-
cution to the code responsible for this type. This constitutes
a large part of the runtime overhead of partitioning (see Sec-
tion 5) but much of this overhead can be removed by better
compiler optimizations (e.g., creating different code paths
specialized for different partition types).

Partitions can be tuned on demand and independently of
each other. When a thread wants to tune a partition, it
(1) tries to change the partition type to “Tuning” using a
compare-and-set instruction, (2) acquires a new timestamp
from the global clock used by the STM for time-based vali-
dation [13], and (3) waits until every active transaction has
a start timestamp larger or equal than the acquired times-
tamp. If a transaction accesses a partition that is being
tuned, it aborts and updates its start timestamp. Thus,
if step (1) succeeded, then after step (3) every transaction
will discover or will already know that the partition is be-
ing tuned. The thread that performs the tuning can thus
change the partition’s metadata and finally set the new par-
tition type. Note that, although we do have to wait for
active transactions to complete, tuning will only delay the
transactions that actually access the partition being tuned.

Our current prototype uses simple tuning strategies (see
Table 2) based on runtime measurements and heuristics. All
strategies initially set the partitions to “Read-Only”. The
type of a partition is changed if the number of aborts in
the partition exceeds a certain threshold (e.g., on reaching
1, 000 aborts, Part-3 changes the partition type to “Mul-



Type Concurrency control Performance Purpose
Multiple Locks Per-partition array of locks. Similar

to using one instance of the original
STM per partition.

The indirection via partitions adds some
overhead over the original STM.

General purpose.

Shared Lock Single per-partition lock embedded
in partition descriptors. Same algo-
rithm as with multiple locks.

Lower overhead than “Multiple Locks”
but supports only a single updating
transaction.

Mostly-read and
uncontended parti-
tions.

Exclusive Lock Single per-partition exclusive lock
for both reads and writes.

Does not allow concurrent accesses by
transactions. Lower overhead than
“Shared Lock” because reads do not need
to be validated.

Partitions that
are rarely accessed
concurrently at
runtime.

Read-Only No concurrency control. Does not
allow updates.

Very low overhead but the partition type
must be changed when a transaction
wants to update data.

Read-only parti-
tions.

Tuning Transactions will abort. N/A Tuning.
Thread-local No concurrency control. Undo-

logging for writes.
Low overhead. Special purpose.

Transaction-local No concurrency control. Very low overhead. Special purpose.

Table 1: Partition types supported in our implementation.

Strategy First Update 20 aborts 1000 aborts 2000 aborts

Part-1 Multiple (L=218, S=6)
Part-2 Single Exclusive Multiple (L=218, S=6)
Part-3 Single Exclusive Single Shared Multiple (L=218, S=6)
Part-4 Single Exclusive Single Shared Multiple (L=210, S=8) Multiple (L=218, S=6)

Table 2: Partitioning Strategies. Initially, all partitions are of the “Read-Only” type.

tiple Locks”, an array of 218 locks, and a 6-bit shift). We
chose values for the number of locks and shifts that provided
good overall performance in our benchmarks (see Section 5).
Please note that while our approach supports workloads that
dynamically change their characteristics at runtime (e.g.,
initializing a lookup table and later using it just for read-
only lookups), simple tuning strategies can effectively limit
the ability of the STM to adapt to these changes. For in-
stance, our current strategies never tune a partition back to
the Read-Only type.

5. EVALUATION
To evaluate the effectiveness of our approach, we have

used the Vacation, Genome, and KMeans benchmarks from
the STAMP [3] TM benchmark suite. In these benchmarks,
memory accesses are only transactional if specially marked.
However, we assume that programmers would rather rely
on compilers to“transactify”applications and that program-
mers will not tell compilers which accesses can be safely ex-
ecuted non-transactionally. We therefore used Tanger [11]
to compile all benchmarks. We produced versions with and
without partition support. Applications were compiled to
32-bit executables and run on an 8-core machine1. We also
used the classical Linked List micro-benchmark used to eval-
uate most STM designs for illustrative purposes.

The first stage of our approach takes place during com-
pilation of applications. Table 3 shows how many of the
transactional loads and stores in an application are associ-

1Two-way quad-core Intel Xeon at 2 GHz running Linux
2.6.18-4 (64-bit)

Benchmark Partition Partitioned/ Partitioned/
creation total transac- total transac-
points tional loads tional stores

Vacation 19 160 / 164 103 / 105
KMeans 11 5 / 8 1 / 4
Genome 23 47 / 47 15 / 16
Linked List 3 13 / 13 6 / 6

Table 3: Compiler statistics.

ated with partitions. Accesses not associated with a par-
tition are implicitly linked to the default partition by the
STM (see Section 4). Partition creation points are calls in
the program code that instantiate partitions. Note that the
number of partitions actually created and accessed at run-
time can be different from the number of creation points.
The table shows that most of the accesses can be associated
with partitions. KMeans has fewer partitioned accesses be-
cause it uses global variables, for which Poolalloc does not
by default create partitions.

Table 4 shows runtime statistics for partition accesses and
aborts. All partitions were forced to be of the “Multiple
Locks” type and to use 218 locks and 6 shifts. Partitions
without transactional accesses have been omitted. For load-
/store statistics, we used a single thread, default parame-
ters and 2M transactions for Vacation, low contention set-
tings and a 2K input file for KMeans, and 40K segments2 for
Genome. For abort statistics, to produce contention we used

2-g16384 -s64 -n41943



Benchmark Txnal Txnal R/W W/W
/ Partition Loads Stores aborts aborts

Vacation / 1 105M 11M 1.3K 43K
2 125M 20M 2.8K 33K
3 4.3M 450K 9 3K
4 192M 3.5M 107K 10K
5 253M 184K 192 0
6 258M 41K 33 0
7 37M 15M 17K 63
8 263M 41K 24 0
9 6.9M 5 328 0

10 8.2M 0 0 0
11 8.4M 0 0 0
12 8.4M 0 0 0
13 22M 0 0 0

default 21M 19M 5K 894
thread-local 14M 10M 0 0
KMeans / 1 524K 524K 451K 28K

2 524K 0 0 0
3 524K 0 0 0
4 524K 0 0 0
5 32K 0 0 0

default 44K 44K 16M 157K
Genome / 1 11.8M 106K 316 49

2 91K 30K 186 436
3 118M 4.7M 567K 3K
4 952K 0 0 0
5 65K 75K 0 14
6 15K 0 0 0
7 1.9M 0 0 0
8 952K 0 0 0
9 30K 0 0 0

10 0 15K 0 0
11 337K 75K 1K 516
12 57K 0 0 0
13 141K 0 0 0
14 42K 0 0 0
15 84K 0 0 0

txn-local 73K 0 0 0
thread-local 0 42K 0 0

Table 4: Runtime statistics for partitions: trans-
actional accesses and aborts due to read/write or
write/write conflicts.

8 threads, a 64K input file for KMeans, and 4M segments3

for Genome.
We can see that the number of accesses varies a lot be-

tween the partitions. There are more reads than writes, but
the relation differs per partition. There are several read-
only partitions but the largest partitions are often updated
(e.g., in Vacation). The default partition receives much less
accesses than the other partitions or none at all (Genome).
This number could be decreased by tuning Poolalloc’s heuris-
tics for when to create partitions, and by improving the
thread-local compiler analysis. Transaction abort counts
have also a high variance, which further shows that par-
titions are different. Note that we do not use any kind of
contention management. We did experiment with different
backoff schemes but results were not conclusive. Overall,

3-g16384 -s64 -n4194304

Table 4 shows that data partitioning creates many opportu-
nities for different kinds of optimizations.

Table 5 illustrates the performance of the different par-
tition types (see Table 1 for details about each type). We
ran the benchmarks with a single thread and forced all par-
titions to be of a certain type. The Linked List benchmarks
run transactions that look for a specific element in lists
with 2000 and 250 elements, respectively. In our current
STM prototype, partitioning adds non-negligible overhead
to transactional accesses. The first reason is that the STM
dispatches execution based on the partition type for every
access (see the difference between the second and the third
column). Further compiler optimizations could remove this
overhead. For example, the compiler could detect that only
one partition is used in a function and create a special ver-
sion optimized for read-only or thread-local partitions.

The second part of the overhead (third column) is due to
the extra level of indirection that partitions represent. The
partitioning-aware STM has to load the pointer to the lock
array and the number of locks and shifts from the parti-
tion descriptor, whereas these values are fixed in the origi-
nal STM. Nevertheless, the other columns show that despite
these overheads, even just using a single lock instead of mul-
tiple locks can increase performance significantly. Further
compiler optimizations should also increase the performance
advantage of the partition types that need no or very little
per-access concurrency control code (e.g., “Read-Only” or
“Exclusive Lock”) because no calls into an STM library are
necessary and undo-logging can be efficiently inlined in the
application code.

After showing the applicability of partitioning and the
potential of optimizations that it enables, we now show per-
formance results for the benchmarks from the STAMP suite.
Figures 4, 5, and 6 each show the performance of configu-
rations of the original STM and of the four simple tuning
strategies of the partitioning-aware STM shown in Table 2.
Performance results are shown as speedup relative to the
single-thread performance for the first configuration of the
original STM. The lock/shift settings that we use for the
original STM (labeled Orig-L-S with 2L being the number
of locks and S the number of shifts) were the ones that pro-
vided the best performance for eight threads.

For Vacation (Figure 4), the partitioning-aware STM is of-
ten slightly slower than the original STM due to the higher
per-access overhead. However, it performs significantly bet-
ter if (1) it uses the “Exclusive Lock” type in single-threaded
runs or (2) in the high contention variant of the benchmark
with a large number of threads. The latter also shows that
increasing the number of locks in the original STM (Orig-
24-6) is not sufficient to avoid false conflicts in a single lock
array; in contrast, the partitioning-aware STM can still scale
even though it uses less locks.

In KMeans (Figure 4), the partitioning aware STM can
take advantage of the three often-accessed read-only par-
titions (see Table 4). Using fine-granular locks seems to
be important in the high-contention variant of the bench-
mark, which shows that advanced tuning strategies should
also adapt the number of locks and shifts for each partition.

In Genome (Figure 6), the partitioning-aware STM per-
forms significantly better than the original STM (with one
exception). Although the statistics in Table 4 suggest oth-
erwise, we observed that the two most-frequently accessed
partitions (1 and 3) are read-only during the first phase of



Benchmark Multipe Locks Multiple Locks, Shared Lock Exclusive Lock Read-Only
No Dispatch

Vacation 0.71 0.80 1.21 1.32 N/A
KMeans 0.85 0.94 1.07 1.13 N/A
Genome 0.74 0.84 1.17 1.34 N/A

Linked List Large 0.68 0.86 1.36 1.90 2.30
Linked List Small 0.61 0.80 1.29 1.73 2.22

Table 5: Performance of partition types and overhead of supporting partitions. Shows speedup relative to
the original STM.
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Figure 4: Results for Vacation’s low and high contention variants.

the benchmark, which allows the STM to handle many of the
accesses using a “Read-Only” partition type. More impor-
tantly, the right part of Figure 6 shows that partitions can
decrease the STM’s space overhead tremendously. Part-4

uses five partitions with 256K locks and one with 1K locks;
the original STM uses 256MB of memory just for its locks
and it was not able to execute the benchmark with 224 locks
in a reasonable amount of time due to false conflicts.

6. CONCLUSION
The runtime overheads of current STMs are not negligi-

ble and there is still much room for optimizations. We be-
lieve that partitioning will play a central role in optimizing
STMs for real-world workloads. Partitioning enables STMs
to compose different specialized optimizations that would
not be beneficial globally, for example when dealing with
uncontended or read-only partitions.

We showed how to add partitioning support to an STM
compiler and runtime system. Our approach is applicable to
software written in low-level languages such as C and does
not require managed environments. The performance results
for several STM benchmarks showed that even our non-
optimized prototype can already yield better performance
than the original STM without partitioning support, often
with a much lower memory overhead.

Furthermore, we believe that partitioning support enables
many other improvements for TM beyond optimizing STMs.
For example, hybrid TMs could choose to use hardware TM
(HTM) only for contended partitions and thus be able to
overcome limitations of a particular HTM implementation.
Using partitioning to reduce false conflicts should be ap-
plicable to HTMs too. Finally, TM building blocks such

as schedulers, contention managers, or workload analyzers
should benefit from the additional level of information pro-
vided by partitioning.
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Figure 5: Results for KMeans’s low and high contention variants.
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