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THÈSE N◦ 1867 (1998)
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Abstract

Distributed computing is one of the major trends in the computer industry. As
systems become more distributed, they also become more complex and have to deal
with new kinds of problems, such as partial crashes and link failures. To answer the
growing demand in distributed technologies, several middleware environments have
emerged during the last few years. These environments however lack support for
“one-to-many” communication primitives; such primitives greatly simplify the devel-
opment of several types of applications that have requirements for high availability,
fault tolerance, parallel processing, or collaborative work.

One-to-many interactions can be provided by group communication. It manages
groups of objects and provides primitives for sending messages to all members of a
group, with various reliability and ordering guarantees. A group constitutes a logical
addressing facility: messages can be issued to a group without having to know the
number, identity, or location of individual members. The notion of group has proven
to be very useful for providing high availability through replication: a set of replicas
constitutes a group, but are viewed by clients as a single entity in the system.

This thesis aims at studying and proposing solutions to the problem of object group
support in object-based middleware environments. It surveys and evaluates different
approaches to this problem. Based on this evaluation, we propose a system model
and an open architecture to add support for object groups to the CORBA middle-
ware environment. In doing so, we provide the application developer with powerful
group primitives in the context of a standard object-based environment. This thesis
contributes to ongoing standardization efforts that aim to support fault tolerance in
CORBA, using entity redundancy.

The group architecture proposed in this thesis — the Object Group Service (OGS)
— is based on the concept of component integration. It consists of several distinct
components that provide various facilities for reliable distributed computing and that
are reusable in isolation. Group support is ultimately provided by combining these
components. OGS defines an object-oriented framework of CORBA components for
reliable distributed systems.

The OGS components include a group membership service, which keeps track of the
composition of object groups, a group multicast service, which provides delivery of
messages to all group members, a consensus service, which allows several CORBA
objects to resolve distributed agreement problems, and a monitoring service, which
provides distributed failure detection mechanisms. OGS includes support for dy-



namic group membership and for group multicast with various reliability and order-
ing guarantees. It defines interfaces for active and primary-backup replication. In
addition, OGS proposes several execution styles and various levels of transparency.

A prototype implementation of OGS has been realized in the context of this thesis.
This implementation is available for two commercial ORBs (Orbix and VisiBroker).
It relies solely on the CORBA specification, and is thus portable to any compliant
ORB. Although the main theme of this thesis deals with system architecture, we
have developed some original algorithms to implement group support in OGS. We
analyze these algorithms and implementation choices in this dissertation, and we
evaluate them in terms of efficiency. We also illustrate the use of OGS through
example applications.



Résumé

Les systèmes distribués occupent une place de plus en plus importante dans l’infor-
matique actuelle. La distribution rend les systèmes plus complexes à concevoir et à
gérer car ces derniers doivent tenir compte de nouveaux types de problèmes, tels que
les pannes partielles ou les défaillances du réseau. Afin de répondre à la demande
grandissante des technologies distribuées, plusieurs environnements de type “middle-
ware” sont apparus au cours des dernières années. Ces environnements ne disposent
cependant pas de primitives de communication permettant d’envoyer un message à
plusieurs destinataires (un vers plusieurs); ces primitives simplifient grandement le
développement de plusieurs types d’applications qui ont des besoins spécifiques dans
des domaines tels que la haute disponibilité, la tolérance aux défaillances, le calcul
parallèle ou le travail collaboratif.

La communication de groupe offre un outil adéquat pour les interactions de type un
vers plusieurs. Elle gère des groupes d’objets et permet d’envoyer des messages à tous
les members d’un groupe avec diverses garanties de fiabilité et d’ordonnancement.
Un groupe représente une facilité d’adressage logique: des messages peuvent être
envoyés à un groupe sans avoir à connâıtre le nombre, l’identité ou l’emplacement
de chacun de ses membres. La notion de groupe a prouvé son utilité dans le contexte
de la haute disponibilité par duplication: plusieurs copies d’un objet sont réunies
dans un groupe qui apparâıt à ses clients comme une seule entité dans le système.

Le but de cette thèse est d’étudier et de proposer des solutions au problème de la
communication de groupe dans un environnement orienté-objet de type “middle-
ware”. Elle présente et évalue différentes approches à ce problème. Sur la base de
cette évaluation, nous proposons un modèle et une architecture ouverte permettant
d’ajouter la notion de groupe d’objets dans l’environnement CORBA. Par cela, nous
mettons à disposition du programmeur un ensemble de primitives puissantes pour
la communication de groupe dans le cadre d’un environnement orienté-objet stan-
dard. Cette thèse contribue aux efforts actuellement en cours visant à supporter la
tolérance aux défaillances dans CORBA à l’aide de la redondance.

L’architecture proposée dans cette thèse — le service de groupes d’objets (OGS)
— est basée sur le concept d’intégration de composants. Cette architecture com-
prend différents composants, réutilisables indépendamment les uns des autres, qui
mettent à disposition diverses facilités pour la programmation d’applications dis-
tribuées fiables. La communication de groupe est mise en oeuvre à l’aide de ces
différents composants. OGS définit donc un ensemble de composants CORBA pour



les systèmes distribués fiables.

Les composants d’OGS incluent un service qui gère la composition de groupes
d’objets, un service qui fournit diverses primitives pour communiquer avec ces
groupes, un service qui permet de résoudre le problème du consensus distribué, et un
service qui détecte les pannes de composants distants. OGS gère des groupes dont
la composition peut évoluer dynamiquement, et offre diverses garanties de fiabilité
et d’ordonnancement pour la communication de groupe. Il propose des interfaces
permettant de dupliquer des objets activement ou passivement. En outre, OGS offre
différents styles d’exécution et divers niveaux de transparence.

Un prototype d’OGS a été mis en oeuvre dans le contexte de cette thèse. Ce pro-
totype est disponible pour deux mises en oeuvre commerciales de CORBA (Orbix
et VisiBroker). Comme il se base uniquement sur le standard CORBA, ce proto-
type peut être facilement porté sur toute autre mise en oeuvre de CORBA. Bien
que la contribution principale de cette thèse se situe au niveau architectural, nous
avons adopté des approches algorithmiques originales pour la communication de
groupe. Nous détaillons ces algorithmes dans cette thèse et nous évaluons leurs
performances. En outre, nous illustrons l’utilisation d’OGS à l’aide de plusieurs
exemples d’applications.
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Introduction

It is not certain that everything is uncertain.

B. Pascal

Context

New challenges for software developers are the result of growing interest in dis-
tributed technologies, driven primarily by the popularization of the Internet and the
now ubiquitous World Wide Web (WWW). Distributed applications must deal with
complex issues, such as remote communication, partial failures, distributed garbage
collection, and concurrency management.

The last few years have seen the emergence of several programming environments
that greatly reduce the complexity of developing distributed software. These en-
vironments, regrouped under the term middleware because they appear between
application programs and operating system services, provide high-level facilities
for developing distributed applications without having to deal with low-level de-
tails, such as remote communication and object location. They use object-oriented
concepts to abstract the complexity of the system and promote modularity and
reusability. These environments offer frameworks for integration of heterogeneous
distributed components. Examples of these middleware architectures are OMG’s
CORBA [OMG98a] and Microsoft’s DCOM [Ses97].

Motivations

Existing object-oriented middleware environments essentially deal with point-to-
point invocations. While this interaction style complies with the invocation model
of object-based systems, some types of applications need to invoke several objects
at once. In particular, in the contexts of fault tolerance, load balancing, or parallel
processing, “one-to-many” communication facilities have been shown to be useful.
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One-to-many interactions can be provided by group communication. Group com-
munication manages groups of objects and provides primitives for sending messages
to all members of a group, with various reliability and ordering guarantees. A group
constitutes a logical addressing facility: messages can be issued to a group without
having to know the number, identity, or location of individual members. The notion
of group has proven to be very useful for providing high availability through repli-
cation: a set of replicas constitutes a group, but are viewed by clients as a single
entity in the system.

Currently, systems that require object group support must do all the necessary
design and implementation related to group communication, with correspondingly
no guarantee of either interoperability or portability. The aim of this thesis is to
study and propose a new approach for integrating group support in the CORBA
middleware architecture, which complies with existing standards. CORBA does
not currently provide any support for object groups. Providing group support in
CORBA will reduce the burden on designers and implementers of fault tolerant
applications. Applications will benefit from the power of groups (high availability,
fault tolerance, etc.) while preserving the key features of object-oriented middleware
environments (simple development process, distribution transparency, component
integration, etc.).

The relevance of this thesis is emphasized by the fact that, at the time of writing,
the OMG had issued a Request For Proposal (RFP) for fault tolerance support in
CORBA using entity redundancy. A further motivation of this work is to offer
valuable contributions to this RFP.

Contributions

Groups in Object-Based Distributed Systems. This thesis starts by pre-
senting surveys of object-based and group-based distributed systems. Although
object-oriented middleware offers many advantages when developing and deploying
component-based distributed applications, we argue that its underlying point-to-
point invocation model limits its suitability for various types of applications. We
outline the requirements of such applications regarding group support, which pro-
vides an adequate paradigm for fault tolerant and highly available distributed com-
puting. We present and evaluate different approaches followed by existing systems
to support groups in the CORBA middleware environment, and we argue that they
are not fully consistent with the modular, component-based architecture promoted
by CORBA. These approaches can be classified according to three categories: the
integration approach, the interception approach, and the service approach.

A Service Approach. We introduce a service-based approach to support object
groups in CORBA, that provides group support as an optional CORBA component.
Application may use groups together with other CORBA functionalities through
component integration. By adopting a service approach, we inherit from the major
CORBA features, such as heterogeneity, portability, interoperability, modularity,
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and reusability. We propose several models of transparency, and original solutions
to tackle the problems related to group management in object-oriented architectures.
We present portable and interoperable tools for encapsulating group behavior and
plurality, and for hiding object failures from clients.

We highlight our approach together with the ongoing efforts of the OMG, which
aims at supporting fault tolerance in CORBA using entity redundancy. We believe
that the contribution of this thesis and the lessons learned from our experiences can
be useful for this ongoing specification.

The Object Group Service Architecture. We propose the design of a CORBA
Object Group Service (OGS), that provides group support for standard off-the-shelf
CORBA environments. The OGS environment specifies an architecture and a set of
interfaces for object groups. The OGS architecture does not define a single mono-
lithic component; it is decomposed into several CORBA services that provide var-
ious facilities for reliable distributed computing, and that are used for the actual
implementation of group communication. In particular, the Object Monitoring Ser-
vice provides distributed failure detection mechanisms, and the Object Consensus
Service allows several CORBA objects to solve distributed agreement problems.
This decomposition into several independent components promotes modularity and
reusability, and extends the results of this thesis to areas other than group commu-
nication.

In contrast with other systems that use group communication, OGS does not limit
itself to replication, but extends the use of object groups to other types of applica-
tions, such as parallel processing, load sharing, and cooperative work.

A Prototype Implementation. The OGS architecture has been implemented
as a prototype that acts as a proof of concept. Portability has been demonstrated
by compiling our implementation with two commercial CORBA environments (Or-
bix and VisiBroker). In addition, we have developed one implementation in C++
and one in Java that interoperate with each other. We have been able to provide
a high level of transparency, while using only constructs defined in the CORBA
specification.

Although the main theme of this thesis deals with system architecture, we have
developed some original algorithms to implement group support in OGS. We analyze
these algorithms and implementation choices in this dissertation, and we evaluate
them in terms of efficiency. We also illustrate the use of OGS through example
applications.

Roadmap

This dissertation is organized as follows: Chapter 1 presents background concepts
about distributed computing, group communication, object-based systems, middle-
ware environments, and CORBA. We discuss the benefits of these paradigms, and
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present a survey of existing systems based on them.

Chapter 2 introduces the main issue addressed by this thesis, i.e., group support in
object-oriented distributed environments. We present basic notions related to the
use of groups in object-based systems, and the problems that arise from this union.
We introduce generic solutions to integrate both concepts, and give an architectural
overview of the Object Group Service (OGS) developed in the context of this thesis.

Chapter 3 details the various components of OGS. Each component is a modular unit
that provides generic services useful for many kinds of applications. Each component
is architecturally independent of the other components. We describe the design and
architecture of each component, its interfaces, its semantics, and how one can use its
services. This chapter uses a top-down approach, presenting the components that
are close to the application first.

Chapter 4 describes how the various components of OGS were developed and how
they relate to each other in the current OGS implementation. We describe the
distributed protocol model of OGS and the algorithms used to provide group com-
munication. Although object-oriented decomposition offers many advantages, it also
has various costs. These are evaluated and discussed.

Chapter 5 presents the different OGS execution models, and how it may be config-
ured for several levels of reliability, transparency, and performance. We detail how
OGS can be used with different programming languages, and we present several
application examples that use OGS for various tasks.

The concluding chapter summarizes the major results of this thesis. We present how
this work relates to the ongoing standardization efforts for object group support in
CORBA, and we discuss the future of OGS.
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Chapter 1

Background

I have yet to see any problem, however complicated, which, when you
looked at it in the right way, did not become still more complicated.

P. Anderson

1.1 Distributed Computing

1.1.1 A Brief History

Computing systems have evolved from centralized architectures to distributed sys-
tems. Distributed systems have evolved then from simple client/server applications
running on Local Area Networks (LANs) to complex systems involving a huge num-
ber of machines across Wide Area Networks (WANs). This section presents a brief
history of distributed computing [Bir96].

Network Computing Systems

A networked application is a computer application that consists of several decou-
pled components communicating by exchanging messages. The development of
client/server networked architectures peaked during the 1980s, when it became pos-
sible to put the power of a mainframe on a desktop computer. The concerns of
network computing are generally described in terms of the Open Systems Intercon-
nection (OSI) layering. In this descriptive structure, several software layers abstract
the details of the physical network, packet and message transmission, routing, data
representation, addressing, and session management. Each layer is built using the
services provided by the underlying layers. The TCP/IP protocol suite is a typical
example of a network architecture that is closely matched with the OSI model. A
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property inherent to the OSI model is that communication is limited to point-to-
point data transmission.

Remote Procedure Calls

The next big evolution of distributed computing occurred with the introduction of
Remote Procedure Calls (RPCs) [BN84]. RPCs allow client programs to transpar-
ently issue calls to procedures defined by remote server programs. The complexity
of making connections and marshaling data in and out of messages is completely
hidden from the application by stubs that mimic the interface of the procedure
calls. Network operating systems have been hugely successful over the last 15 years,
and RPC mechanisms have been extensively used in these operating systems for
distributed services such as network file systems, name services, and synchronized
clock services.

Distributed Computing Systems

In the late 1980s, with the availability of powerful desktop computers that can
be interconnected through very fast networks, centralized multi-processor parallel
architectures have been progressively replaced by distributed system architectures.
The term distributed computing, in contrast with network computing, designates a
set of tightly coupled programs executing on one or more computers and coordinating
their actions. These programs know about one another and cooperate to perform
a task that none could carry out in isolation. Such systems allow the sharing of
information and resources, and may be composed of small, cost-effective computers
that combine their processing power.

A typical example of a distributed computing system is the Parallel Virtual Machine
(PVM) [Sun90], which is a software package that permits a heterogeneous collection
of computers hooked together by a network to be used as a single large parallel com-
puter. Thus large computational problems can be solved at low cost by temporarily
using the combined power and memory of many computers.

While distributed computing is appealing, since it allows us to decompose and extend
applications in a very flexible and powerful way, it is harder to manage because we
have to address issues such as independent failures, unreliable communication, and
insecure communication.

1.1.2 Reliable Systems

Since more things can go wrong in distributed systems, they are intrinsically less
reliable than centralized systems. Many mechanisms have to be built in, e.g., to
handle the fact that the client and the server may fail independently (partial failures).
The network necessary for remote communication between distributed components
is another source of unreliability that distributed applications have to deal with.
Some well-known types of reliability [Bir96] are:
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• Fault tolerance: fault tolerance is the ability of a distributed computing sys-
tem to recover from the failure of some component. A component is considered
faulty once its behavior is no longer consistent with its specification.

• High availability: a highly available system provides uninterrupted service
in spite of failures.

• Consistency: consistency is the ability of a distributed computing system to
coordinate related actions of multiple components, despite concurrency and
failures. It generally encompasses the ability of making a distributed system
behave like a non-distributed system.

• Security: security is the ability of a system to protect data, services, and
resources against unauthorized access.

• Privacy: privacy is the ability of a system to protect user identity and data
from other users.

For the purpose of this dissertation, we focus on fault tolerance, availability, and
consistency, although the model and some of the solutions proposed may be applied
to other aspects of reliability. Tolerating failures requires a clear definition and
understanding of failures. Some types of failures that may occur in distributed
systems [Bir96] are:

• Halting failures: in the halting failures model, a process either works cor-
rectly, or simply stops and crashes without performing incorrect actions.

• Fail-stop failures: in the fail-stop failures model [SS83], in addition to the
process crashing without performing incorrect actions, processes that are in-
teracting with the faulty process have an accurate way to detect such failures.

• Send-omission failures: these are failures to send a message that should
have been sent.

• Receive-omission failures: these are failures to receive a message that has
actually been sent and correctly transmitted by the communication channel.
This may happen because of a lack of memory for buffering messages in the
destination process.

• Network failures: these are failures that occur when the network loses mes-
sages, or is fragmented in disconnected subnetworks that cannot communicate
with each other.

• Timing failures: these failures appear when a temporal property of the
system is violated.

• Byzantine failures: Byzantine failures [LSP82] encompass a wide variety
of faulty behavior. Malfunctioning or malicious processes can send messages
with wrong data, or omit sending messages when they have to. These types
of failures are difficult to even detect, let alone correct, since failed processes
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exhibit unpredictable behavior; some systems, such as Rampart [Rei95], focus
on this problem.

Of course, combinations of these unwanted behaviors may also appear. In this work,
we only consider the halting failure model. We assume that the only type of process
failure is a crash, in which the process simply halts, losing its volatile data. But the
general architecture presented in this dissertation can adapt to other system models.

1.2 Group-Based Computing

1.2.1 Group Communication

Groups were first introduced in the V-Kernel [CZ85], as a convenient addressing
mechanism. They were later extended to handle replication in the Isis system [Bir93].
The key idea of group communication is to gather a set of processes or objects into a
logical group, and to provide primitives for sending messages to all group members
at the same time with various ordering guarantees. A group constitutes a logical
addressing facility since messages can be issued to groups without having to know
the number, identity, or location of individual members. Groups have proven to
be very useful for providing high availability through replication: a set of replicas
constitutes a group, viewed by clients as a single entity in the system.

Client

srv1

srv2

srv3

send(srv,msg)
srv

Client

send(G,msg)

Group G

Point-to-point

Communication

Group

Communication

Figure 1.1: Point-to-Point vs. Group Communication

Figure 1.1 illustrates how messages are sent from a client to a server using point-to-
point communication, and to a group of servers using group communication. Group
communication toolkits generally provide message-passing interfaces that are very
similar to those of standard point-to-point messaging libraries, but expect a group
identifier as destination instead of a remote address. The client issues a single
function call, which leads to the diffusion of the message to all group members.

Groups may be static or dynamic. A static group is a group whose membership
does not change during the system’s lifetime. Members that crash are not excluded
from the group. Dynamic groups are groups whose membership changes over time,
as the result of the crash of a member, or of a new member (re-)joining the group.
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Dynamic groups are more powerful than static ones, but they are also more complex
to implement.

Groups may be modeled as closed structures, where only members can issue multi-
casts to their group, or as open structures, where non-members can issue multicasts
as well.

Total Order

Total order multicast is one of the most useful primitives for group communication.
Simply stated, it ensures that messages sent to a group are delivered in the same
order to all members of the group. Total ordering of messages is required for instance
in replication, to ensure that the replicated data is kept consistent.

Figure 1.2 shows two messages sent by two clients to a set of servers with and without
total ordering. A total order protocol may need to delay the actual delivery of a
message to the application for ensuring correct ordering.

m2

m1

Client 2

Server 1

Server 2

Server 3

Client 1

m2

m1

Without Total Order With Total Order

Figure 1.2: Total Order Multicast

Virtual Synchrony and View Synchrony

In asynchronous systems, no assumption is made about the transmission delay of
messages, nor about the relative speed of processes in the network. The virtually
synchronous execution model, first introduced by Birman [BJ87], provides the simple
abstraction of a set of processes or objects — the group members — which all see the
same events,1 in the same order. Events are synchronous in terms of logical time,
and asynchronous in terms of physical time. Since all group members see the same
inputs, they can execute the same algorithm and have consistent states, assuming
their behavior is deterministic.

A key element of the virtually synchronous execution model is that all members of
a group are presented with identical sequences of group membership, called views,
with mutually consistent rankings of group members.

1Events are incoming messages and group membership changes.
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Unlike virtual synchrony, the view synchronous execution model does not include
causal and total ordering of messages. This work is based on a view synchronous
execution model in which total order also guarantees that messages are ordered with
respect to view changes.

Figure 1.3 illustrates how view synchrony affects the respective ordering of messages
and views upon the failure of a group member. With view synchrony, messages are
delivered before or after the view change by all group members.

m2

View i

View i+1

m1

Failure

P1
m2

View i

View i+1

m1

Failure

Without View Synchrony With View Synchrony

P2

P3

P4

Figure 1.3: View Synchrony

State Transfer

Since the members of a group usually share a common state, a new member has
to receive the current state from the group when dynamically joining it. This is
performed by a state transfer mechanism that transmits the state from a current
member of the group to the new one. The state transfer is generally driven by the
group communication system that calls back to the application for accessing the
state. Hence, group members must provide operations for “getting” and “setting”
their state.

1.2.2 Replication

The idea of using redundancy as a mean of masking the failures of individual com-
ponents dates back to von Neumann [vN56]. With redundant copies, a replicated
entity can continue providing services in spite of the failure of some of the copies,
without affecting its clients. Redundancy may appear at different points in the ar-
chitecture, such as redundancy of computational and storage resources; redundancy
of communication links between these resources and their clients; redundancy of
transient application components.

In distributed systems, the two best known replication policies are active and primary-
backup replication. A replicated object is represented by a set of copies. This set
may be static or dynamic. Static replication requires that the number and the iden-
tity of the copies do not change during the lifetime of the replicated object. Dynamic
replication is more powerful since copies may be added or removed at runtime.
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Active Replication

Active replication — also called the state machine approach — is a general protocol
for replication management that has no centralized control [Sch93a]. All copies of
the replicated object play the same role: they all receive each request, process it,
update their state, and send a response back to the client (Figure 1.4). Because
of the invocations always being sent to every replica, the failure of one of them is
transparent to the client.

Client

Server 1

Server 2

Server 3

Request

Reply

Processing

Figure 1.4: Active Replication

Active replication requires the operations on the replicated object to be determin-
istic. Determinism means that the outcome of an operation depends only on the
initial state of the object, and on the sequence of operations performed by the object
(history). If the operations on the replicated object are deterministic, the shared
state of the replicated object remains consistent and all responses sent back to the
client are identical. The client typically waits for the first reply, making the failure
of a server transparent.

To a client, all correct replicas should appear as having the same state. In order to
guarantee this, all invocations sent by the clients should be treated in the same order
by all correct replicas. This is ensured by a total order multicast primitive [HT93]
— also called atomic multicast — that provides total ordering of messages multicast
to a set of destinations.

Primary-Backup Replication

With primary-backup replication — also called passive replication — one server is
designated as the primary, while all other are backups [BMST93]. Clients perform
requests by sending messages only to the primary, which executes the request, and
atomically updates the other copies and sends the response to the client upon com-
pletion (Figure 1.5). If the primary fails, then one of the backups takes over. This
scheme ensures linearizability2 because the order in which the primary receives invo-
cations defines the order for all servers. The acknowledgement sent by the backups
and awaited by the primary ensures request atomicity.

Unlike active replication, primary-backup replication does not waste extra resources

2Linearizability guarantees that each operation invoked on a server is performed on the latest
state of the server [HW90].
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Figure 1.5: Primary-Backup Replication

through redundant processing, and permits non-deterministic operations. However,
responses will be delayed by the failure of the primary. Furthermore, primary-backup
replication requires additional application support for the primary to update the
state of the other copies.

1.2.3 Group-Based Systems

Several systems provide support for managing groups in distributed environments.
Most of these systems offer procedural tools for group communication and consider
process groups, in contrast with object groups. We give a short overview of the major
group communication systems, which are relevant in the context of this thesis.

Isis

The Isis Toolkit [BV93], developed at Cornell University, was the first group commu-
nication system to support virtual synchrony. Isis is a collection of procedural tools
that are linked directly to the application program, providing it with the functional-
ity for creating and joining process groups dynamically, and multicasting messages
to process groups with various ordering guarantees.

Isis provides virtual synchrony with FIFO, causal, and total order multicast primi-
tives. The membership protocol of Isis provides primary partition semantics, i.e., in
case of a network partition there is always only one set of processes, located in the
primary partition, that can process requests on behalf of the group. Isis does not
provide adequate support for group-to-group communication (i.e., invocations from
one group to another group).

Horus

The Horus project [vRBM96] was originally launched as an effort to redesign the Isis
group communication system in a set of small, clearly defined modular units. Within
the Horus framework, a large collection of system and application protocols have
been developed that allow the application designer to construct a communication
module that exactly meets the application’s requirements at a minimal cost.
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Horus provides a virtual synchrony model that lets an application make progress
even in minority partitions, indicating to the application whether it is currently part
of the primary partition or not. Horus also provides support for the development of
distributed systems in situations where Isis is unsuitable, such as applications that
have special real-time requirements.

TOTAL

FAST

MBRSHIP

FRAG

NAK

COM

FC

STABLE

CLTSRV

Figure 1.6: Horus Protocol Layers can be stacked like LegoTM Blocks.

One of the most interesting features of Horus lies in its communication architecture
that treats a protocol as an abstract data type. Protocol layers can be stacked on top
of each other in a variety of ways at runtime, as shown in Figure 1.6. Horus provides
a protocol composition framework [vRBF+95], that allows custom protocols to be
built from composing existing ones; this architecture has the additional advantage
that an application only pays for the properties it uses.

Ensemble [Hay98] is the next generation of the Horus group communication toolkit,
written in the ML programming language.

Totem

The Totem system [MMSA+96], developed at the University of California, Santa
Barbara, is a set of communication protocols for the construction of fault tolerant
distributed systems. Totem provides several ordered multicast primitives to process
groups, with high throughput and low, predictable latency. These protocols exploit
the hardware multicast capabilities of local-area networks and the locality of process
groups in order to provide soft real-time guarantees.

Totem provides reliable total order primitives within process groups in a LAN, us-
ing protocols based on a logical token-passing ring [AMMS+95]. The Totem system
handles processor failure and recovery, network partitioning and remerging (with
continued operation of all parts of a partitioned system). It provides a membership
service adapted to the extended virtual synchrony model, which is a virtual syn-
chrony model with minority partitions (also adopted in Horus and Transis). Totem
also provides reliable total order primitives within process groups in multiple LANs
interconnected by gateways to achieve greater scalability and lower latency than a
single ring can provide [AMMSB98].
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Transis

The Transis communication system [ADKM92], developed at the Hebrew University
of Jerusalem, supports process group communication with several forms of group
multicast operations: FIFO ordered, causally ordered, totally ordered, and safely
delivered.

Transis contains a protocol for reliable message delivery that optimizes the perfor-
mance for existing network hardware and tolerates network partitioning. It employs
an efficient multicast protocol, based on hardware multicast. The Transis system is
based on the Trans protocol developed at UCSB [MSMA90, MMSA94]. Transis also
supports partitionable operating, and provides the means for consistently merging
components upon recovery.

Phoenix

Phoenix [Mal96], developed at the Swiss Federal Institute of Technology, Lausanne,
is a group communication toolkit that provides view synchrony in asynchronous large
scale environments (wide geographical distribution and high number of participating
processes).

Phoenix implements dynamic routing, datagram-oriented reliable communication
channels, group communication primitives, and view synchrony. It supports a high
number of processes by assigning them different roles: core members, clients, and
sinks. Core members manage shared state and have the strongest reliability guaran-
tees with respect to message delivery and membership changes. They communicate
with each other using group multicasts. Clients interact with members by sending
requests to them, and receiving replies and view changes. An interaction between
a client and a member is more efficient than between two members, but the for-
mer offers weaker reliability guarantees than the latter. Finally, sinks only receive
information diffused by the members of the group. As suggested by their name,
sinks cannot perform requests and only receive messages. Figure 1.7 illustrates the
different roles of Phoenix objects.

The Phoenix API [FG95] provides object-oriented abstractions for supporting object
groups instead of process groups. Core members, clients, and sinks appear in a clean
inheritance hierarchy. Core members inherit from the properties and behavior of
clients, which inherit in turn from sinks. Phoenix objects can hence combine several
roles.

1.3 Object-Based Computing

Booch [Boo94] presents the inherent complexity of software as deriving from four
elements: the complexity of the problem domain, the difficulty of managing the
developmental process, the flexibility possible through software, and the problems
of characterizing the behavior of discrete systems. A common goal to most analysis
and design methods is to hide this inherent complexity, and to give the illusion of
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Figure 1.7: Phoenix Members, Clients, and Sinks.

simplicity. Dealing with complexity may be addressed through the use of decompo-
sition, abstraction, and hierarchy. Object-oriented analysis and design is a method
based on object-oriented decomposition where the complex problem is viewed as a
meaningful collection of small objects that collaborate to achieve some higher level
behavior.

1.3.1 Concepts

The major goal of Object-Oriented Programming (OOP) [Weg90] is to provide a
better programming model for representing the world. The basis of the object model
is the concept of objects, which are entities modeled on the real world, that have
specific properties and exhibit specific behavior. An object is an instance of a class.
Objects provide the means for combining behavior and state (i.e., program and
data) into a single entity. The four major concepts underlying OOP are abstraction,
encapsulation, inheritance, and polymorphism.

Abstraction

Abstraction is a key concept of object-oriented design. It is one of the fundamental
ways to cope with complexity. An abstraction focuses on the outside view of an
object and offers a simple and concise representation of a more complicated idea.
The aim of abstraction is to hide complexity: complexity does not disappear, but
does move to a more appropriate point in the architecture.

Encapsulation

Encapsulation hides the implementation details of an object from the services it
can provide, by separating the contractual interface of an abstraction and its im-
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plementation. Other objects can request services by sending messages to the object
that provides the service. By decoupling the interface and the implementation, en-
capsulation enables us to modify an object’s implementation without affecting its
clients.

Inheritance

Inheritance enables us to pass along the capabilities and behavior of one class of
objects to another. Inheritance defines a relationship between a child class that
inherits from a parent class. The child class can be specialized by modifying inherited
methods, or adding new ones. The parent is not affected by this modification.
Inheritance enables us to reuse the properties of existing objects. Some systems
support multiple inheritance, in which a child class may inherit from several parent
classes.

Polymorphism

Polymorphism is the ability to substitute objects with matching interfaces for one
another at runtime. With polymorphism, objects that have common descriptions
can respond to the same request with different actions, depending on their type.
Polymorphism makes it possible to design applications that are easily extensible.

1.3.2 Object-Oriented Frameworks

A framework is a reusable design expressed as a set of abstract classes and the way
their instances collaborate [JF88]. This design is a solution for a family of problems.
It describes how the software is decomposed into a set of interacting objects which
have a given responsibility.

Frameworks are generally classified according to two different categories: white-box
and black-box frameworks. White-box frameworks exhibit the internal structure of
their class to the user. The application specific behavior is usually defined by adding
methods to subclasses of the framework classes. Each method added to a subclass
must abide by the internal conventions of its superclasses. Black-box frameworks are
composed of components that provide the application-specific behavior. These com-
ponents interact together using method invocations, so the user needs to understand
only the external interface of the components.

Black-box frameworks are easier to use and learn than white-box frameworks, be-
cause the user is not required to have knowledge about internal details of the classes
he uses. Black-box frameworks make it easy to change behavior at runtime, by re-
placing a component by another component with the same protocol. On the other
hand, white-box frameworks are more flexible since they permit the definition of
other behaviors than that supplied by the framework, and the number of possi-
ble combinations of components is not predetermined by the architecture of the
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framework. In this thesis, we describe an architecture that defines a black-box style
framework.

1.3.3 Objects in Distributed Computing

Several environments provide object-oriented abstractions and frameworks for dis-
tributed computing. Some of them mainly define wrappers on top of operating sys-
tem services, such as the Adaptative Communication Environment (ACE) [Sch94].
Other infrastructures provide more elaborate facilities for distributed protocol com-
position, such as Conduits+ [HJE95]. Some object-oriented programming languages
include intrinsic support for distributed objects, such as Java Remote Method Invo-
cation (RMI) mechanisms. Finally, some systems directly address reliability issues
in distributed computing, and have similarities with the framework developed in
the context of this thesis. This is the case of the GARF environment and the Bast
framework, described below.

GARF

GARF [Maz96] is an environment aiming at promoting transparent distribution and
replication of Smalltalk objects. GARF separates the distributed behaviors of ob-
jects from their functionalities, in order to simplify the programming of fault tolerant
applications. Distributed objects are built from two distinct kinds of objects: data
objects, that define their functionalities, and behavioral objects, that deal with dis-
tribution. While the former are application-specific, the latter are provided by the
environment and transparently intercept all invocations sent or received by their
associated data objects.

GARF defines two kind of behavioral objects: encapsulators and mailers [GGM93].
An encapsulator is associated with each data object, and a copy of the server’s
mailer resides on each node where a client is located. GARF provides a library of
several ready-to-use behavioral objects that provide support for reliable distributed
computing.

Client Node Server Node

En(C) En(S)

C S

Ma(S)

outRequest: #op

sendRequest: #op inRequest: #op

op

op

Figure 1.8: The GARF Invocation Model

Figure 1.8 illustrates the invocation mechanism of GARF, with a client C invoking
the operation op of a server S. The invocation is intercepted by the encapsulator of
C on the client node, and given to the mailer of S. This mailer performs a remote
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invocation to the encapsulator of S, which invokes op on the server. The result
comes back to the client through the reverse path. A remarkable characteristic of
GARF is its symmetric invocation model [MGG95], which considers the request and
the reply as instances of the same problem, and thus provides inherent support for
group-to-group communication.

Bast

Bast [Gar98] provides a framework of protocol objects and patterns for structuring
reliable distributed systems. It provides protocol composition facilities based on a
white-box framework model. In Bast, reliability issues are modeled as elemental
problem/solution pairs, thanks to protocol objects and protocol patterns. The former
combine the features of distributed objects and those of protocols as first-class com-
ponents, while the latter describe how to use protocol objects. Figure 1.9 gives an
overview of the Bast architecture and its major components, which may be assem-
bled to build protocol patterns. The Bast framework has been written in Smalltalk
and ported to Java.
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Figure 1.9: The Bast Architecture

1.4 The Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) is an open, distributed,
object computing infrastructure specified by the OMG, a consortium founded in 1989
to promote the adoption of standards for managing distributed objects. Simply
stated, the purpose of CORBA is to (1) provide a simple application programming
environment that hides the details of using the operating system services, and (2)
provide a common application programming environment across multiple computers
and operating systems. CORBA is an open standard, and is not bound to an
implementation. With CORBA, the OMG’s ultimate goal is to achieve object-
oriented standardization and interoperability.

CORBA is a middleware environment. Middleware is software that lies between
application programs and operating system services. In particular, middleware pro-
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vides the basic infrastructure for 3-tier architectures. The key characteristic of 3-tier
architectures is the division of a distributed computing environment into presenta-
tion, functionality, and data components, such that there is a well-defined interface
between each component, and the software used to implement each component can
be easily modified or replaced.

1.4.1 The CORBA Object Model

This section presents some background and definitions related to the CORBA object
model. The terminology may differ from other classical object models, but the
underlying concepts are similar.

• A client is an entity — not necessarily an object — that requests a service
from an object.

• An object is an identifiable, encapsulated entity that provides one or more
services that can be requested by a client. An object has state, behavior, and
identity. The state of an object encompasses all the properties of the object
and their current values. Behavior defines how an object acts and reacts in
terms of its state changes and message passing. Identity is the property of
an object that distinguishes it from all other objects (of the same type). The
process of creating an object is called instantiation.

• The concept of interface is closely related to the concept of class in classical
object models. An interface is a description of a set of possible operations
that a client may request from an object. An object satisfies an interface if
the object can be specified as the target in each potential request described
by the interface.

• Interface inheritance is a relationship that lets interfaces inherit the structure
of their base interface(s). It provides the composition mechanism that permits
an object to support multiple interfaces. Interface inheritance does not imply
implementation inheritance.

• An object reference is a value that denotes a particular object. Specifically,
an object reference identifies the same object each time the reference is used
in a request. Unlike references of common object-oriented languages such as
C++ [Str97], Java [GJS96], or Smalltalk [GR83], a CORBA reference is not
limited to a single address space.

• An operation denotes a service that an interface provides to its clients.

• A request is a message issued by a client to request a service. Conceptually,
the object interprets the message to decide what service to perform. In most
classical object models, a distinguishing first parameter — the operation name
— is required in the message, which identifies the operation to be performed;
the interpretation of the message by the object involves selecting a method
based on this parameter. The information associated with a request typically
consists of a target object identification, an operation, and parameters.
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• An attribute is a property associated with an interface, which is exported to
clients. An attribute is equivalent to a pair of operations for reading and
modifying some data of an object.

1.4.2 The Object Management Architecture

The CORBA specification is defined in the context of the Object Management Ar-
chitecture (OMA) [OMG98a], an architectural framework for building interoperable,
reusable, portable software components, based on open and standard object-oriented
interfaces. The OMA reference model identifies and characterizes the components,
interfaces, and protocols that compose the OMA. It forms a conceptual roadmap for
assembling the resultant technologies while allowing different design solutions.

CORBA objects are specified in the OMG Interface Definition Language (IDL). This
language is purely declarative, and provides no implementation details. It is used to
specify the boundaries of a component and its contractual interface with potential
clients. The CORBA specification defines how IDL constructs map to programming
languages, such as C [KR77], C++, Java, or Smalltalk. Figure 1.10 shows the five
major parts of the OMA reference model:

Object Request Broker

Domain Int.Appl. Int. Common Fac.

Object Services

Healthcare,

Finance, etc.

Distr. Document,

User Interface, etc.

Naming, Events, Transactions,

Concurrency, Life Cycle, etc.

Figure 1.10: The OMA Reference Model

• Commercially known as CORBA, the Object Request Broker (ORB) is the
communication heart of the standard. It enables objects to transparently and
reliably invoke operations on remote objects and receive replies in a distributed
environment. The ORB can be viewed as an “object bus”, through which
heterogeneous objects can interoperate. Integration of distributed objects is
available across platforms, regardless of networking transports and operating
systems. Compliance with the ORB standard guarantees interoperability of
objects over a network of heterogeneous systems.
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• The Object Services are general purpose components that are fundamental for
developing useful CORBA applications. A CORBA service is basically a set of
CORBA objects with their corresponding IDL interfaces, that can be invoked
through the ORB. Services are not related to any specific application but are
basic building blocks, usually provided by CORBA environments, supporting
basic functionalities useful for most applications. Several services have been
designed and adopted as standards by the OMG [OMG97].

• The Common Facilities provide end-user-oriented capabilities useful across
many application domains, that can be configured to the specific requirements
of a particular application. These are facilities that sit close to the user, such
as printing, document management, and electronic mail facilities.

• Domain Interfaces represent vertical areas that provide functionality of direct
interest to end-users in specific application domains, such as finance or health
care.

• Application Interfaces are interfaces specific to end-user applications. They
represent component-based applications performing specific tasks for a user.
An application is typically composed of a large number of objects, some of
which are specific to the application, and others part of object services, com-
mon facilities, or domain interfaces.

Object-oriented distributed middleware generally abstracts distribution, by provid-
ing means to invoke remote objects the same way as local objects. It gives the illusion
of a continuous address space that contains all the objects involved in a distributed
computation. CORBA provides such an abstraction by acting as an ubiquitous
software bus. It isolates the requesters of services (clients) from the providers of
services by a well-defined encapsulating interface. Objects plug on the bus, and ex-
port IDL-specified interfaces that act as a contract between clients and servers (this
model is usually called contract-based programming). Once a CORBA server exports
an interface to the bus, clients can ask services from the server. The key concept
underlying the CORBA model is the separation of interfaces and implementations,
making it possible to abstract object location and implementation (implementation
language, operating system).

Objects are not tied to a client or server role: they can act both as clients and as
servers. A program is said to be CORBA compliant if it uses only the constructs
described in the CORBA specification. An ORB implementation conforms to the
CORBA specification if it correctly executes any CORBA compliant program. An
application is portable if it can be used with different CORBA implementations
(by simply recompiling the source code). Interoperability is the property of sev-
eral applications running on different CORBA implementations to interact. The
CORBA specification defines a standard protocol for ORB interoperability: the In-
ternet Inter-ORB Protocol (IIOP). ORB implementations that use this protocol can
interoperate with each other, making it easy to integrate heterogeneous components
from different vendors.
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The Object Request Broker

The ORB component of CORBA provides more than just messaging mechanisms for
remote object invocations. It also provides the environment for managing objects,
advertising their presence, and describing their metadata. A CORBA 2.0 ORB
consists of several parts, as shown in Figure 1.11:
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Figure 1.11: The Structure of a CORBA 2.0 Object Request Broker

• The Interface Repository (IR) stores interface definitions. It allows the user to
obtain and modify the description of component interfaces, the methods that
they support, and the parameters that they require. The interface repository
allows CORBA components to have self-describing interfaces.

• The client stubs — or Static Invocation Interface (SII) — provide an interface-
specific API for invoking CORBA objects. A client application can invoke a
server object through a client stub. From the client’s perspective, the stub
is a local proxy for a remote server object. Stubs are generated by an IDL
compiler.

• The Dynamic Invocation Interface (DII) allows the creation of requests and
invocation of objects at runtime. CORBA defines APIs for looking up the
server interfaces, creating requests, generating parameters, issuing the remote
call, and getting back the results.

• The ORB interface defines a few general APIs to local ORB services.

• The server skeletons — or Static Skeleton Interface (SSI) — provide static
interfaces to server objects. They contain the code necessary to dispatch a re-
quest to the appropriate method. Skeletons are generated by an IDL compiler.

• The Dynamic Skeleton Interface (DSI) provides a runtime binding mechanism
for objects that need to handle requests for interfaces not known at compile
time. The DSI is the server equivalent of the DII.
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• The Object Adapter (OA) provides the mechanisms for instantiating server ob-
jects, passing requests to them, and assigning them object references. A stan-
dard object adapter called the Basic Object Adapter (BOA) must be supported
by each ORB implementation. The new CORBA 2.2 specification [OMG98a]
introduces a new Portable Object Adapter (POA) that overcomes many of the
BOA limitations.

• The Implementation Repository stores ORB-specific details about object im-
plementations, their activation policy, and their identity.

1.5 Object Groups in CORBA

The idea of adding group communication in an object-oriented middleware is not
new. When we started this work (early 1996), at least two products (Electra [Maf95]
and Orbix+Isis [II94]) were under development to support group communication in
a CORBA-based environment. This section introduces the different design alter-
natives for managing object groups in CORBA, evaluates them, and describes how
they have been used by existing systems.

1.5.1 A Coarse Classification

The CORBA object model defines an object as an entity with a well-defined interface
that may be remotely invoked using an object reference. An object reference is an
“object name that reliably denotes a particular object. An object reference identifies
the same object each time the reference is used in a request, and an object may be
denoted by multiple, distinct references” [OMG98a]. This means that the CORBA
specification does not permit an object reference to designate a set of objects, and
it does not provide ways for clients to invoke several objects at once using an object
reference. CORBA only deals with point-to-point remote invocations.

The absence of mechanism that permits the multicast of requests to groups of
CORBA objects complicates the design and implementation of many applications
that have requirements for reliability and high-availability. Only the CORBA Ob-
ject Transaction Service (OTS) provides fault tolerance to a limited extent through
transaction mechanisms, but unlike group-based systems, it does not achieve high
availability.

During the last couple of years, several systems have been developed to augment
CORBA with groups. We have classified these systems according to three main
categories, each of which represents a different approach to group communication in
CORBA [FGG97]:

1. The integration approach integrates an existing group communication system
within an ORB.

2. The interception approach intercepts messages issued by an ORB and maps
them to a group communication toolkit.
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3. The service approach provides group communication as a CORBA service be-
side the ORB, and was chosen as the basis of this thesis.

We now describe these three approaches and existing systems that implement them.
We also discuss a variant of the service approach, which consists in adapting the
interfaces of an existing CORBA service — the event service — rather than defining
new interfaces for group communication.

1.5.2 Integration Approach

ORB

Server ObjectsClient

Group Toolkit

Figure 1.12: Integration Approach

With the integration approach (Figure 1.12), the ORB functionality is enhanced by
a group communication toolkit. The ORB directly deals with object groups and
references to object groups. CORBA requests are passed to the group communica-
tion toolkit that multicasts them from clients to replicated servers, using proprietary
mechanisms. The group toolkit is “integrated” into the ORB.3

In existing systems that use the integration approach (Orbix+Isis and Electra),
only one of the replies is returned by default to the client in order to keep the group
invocation transparent.4 However, a client aware of the group is also able to access
all the replies, if necessary. The basic idea is to extend the IDL language mapping
and to generate two types of functions from IDL definitions: (1) standard functions
that conform to the language mapping and (2) special functions with sequences of
values for out and inout parameters. The client uses the function with the signature
that corresponds to its needs. If the client is not aware of groups, it uses only
standard functions.

An interesting variant of the integration approach, which has not been explored by
existing systems, would consist in providing a second object adapter in addition
to the Basic Object Adapter. We would then have the basic adapter for standard
objects and a dedicated adapter — a Group Object Adapter — for group member

3Notice that most existing group toolkits are not adapted to a CORBA environment: they are
designed for process groups instead of object groups, and they do not provide adequate primitives
for group-to-group communication, making it difficult to support client replication [GFGM98].

4This makes sense if groups are used for replication.
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objects. This approach would be more compliant with the CORBA specification,
since it would isolate all group management functionalities in a single non-standard
component.

It is interesting to note that Isis Distributed Systems proposed to integrate the
notion of object group in the CORBA 2.0 specification [Inc93], but this proposition
was rejected by the OMG.

Electra

Electra [Maf95] is a complete CORBA programming environment written in C++. It
provides intrinsic support for group communication, supporting the implementation
of reliable distributed applications. Electra objects can be replicated to achieve fault
tolerance. Electra can be configured for various communication subsystems such as
Horus and Isis, and hence can exploit the powerful primitives provided by these
subsystems. This means that Electra inherits the advantages and drawbacks of the
group toolkit on which it is built. Electra is composed of a set of C++ libraries and
daemon applications.

Electra extends the Basic Object Adapter (BOA), adding the ability to create, de-
stroy, join and leave a group. Since the modification is performed at the BOA level,
every CORBA object of the system can potentially be member of a group. Notifica-
tion of view changes and support for state transfer are added to the skeletons in the
language mapping. This model is simple and consistent in the sense that all server
objects are handled in the same way. However, it adds unnecessary complexity to
objects that are not meant to be member of a group.

Electra permits the grouping of object implementations, that support the same IDL
interface and run on different machines, into an object group. A CORBA object
reference can be bound to an object group and requests are transmitted by reliable
multicast. All communication is performed using a toolkit that supports group
communication (Isis or Horus).

Electra supports transparent and non-transparent multicast invocations by gener-
ating two types of methods from IDL operations. In transparent mode, an object
group appears to the client as a highly available singleton object. Non-transparent
communication permits programmers to access individual replies from group mem-
bers by returning all replies resulting from an invocation. Electra clients can specify
the group policy to be used for multicast communication with the members of the
group.

Orbix+Isis

Orbix+Isis [II94] is a commercial system from Iona Technologies and Isis Distributed
Systems.5 It maps replicated CORBA objects to Isis groups, and provides group
communication extensions to Orbix.

5Orbix+Isis has been recently discontinued.
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With Orbix+Isis, objects that can be group members have specific properties. Unlike
Electra, Orbix+Isis sends point-to-point communication through Orbix, and only
multicasts are handled by Isis. To handle object replication, the programmer can
choose between two execution styles: active replica and event stream. The role of the
server is fixed at compile time by having the server inherit — at the implementation
language level — from an abstract base class providing the necessary support for
the chosen execution style. Orbix+Isis object groups provide fault tolerance and
load balancing through replication.

The active replica execution style offers three communication styles to control how
requests are handled:

• The multicast style invokes the operation request on all objects of the group.

• The client’s choice style, useful for read-only methods, invokes the operation
request on only one object in the group, based on the client’s choice.

• The coordinator/cohort style implements primary-backup replication. Only
one object of the group processes the request and updates the other objects.
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Figure 1.13: Orbix+Isis Event Stream Execution Style

The event stream execution style supports asynchronous requests to object groups
using a publish/subscribe paradigm. Clients send messages to servers without re-
ceiving replies. Event stream objects have less overhead than active replica groups,
and are thus highly scalable. The event stream itself is fault tolerant because it
is replicated. The event stream execution style decouples clients from servers and
can provide persistence for events, that are kept in the history by the event stream.
Servers may register for specific types of events by distinct event streams. The event
stream execution style is illustrated in Figure 1.13.

The Orbix+Isis system is made of an application runtime to be linked with clients
and servers, and of two types of daemon programs: the Orbix daemon orbixd and
the Orbix+Isis daemon isrd. The Orbix daemon stores information about CORBA
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servers (in the implementation repository), and redirects client requests to these
servers. The role of the Orbix+Isis daemon is to store configuration information, to
authenticate client requests, and to manage group communication. An Orbix+Isis
daemon must be launched on each host that runs an Orbix+Isis server.

Orbix+Isis stores information that describes the behavior of object groups in the
Isis repository (IsR). The client runtime reads this repository and configures the
communication layer based on the server configuration. The configurable elements
of a server are object group details and operation details. Operation details allow the
specification of communication characteristics — such as the communication style
of active groups and the number of replies to wait for — independently for each
operation, while object group details specify global group characteristics.

1.5.3 Interception Approach
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Figure 1.14: Interception Approach

With the interception approach (Figure 1.14), the ORB is not aware of replication.
ORB requests formatted according to the IIOP protocol are intercepted transpar-
ently on client and server sides using low-level interception mechanisms; they are
then passed to a group communication toolkit that forwards them using group mul-
ticasts. This approach does not require any modification to the ORB, but relies on
OS-specific mechanisms for request interception.

Eternal

Eternal [MMSN98] extends CORBA with capabilities for object replication. It op-
erates on top of the Unix operating system, and works with standard CORBA
implementations. Eternal replicates objects, maintains the consistency of replicated
objects, and distributes objects across the system. Both client and server objects
can be replicated. The degree of replication, the type of replication, and the location
of the replicas are hidden by the object group abstraction, with replicas of an object
being members of the same object group.
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Eternal exploits the Unix /proc interface to monitor the operating system calls
made by an object to establish an IIOP connection over TCP/IP, and to commu-
nicate IIOP messages over that connection. Eternal intercepts the IIOP messages
before they reach TCP/IP [NMMS97a], and passes them to the Totem group com-
munication system [MMSA+96], which multicasts the messages to the object groups
containing the replicas. Any group communication system that provides guarantees
similar to those of Totem can be used instead.

Platform

Client Server

Totem

Eternal

Replication


Manager

Eternal

Resource

Manager

Eternal

Evolution

Manager

Eternal

Interceptor

CORBA

ORB

Eternal

Interceptor

CORBA

ORB

Platform

Totem

Eternal

Replication


Manager

Eternal

Resource

Manager

Eternal

Evolution

Manager

Multicast

messages

IIOP Interface

Figure 1.15: The Eternal Architecture

Figure 1.15 shows the different Eternal components. Eternal is composed of an In-
terceptor that intercepts standard CORBA requests, a Replication Manager that
handles communication with the copies of replicated objects, a Resource Manager
that manages the system configuration (type and number of replicas), and an Evo-
lution Manager that performs the automated upgrade and evolution of objects at
runtime. Eternal provides both active and passive replication.

In passive replication, when a client invokes an operation on a server object group,
Eternal multicasts the operation to the server object via Totem and only one of
the server replicas — the primary — actually performs the operation. The message
containing the invocation is retained at each of the other replicas, so that they
can handle the request if the primary fails. At the end of the operation, Eternal
multicasts the updated state of the primary to the other replicas and sends the
results to the invoking object via Totem. During the operation, the state of the
non-primary replicas may differ from that of the primary; however, the state transfer
synchronizes replica states at the end of the operation.

In active replication, when a client invokes an operation on a server object group,
Eternal multicasts the operation to the server object group via Totem, and each
replica then performs the computation. The underlying totally ordered multicast
protocol ensures that all the replicas of an object receive the same messages in the
same order, and that they can thus perform the operations in the same order. This
ordering of operations ensures that the states of the replicas are consistent at the
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end of an operation.

1.5.4 Service Approach
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Figure 1.16: Service Approach

The service approach, which has been adopted and developed in the context of
this thesis, provides explicit group support through a CORBA service [FGG96]
(Figure 1.16). Unlike the integration approach, a CORBA service is mostly spec-
ified in terms of IDL interfaces, and does not depend on implementation language
constructs. The ORB is not aware of groups, and the service can be used with
any compliant CORBA implementation. The service approach complies with the
CORBA philosophy, by promoting modularity and reusability. Group support may
be provided by adapting an existing CORBA service, or by defining a new service for
object groups, as we did in this thesis. Both variants are described in this section.

Notice that a service does not have to be centralized. It can be made of several
objects, located at different hosts on the network, that work together at providing
the complete service. This is important when dealing with fault tolerance, since a
centralized service would be a single point of failure.

Reusing OMG’s Event Channels

When adopting the service approach, one might wonder whether an existing CORBA
service does already provide a suitable paradigm for object replication, i.e., if the
IDL interfaces of an existing service could be reused. We consider here specifically
the CORBA event service, which provides a one-to-many communication model
potentially reusable for replication.

OMG’s Event Service. The CORBA event service decouples the communica-
tion between suppliers and consumers through event channels. Suppliers produce
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event data and consumers process event data. Suppliers can generate events without
knowing the identity of the consumers. Conversely, consumers can receive events
without knowing the identity of the suppliers. An event channel is an intervening
object that allows multiple suppliers to communicate with multiple consumers asyn-
chronously. An event channel is both a consumer and a supplier of events, and can
thus produce or consume events from another event channel.

Event data are communicated between suppliers and consumers by issuing standard
CORBA requests. Events themselves are not CORBA objects because the CORBA
object model does not currently support passing objects by value. There are two
approaches to initiating event communication between suppliers and consumers.
These two approaches are called the push model and the pull model.

The push model allows a supplier of events to initiate the transfer of event data to
consumers. The pull model allows a consumer of events to request event data from a
supplier. In the push model, the supplier is taking the initiative; in the pull model,
the consumer is taking the initiative.

Event channels are standard CORBA objects that allow consumers and suppliers to
exchange events. Communication with an event channel is accomplished using stan-
dard CORBA requests. An example configuration of the event service is illustrated
in Figure 1.17.

Suppliers 
 Consumers

Event Channels

push() push()push()

pull()

pull()

pull()

Event Propagation

Figure 1.17: Event Service Example Configuration

The basic event service model only allows the sending of data of type any.6 Hence,
it provides a message-passing-like interface to event communication. The event
service also provides a typed model that offers RPC-like communication. Suppliers
call operations on consumers (typed push model) or consumers call operations on
suppliers (typed pull model) using operations of an application-specific IDL interface.

Replication with Event Channels. The event service provides a natural way
to multicast requests to replicated objects, using the push model with one event
channel: all the copies of a replicated object are consumers of the channel, while
clients supply event data on this channel (Figure 1.18).

In particular, the typed version of the event service provides for straightforward
transparent server replication: clients register with the event channel as suppliers

6In CORBA, any variables can contain data of any type.
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Figure 1.18: Using the Event Service for Replication

and obtain a reference to an object that supports the same interface as the replicated
server; they can then issue invocations on this interface directly. Clients do not need
to know the number or location of the copies, which can change at runtime.

Limitations of the approach. Using event channels for replication has some
major limitations. There are no group management facilities, nor guarantees con-
cerning ordering, atomicity, or failures [DFGG97]. For instance, strict atomic deliv-
ery between all suppliers and all consumers requires additional interfaces [OMG97].
Different qualities of service may be provided by different implementations, but they
are not standardized in the event service.

In addition, the model of the event service is not ideal for object replication. The
event service only supports one-way communication, i.e., operations on the repli-
cated server must have only in parameters. This restriction is too limited for many
distributed applications that require results from invocations. Return values may
be transmitted using a “reverse” event channel, but this requires clients and servers
to be both consumers and suppliers.

Another fundamental problem is that the design of the event service is centralized.
Although consumers and suppliers use different interfaces for pushing and pulling
event data to and from the channel, they have to invoke the same centralized object
in order to connect to an event channel. This event channel is a standard CORBA
object, which is a single point of failure in the event service architecture. Since our
aim is to provide fault tolerance through replication, we cannot rely on a solution
that introduces a single point of failure. There are several ways for decentralizing the
event service [FGS97]. The solution that we consider the most promising consists in
chaining event channels, and is shortly described below.

Rather than having a single event channel that diffuses messages to all copies of the
replicated object, we introduce several event channels located on the client and on
the server site. A client is represented as a request-supplier and a response-consumer,
while a server is represented by a request-consumer and a response-supplier7 (Fig-

7These event channels reside typically in the same process as the client and the servers.
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ure 1.19). This model provides two-way communication with no single point of
failure. Distinct clients generate data using distinct request-suppliers and receive
replies through distinct response-consumers.

Replicated

Server

Client push()

pull()

push()

push()

push()

push()

Replication Service

Resp.

Cons.

Req.

Cons.

Resp.

Sup.

Req.
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Figure 1.19: Decentralizing Event Channels using Chaining

The request-supplier object performs multicast communication, possibly executing
some protocol with the request-consumers for guaranteeing atomicity and ordering
of messages. The response-consumer gathers multiple replies and returns them to
the client through a push or a pull mechanism.

This approach is fully CORBA compliant, does not modify the event service spec-
ification, and does not depend on a single point of failure. Extra protocols are
however necessary between the channel objects for ensuring atomicity and ordering
of messages, and also for group membership.

Specifying a New CORBA Service

We have elected to specify a new service for object group support in CORBA [FGG96].
This service, named the Object Group Service (OGS), is the core of this thesis. We
have chosen this approach because none of the existing CORBA services offers the
right abstraction for group communication. Dealing with object groups requires
specialized interfaces for group management and group communication, with spe-
cial mechanisms to ensure quality of service.

CORBA’s open architecture allows us to easily define and implement new ser-
vices. The process of specifying a new service consists in isolating the requirements,
choosing the right abstractions, and specifying the interfaces for these abstractions.
The OMG has published guidelines for designing object services and their inter-
faces [OMG97]. These guidelines are summarized in Section 2.2.1, and have been
followed during the design on OGS. As stated in Chapter 41, the OMG has recently
issued a Request For Proposals (RFP) titled: Fault Tolerant CORBA Using Entity
Redundancy [OMG98b]. This RFP invites proposals for new CORBA functionalities
for replicating entities using group mechanisms, just as we did in OGS.
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1.5.5 Evaluation of the Different Approaches

This section presents an informal comparison of the three different approaches. This
comparison is based on implementations of these approaches (Electra, Orbix+Isis,
Eternal, the CORBA event service, and OGS). It should not be considered as an
exhaustive survey of the pros and cons of each approach.

Approaches Comparison Integration Interception Service

Transparency + +
Ease of Use + + +
Portability – +
Interoperability + +
Modularity – +
CORBA Compliance – + +
Performance + +
Simplicity – +

Table 1.1: Comparison of the Different Approaches

We focus on several different aspects: transparency, ease of use, portability, interop-
erability, modularity, CORBA compliance, performance, and simplicity. Table 1.1
summarizes how the integration, interception, and service approaches fit these cri-
teria. In the table, + (plus) means good, – (minus) means limited, and blank means
satisfactory. Notice that some of our judgments may have been influenced by im-
plementations of the approaches, rather than by the approaches themselves. The
following explains the criteria and justifies our judgments.

Transparency

Transparency hides groups to the programmer, by giving the illusion that the invo-
cations are issued to and originated from single objects.

The integration approaches provide client transparency.8 The invoker does not need
to know that the invokee is a group, although it can benefit from this knowledge.

The interception approach (as provided by Eternal) enforces transparency. In con-
trast with the other approaches, it does not allow, for instance, a client to access all
replies of a multicast invocation.

The service approach can be configured with or without transparency. Transparency
is provided by the typed event service and the typed object group service, as described
later in this dissertation.

8Full server transparency does not make much sense with dynamic groups, because member
objects must provide explicit support for transferring their (application-specific) state. However,
in some situations, state transfer may be replaced by keeping copies of all the messages sent to the
group since its creation, and forwarding these messages to the new members.
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Ease of Use

Ease of use is an important consideration since it shortens program development
time and it can make the application more robust and reliable, by reducing chances
for programmers to err.

Transparent group support (integration and interception approaches) is easier to use,
since it requires no explicit construct on the client side. The client does not care
whether the server is a group or not. On the other hand, using advanced features
of group communication (e.g., associating particular semantics with a multicast
invocation) is generally more complex with transparent approaches since it is not
orthogonal to invoking groups.

The event service provides a familiar publish/subscribe programming model; its in-
terfaces are already standardized and well-known, making them easy to use by many
programmers. Our object group service combines the advantages of explicit group
management and transparent group invocations in a CORBA service; application
can thus choose between powerful configuration facilities and easy-to-use transparent
group support.

Portability

With portability, we measure how independent a software component is from a
specific ORB or architecture. We focus on two types of portability: group support
code (i.e., the code responsible for group management and group communication)
and application code portability.

Electra and Orbix+Isis are built around their own ORBs, and integrate group sup-
port code within the ORB. Therefore, this code is clearly not portable to other
architectures. In addition, the integration approach adopted by Electra and Or-
bix+Isis uses non-standard language-specific constructs,9 causing application code
to be also not portable.

Eternal makes use of Unix low-level features and its group support code is not
portable to all architecture. Application code is independent of Eternal, and is thus
fully portable.

With the service approach, both the group support and application code are portable
to any CORBA compliant architecture, assuming that the code does not depend
on implementation-specific ORB feature. Unlike the approaches that make use of
group communication toolkits, it is not limited to the architectures supported by
the toolkit.

9These constructs are quite different in Electra and Orbix+Isis; application code written for one
is not portable to the other.
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Interoperability

Implementations based on group toolkits that make use of proprietary communica-
tion protocols are not interoperable. This is the case of Electra. Orbix+Isis combines
invocations through Isis and through IIOP, and can thus interoperate with singleton
objects through point-to-point IIOP invocations. Eternal may choose which request
it intercepts, and can interoperate through IIOP as well.

The service approach uses only the communication primitives of the underlying
ORB, and is thus fully interoperable.

Modularity

Modularity enables the reduction of the complexity of a system by partitioning it into
a set of cohesive and loosely coupled components. Each of these components may be
modified, extended, or replaced without requiring any change to other components,
thus making the system easier to maintain. The modularity of an approach is
difficult to evaluate, since it involves implementation considerations. But a general
rule is that a system with decoupled components is more modular than a monolithic
system.

The integration approach provides a monolithic architecture, in which group support
is part of the ORB. Therefore, modifying part of the system (e.g., using another
group communication toolkit) may require updating the whole system.

The interception approach decouples replication from the ORB itself, thus preserv-
ing the system’s modularity. But the replication infrastructure of Eternal is not
packaged as a set of components independently reusable by CORBA applications.

The service approach promotes reuse and modularity by defining a new component
with IDL-specified interfaces, that can be integrated with other services or appli-
cations. Furthermore, our object group service is composed of several independent
IDL-specified CORBA services, none of which is exclusive to group communication.

CORBA Compliance

A client or server program is said to be CORBA compliant if it conforms to the
CORBA specification. The integration approach is not fully compliant since it
modifies and extends the CORBA specification. The ORB core has to deal with
references to replicated objects, and the semantics of CORBA references are mod-
ified. Furthermore, both Electra and Orbix+Isis use language-specific constructs
and extend the C++ mapping specification.

Both the interception and service approach are compliant (assuming that they do
not rely on implementation-specific ORB features). The interception approach is
completely decoupled from the ORB and only relies on IIOP constructs. The service
is independent of the ORB core as it is used only through IDL-defined interfaces,
and does not make assumptions about the underlying ORB implementation.
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Performance

Systems that provide high-level abstractions (such as flexibility, modularity, and
interoperability) are generally less efficient than low-level systems. In the context of
group communication, performance also depends directly on the protocols used for
multicast invocations, as well as the quality of service provided by these invocations.

The integration approach is the most efficient, since communication can be optimized
in the ORB itself. There is no indirection when invoking servers: only one type of
communication (group multicasts) is used.

The efficiency of the interception approach depends both on the ORB (time required
for IIOP communication) and the underlying group communication toolkit. In this
case, two types of communication are used: standard IIOP requests and group
multicasts. Therefore, two indirections are required when a client invokes a group
(IIOP is mapped into a group multicast on the client side, and transformed into
IIOP on the server side).10

The service approach uses the communication primitives of the ORB on which it
runs. Therefore, its efficiency depends directly on the underlying CORBA imple-
mentation. Two indirections are also required when a client invokes a group.

Simplicity, Weight, and Adequacy

We consider an approach to be simple and lightweight if it is adequate for the
problem and performs what it is meant to do, without overloading the system with
unnecessary features. The OMG guidelines state that a service should be designed
to do one thing well and to be only as complicated as it needs to be.

The current implementations of the integration and interception approaches make
use of external group communication toolkits for multicast invocations; most of
these toolkits do not provide adequate support for object groups [GFGM98] (they
deal with process groups), and software layers must be added for interfacing them
with the CORBA world. In addition, very few of these toolkits allow group-to-
group communication; this communication model is necessary for grouping CORBA
objects that act both as client and server.

In contrast, the service approach, as defined by our object group service, is lightweight
and adequate for the problem; it provides only the required primitives for group com-
munication, and is built as an independent, optional CORBA component. Further-
more, it may be configured to share resources between several application processes
(see Section 5.1.1).

?
? ?

10Note that IIOP requests are intercepted before they reach the network, which makes the cost
of this extra indirection generally negligible.
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Summary

A distributed computing system is a set of tightly coupled programs executing on
several hosts, that cooperate to perform a task that none could carry out in iso-
lation. Such systems have become commonplace since the popularization of the
Internet. However, managing distributed systems is a difficult task since one must
deal with remote communication and the various types of failures that may result
from distribution.

Several object-based distributed frameworks have appeared to simplify the develop-
ment of distributed applications. These frameworks provide high-level abstractions
that encapsulate distribution and hide remote communication from the application
developer. However, they only deal with invocations to individual objects, while
several kinds of applications require one-to-many communication. An interesting
extension to these frameworks consists in augmenting them with group communica-
tion primitives. The key idea of group communication is to gather a set of processes
or objects into a logical group, and to communicate with all group members at the
same time with various ordering guarantees. Several group communication toolk-
its are available, but most of them are inadequate for deployment in object-based
frameworks.

Adding group communication to a middleware environment like CORBA allows
the application developer to benefit from the power of groups (high availability,
fault tolerance, etc.) while preserving the key features of the middleware envi-
ronment (simple development process, distribution transparency, component inte-
gration, etc.). There are several different design alternatives for managing object
groups in CORBA: the integration approach integrates an existing group communi-
cation system within an ORB; the interception approach intercepts messages issued
by an existing ORB and maps them on a group communication toolkit; and the ser-
vice approach provides group communication as a CORBA service beside the ORB.
The service approach best matches the CORBA environment since it encapsulates
group support as an independent, well-defined component.
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Chapter 2

The Object Group Service:
Concepts and Overview

The technique of mastering complexity has been known since ancient
times: “divide et impera” (divide and rule).

E. Dijkstra

This chapter gives an overview the CORBA Object Group Service (OGS) developed
in the context of this thesis. We describe the OGS approach based on component
integration, and explain how these components comply with the CORBA design
guidelines. We present the OGS group model, and how it encapsulates plurality and
behavior. We define the concept of transparency in the context of object groups,
and we present the mechanisms used to provide it. We finally give an architectural
overview of the OGS components, which are detailed in the next chapter.

2.1 What is OGS?

The Object Group Service (OGS) is a CORBA service that provides group manage-
ment and communication facilities in a CORBA environment. It is composed of a
set of generic IDL-specified interfaces. With OGS, clients can send invocations to
object groups without knowing the number and identities of group members. In ad-
dition, OGS provides support for transparent group invocations, allowing clients to
invoke operations on object groups as if they were invoking singleton objects. OGS
is based only on standard CORBA mechanisms and is thus portable to any compli-
ant ORB implementation. OGS may be used from any programming language that
is supported by CORBA, or from any system that supports the CORBA Internet
Inter-Orb Protocol (IIOP).

More precisely, the OGS environment specifies an architecture and a set of IDL



40 Chapter 2. The Object Group Service: Concepts and Overview

interfaces for object group support, as well as a set of object services that provide
various facilities for reliable distributed computing. These services, which include
distributed agreement protocols and detection of remote component failure, are used
in the implementation of the group communication primitives. The relations between
these different services are implementation dependencies, and are not expressed in
the IDL interfaces. The implementation of OGS, described in this dissertation,
should be seen as a proof of concept, and not as an authoritative reference.

In this dissertation, the term “OGS” designates both the single CORBA service that
defines the interfaces for group communication, and the environment composed of
all the individual services specified in this thesis and used for the implementation of
the group communication primitives. When the context is ambiguous, we will use
the term “OGS environment” or “OGS framework” to explicitly denote the latter.

2.1.1 A Component-Oriented Approach

A CORBA component is a building block that employs object-oriented mechanisms
like inheritance and polymorphism to provide a specific service. A component is a
unit of work and distribution, and it generally designates an object or a set of col-
laborating objects that may be accessed by clients through a well-defined interface.

The CORBA distributed object infrastructure makes it easier for components to be
autonomous, self-managing, and collaborative. CORBA’s distributed object tech-
nology allows us to put together complex client/server information systems by simply
assembling and extending components: a client/server application becomes a col-
lection of collaborating components. Individual objects may be modified without
affecting the structure of the other objects in the system, or the way they interact.
The standardized object bus is used for heterogeneous component integration.

OGS uses a component-oriented approach. Basic units of functionality are packaged
as CORBA services, which represent distributed components. These services are
specified independently from each other, and may be used in isolation. This modular
decomposition makes OGS an object-oriented framework of CORBA components for
reliable distributed systems.

2.1.2 The OGS Approach vs. Protocol Frameworks

In contrast with protocol frameworks like Bast [Gar98], OGS services are black-
box style components and do not directly address protocol design. The CORBA
component-oriented approach followed by OGS separates completely the interface
description from the actual implementation. This approach allows the program-
mer to develop his components with different programming languages, and yet have
these components cooperate together. However it makes it difficult to reuse im-
plementations through inheritance mechanisms as in white-box frameworks. Such
frameworks do not match the CORBA model, since they are not appropriate for
language heterogeneity.

Nevertheless, the architecture of OGS is modular and flexible enough to allow ex-
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tensions and reuse of individual components. A protocol developer may modify a
component in isolation, and replace it in the OGS architecture without impact on
the other components. Furthermore, since the architecture of OGS is specified only
in terms of IDL interfaces, implementations are free to use frameworks of objects
and patterns [GHJV95] similar to Bast internally.

2.2 From Distributed Objects to CORBA Services

Whereas a distributed object is a single identifiable entity located somewhere in the
system, a service may be composed of any number of objects, located on different
machines, and that work together at providing a complete service: it is a building
block that provides an effective solution to a class of problems using a set of collab-
orating objects. A CORBA service is defined by one or several IDL interfaces and
the specification of their behavior.

2.2.1 CORBA Service Guidelines

The CORBA specification describes several principles for designing object services
and their interfaces [OMG97]. This section summarizes the principles that influenced
the architecture and design of OGS. We will come back to these points in Chapter 3.

• Build on CORBA concepts: services must be designed based on the concepts
introduced by the CORBA model, such as separation of interface and imple-
mentation; object references are typed by interfaces; clients depend on in-
terfaces, not implementations; use of multiple inheritance of interfaces; use of
subtyping to extend, evolve, and specialize functionality. These concepts allow
us to build powerful services that comply with the CORBA design guidelines.

• Basic, flexible services: services should be designed to do one thing well, and
be only as complicated as they need to be. These simple services can then be
combined together to provide powerful functionality.

• Generic services: services must be designed so they do not depend on the type
of the client object nor, in general, on the type of data passed in requests.
They should be as generic as possible in their interfaces, and should preserve
maximum implementation flexibility.

• Allow local and remote implementations: services should be structured as
CORBA objects that can be accessed locally or remotely. This allows consid-
erable flexibility as regards the location of participating objects. In addition,
it provides support for very efficient implementations based on a library object
adapter that enables execution of service objects in the same process as the
client.

• Objects often conspire in a service: a service is typically composed of several
distinct interfaces that provide different views for different kinds of clients of
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the service. Implementations can support the service interfaces as a single
CORBA object or as a collection of distinct objects, allowing considerable
implementation flexibility.

• Use of callback: callback interfaces are interfaces that a client object is required
to support to enable a service to call it back to invoke some operation. The
interfaces clearly define how a client object participates in a service, using
standard IDL and operation invocation mechanisms.

• Use of exceptions and return codes: exceptions should be used only for han-
dling exceptional conditions such as errors. Normal return codes should be
passed back via output parameters.

• Use of interface inheritance: services should use interface inheritance (subtyp-
ing) whenever the client code requires less functionality than the full interface.
Services are often partitioned into several unrelated interfaces if it is possible
to partition the clients into different roles.

• Use of object factories for remote object creation: creating an object in a
remote address space is not supported by language constructs. In CORBA,
this is performed using object factories, which are CORBA objects located in
the remote address space that create object instances on behalf of clients.

2.3 The OGS Model

While objects have a well-defined meaning in the context of object-oriented systems,
the semantics of object groups in distributed systems is more diffuse and varies de-
pending on the context. The concepts of encapsulation and invocation, for instance,
do not have the same meaning when dealing with object groups instead of individual
objects. This section introduces the object group model adopted for OGS, defines
the major concepts related to object groups, and presents how groups may be used
to encapsulate plurality and behavior.

2.3.1 Object Groups

An object group is a set of objects logically related. They may or may not act as
copies of a replicated object. No assumption is made about the location and number
of these objects. A group acts as a logical addressable entity. We call the objects
that are member of a group member objects or simply members. An entity that
requests a service from a group is a client of the group.

In the context of replication, a replicated object O is a set of individual objects
Oi, which act as copies of the same object O. These individual objects are called
replicas.
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2.3.2 Group Behavior

We define group behavior as the set of actions taken by the members of a group, e.g.,
for diffusing and handling client requests. It encompasses the way member objects
are coupled and how they cooperate. In this respect, active replication with total
order invocations, or primary-backup replication are examples of such behaviors.

2.3.3 Group Designation and Group References

Designating an object group requires some addressing facility, i.e., a way of desig-
nating the whole group as a single entity instead of a set of individual objects. To
cope with this problem, we introduce the notion of group reference. The same way
as a CORBA object reference designates a (possibly remote) object, we define a
group reference as a value that designates a set of objects; the number and location
of these objects is hidden from the entity that holds the reference and may vary over
time.

Since group composition may vary over time, there is no built-in notion of group com-
position in group references. Two group references may designate different groups,
although these groups contain exactly the same set of objects, i.e., the references
to the individual objects that compose the groups are identical as specified by the
CORBA identity model. Two group references are identical only if they correspond
to the same group (a group is identified by a unique group identifier).

The definition of group references does not imply any implementation policy. A
group reference may be an object (created implicitly or explicitly), a simple type, a
string, a language construct, etc. The way group references are implemented depends
of factors such as the host environment, or the degree of transparency, flexibility,
and efficiency required. In OGS, a group is defined by a unique group identifier —
the name of the group — and a group reference is implemented as a CORBA object.

2.3.4 Groups and Encapsulation

A desirable property of an object group is to behave like a singleton object, i.e., to
act as an identifiable, encapsulated entity that may be invoked by a client. The key
design issue to provide this abstraction consists in hiding the major differences be-
tween object groups and singleton objects. OGS does this by encapsulating plurality
and behavior.

Encapsulating Plurality

A group consists of a set of objects that may all be invoked together. In an object-
oriented environment, a client holding a reference to an object group should be
able to request a service from the group as if it were invoking a singleton object.
This means that an object group must be considered as a first class object, which
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abstracts the number of the objects that actually implement a service. This problem
is called plurality encapsulation [BI93].

Distributed
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Proxy

Client Host

Figure 2.1: A Group Proxy

A general solution to encapsulate plurality is to use the notion of proxy [Sha86].
A proxy is an entity that acts as a local representative for a remote service. To a
client, a proxy behaves as if it were implementing the service itself, while it actually
forwards the requests to the actual servers and returns the replies back to the client.
Figure 2.1 illustrates the concept of proxy with a client invoking a distributed service,
composed of three remote objects, through a local proxy.

In OGS, a group reference is a facility for naming and invoking object groups,
which encapsulates plurality. In this respect, a proxy is only one example of group
reference. Group communication mechanisms of OGS are based on group proxies.

Encapsulating Behavior

Communicating with object groups is very different from communicating with indi-
vidual objects. Request atomicity and ordering, multiple replies, and partial failures
are examples of problems that occur when communicating with object groups. De-
pending on the application, different mechanisms may be used to solve these prob-
lems. These mechanisms define the group’s behavior. For instance, the replication
policy of a replicated server is part of the group’s behavior.

From the client’s perspective, plurality encapsulation makes an object group appear
as a singleton object. Similarly, behavior encapsulation makes an object group
behave like a singleton object. In particular, the way invocations are diffused in the
group and the way they are handled is encapsulated by the group. Member objects
do not have to behave individually the same way as if they were not replicated (e.g.,
they can share the work, or have the request handled by only one server), as long
as the client receives a consistent reply.

OGS encapsulates the group’s behavior in the group itself, by providing transpar-
ent mechanisms that allow group members to associate specific semantics to group
invocations without the knowledge of clients.
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2.4 Transparency in OGS

A common goal of object-oriented middleware environments is to hide the low-level
mechanisms used for remote invocations and object management as much as possible,
to let the developer focus on the application-specific problems. Similarly, when
working with object groups, a desirable property is to hide the complex mechanisms
used for group communication. This section describes the concept of transparency
in the context of OGS and the underlying mechanisms used to provide it.

2.4.1 The Meaning of Transparency

Transparency is the property of a system to be invisible, i.e., the degree to which
application programs are unaware of the system. In this respect, encapsulating plu-
rality and behavior contributes to transparency. Transparency may have different
forms. We distinguish the following types of transparency in OGS, classified accord-
ing to the role that objects have in the system, and their interactions with object
groups:

• Client-side group transparency: to its clients, a group is not distinguishable
from a singleton object that implements the same interface. A client sends a
single request and receives a single reply, as it would with a single object. A
requirement is that all the objects of the group have the same interface or a
common base interface, which is used by the client. Client transparency has
the property that any singleton object can be replaced by an object group
without change to its clients.

• Server-side group transparency: for a server, a client group is not distinguish-
able from a single object invoking the server. This means that the group has
to arrange for only one request to be issued to the server, even though the
client group may contain several objects.

• Member’s group transparency: the member objects need not be aware that
they are member of a group. They receive invocations the same way as if they
were singleton objects. This transparency type requires some assumptions on
properties like determinism of object implementations, and thus is not always
possible or desirable to achieve.

Figure 2.2 illustrates the different types of transparency on a replicated account ob-
ject that has a deposit() operation for depositing money on the account. Client-side
group transparency is provided by having the clients directly invoke the deposit()
operation on the account’s interface (1). Server-side group transparency is achieved
by OGS, which filters duplicate requests from client groups, issuing only one request
to each account object (2). Finally, member object’s group transparency is provided
by having OGS directly invoke the deposit() operation of account objects (3).

In addition to belonging to one of these categories, transparency appears at different
levels in the OGS architecture [GFGM98] and may also be classified as follows:
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Figure 2.2: Different Types of Transparency

• Plurality transparency: the application objects have the illusion that they
deal with singleton objects, although they interact with object groups.

• Behavior transparency: the application objects are not aware of the replica-
tion policy and the protocols run by OGS in order to make the system behave
consistently.

• Type transparency: requests are performed via direct method invocations on
the server’s interface, rather than by explicit calls to a group communication
API (e.g., via a multicast() operation), and explicit packing and unpacking
of operation parameters into and from messages. Type transparency means
that the application does not need to perform type conversions.

Full transparency is achieved if the application program is completely unaware of
OGS. In group communication, transparency is generally limited to replication, since
the semantics associated with replicated invocations are clear and simple to hide from
the application. But, as we will see in Section 5.4, client-side transparency may be
achieved with OGS even when group communication is used for another purpose
than replication, such as parallel processing.

2.4.2 The Benefits of Transparency

Transparency provides a number of facilities which make it useful, if not necessary,
to develop distributed applications with object groups. Some of the benefits of
transparency are outlined below.

• Ease of use. Applications do not need to be written with replication in mind.

• Less error prone. Application programmers need not write error prone code
for inserting and extracting data into and from requests.

• Reuse of existing code. Existing client code can be reused without modifica-
tion. Server code requires only minor modifications. Objects from existing
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frameworks can be made groupable by using multiple inheritance of interfaces
and implementations.

• Encapsulate behavior in the group. OGS knows about the operations invoked
on object groups, and can associate different semantics to distinct requests on
behalf of the object group.1 The protocols may vary depending on the invoked
operation without the client’s knowledge.

2.4.3 The Limitations of Transparency

Client transparency is generally considered as a “good thing” for object replication.
However, server transparency has several drawbacks for complex systems. When
dealing with replica configuration, failure detection mechanisms, or advanced syn-
chronization between replicas, explicit group management support is required. In
some cases, transparent replication can make systems suffer reduced performance
due to the lack of control over how replication is performed. Transparent replication
is generally considered less efficient and less flexible than explicit replication.

2.4.4 Support for Transparency

Table 2.1 summarizes the different types and perspectives of transparency, sorted
according to the classifications described in Section 2.4. The mechanisms used to
provide this transparency are pointed out in the table and described in the rest of
this section. Most of these mechanisms are used by OGS to support transparent
group invocations.

Transparency Client-side Server-side Member

Plurality Request diffusion Request filtering
Response collation

Type Typed invocation Typed delivery
Behavior Server-specified semantics Consistent delivery

Table 2.1: Classification of Transparency Types

Request Diffusion

When a standard invocation originated by a client and sent to a singleton object
actually targets an object group, OGS must transparently diffuse this request to
all members of the group, with some level of reliability and ordering. We call this
action request diffusion.

Request diffusion protocols ensure that all correct member objects actually receive
all requests in a consistent order, thus preserving the correctness of the system. In
OGS, diffusion is performed to a group of objects whose composition — number and
identity of members — may vary during the system’s lifetime.

1In OGS, this is only possible with transparent invocations.
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Response Collation

When invoking a singleton object, a client receives a single reply. For preserving
client transparency, OGS must also return a single reply to the client as the result
of a group invocation, although several replies might be sent by the group members.

We call collation the process of collecting a set of messages and producing a single
message. When dealing with active replication and fully deterministic servers, col-
lation is trivial since all replies are identical, and OGS can return the first one it
receives to the client.

When groups of identical objects are used for parallel processing, with each group
member handling one part of the request, the correct semantics of collation is to
construct a new reply that consists of the union of all replies. Performing this task
in a generic way is a challenging task since it requires knowledge of the reply types
and semantics. In particular, only part of the reply data may require aggregation.
This problem can be solved with OGS by paying special attention to component
interactions when designing the application, as detailed in Section 5.4.

Request Filtering

Similarly to response collation, request filtering must be performed when a group of
replicated objects invokes another group of objects (or a singleton object), so that
target objects do not receive duplicate invocations.2

Request filtering can be performed upon request emission (in the invoker group) or
upon request reception (by the invokee) [Maz96]. Performing request filtering upon
request reception limits filtering to invokees that have knowledge about groups and
filtering, and will not work when a client group issues a request to a standard
singleton object.

Typed Invocation and Delivery

Type transparency is the ability of the group service to know and use type informa-
tion from the server’s interface. It enables a client to directly invoke operations on
the server’s interface, using static invocation mechanisms (typed invocation). The
server benefits from type transparency by having the operations of its interface di-
rectly invoked by the group service (typed delivery).

To provide type transparency, OGS must get some knowledge about the invokee
object’s interface. While this is trivial in dynamically typed languages such as
Smalltalk, doing this in statically typed languages requires runtime knowledge about
the server’s interface. CORBA provides this runtime support through the Interface
Repository (IR), and makes it possible to receive and construct operation invocations

2Note that request filtering is not necessary if the invoked operation is idempotent, i.e., if invoking
the operation more that once does not change the state of the invoked object nor the content of the
reply. In this case, multiple invocations are harmless and do not change the behavior of the system,
although they consume unnecessary resources.
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for an IDL interface not known at compile time through the Dynamic Skeleton In-
terface (DSI) and the Dynamic Invocation Interface (DII). This approach is detailed
in Section 4.4.1.

Server-Specified Semantics

Whereas traditional group communication toolkits force the client to choose the
semantics of multicasts (e.g., reliable, total order, etc.), OGS lets the server spec-
ify the semantics required for each operation. The client does not need to bother
with either the semantics of the operation or the protocol required in order to keep
the system in a consistent state. This is only possible in combination with typed
communication, since untyped communication does not map messages to operation
invocations (the operation name is used as a key to decide upon the protocol to
execute).

This approach enforces behavior encapsulation as the client does not need to know
the ordering guarantees that actually depend on the operation implementation. Fur-
thermore, this approach lets the server optimize concurrent client requests according
to their semantics (see Section 3.1.2).

Consistent Delivery

When invocations are issued to group of objects instead of individual objects, OGS
has to run some protocols in order to make the system behave consistently. Consis-
tency has different meanings depending on what groups are used for. For instance,
with active replication, all group member objects have to receive and process requests
from different clients in the same total order to maintain the global consistency of
the group of replicas. This ordering requirement may be relaxed if operations do not
modify the shared state of the replicated object, or if two operations modify disjoint
parts of this state.

Behavior transparency and consistent delivery abstract these considerations from
the user application. The application developer can make the assumption that
invocations are delivered to the server in a consistent order. It is then possible
to modify the underlying protocols, provided that they keep the same semantics,
without the application having to know about it.

2.5 OGS Architectural Overview

When developing group communication systems, one has to solve various problems,
such as distributed agreement and failure detection. These problems are also ad-
dressed in this work. The original aspect of our approach is that they appear as
independent CORBA components in the OGS architecture. In fact, defining inde-
pendent services for these generic problems promotes modularity and reusability,
and allows the development of other types of reliable distributing systems, by sim-
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ply using the relevant components of the OGS architecture. This section briefly
describes the OGS architecture, and how it relates to traditional group communica-
tion systems.

2.5.1 Architecture of Group Communication Systems

A group communication system is typically composed of the following components,
generally organized in a layered architecture (Figure 2.3):

Group Multicast

Group Membership

Agreement protocols

Failure Detection

Reliable Communication

Network

Application

Figure 2.3: Components of a Group Communication System

1. Reliable communication is used to implement higher level protocols. Many
systems are based on standard connection-oriented protocols, such as TCP/IP.

2. Failure detection is necessary to detect the failure of individual group members,
and is typically used for agreement protocols.

3. Agreement protocols are protocols used by higher layers for agreeing on com-
mon values, such as group composition and message ordering.

4. Group membership keeps track of the composition of groups, and allows mem-
bers to dynamically join or leave groups. It is also responsible for detecting
group member failures, updating the view accordingly, and delivering view
changes to the application.

5. Group multicast provides reliable delivery of messages to all group members,
with various ordering guarantees.

2.5.2 OGS Components

OGS maps the layers of the group communication architecture presented above
to CORBA services, using a component-oriented approach. The services are not
organized in a layered architecture, but as a set of orthogonal components with
usage relationships between each other. Figure 2.4 presents an abstract view of
the major components defined in the OGS architecture. Although this is not clearly
visible on the figure, each component is specified independently and they all interact
with each other through the ORB. The application may use any of these components
directly. These components are:
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Figure 2.4: Overview of the OGS Architecture

1. A Messaging Service that provides non-blocking reliable point-to-point and
multicast communication.

2. A Monitoring Service that monitors objects and detects failures.

3. A Consensus Service used to implement group multicast and membership pro-
tocols.

4. A Group Service that provides both group multicast and group membership.

This architecture and the design of each of these services are described in Chapter 3.
The dependencies between these components are implementation-specific, and do not
appear in the IDL interfaces of the services. They are discussed in Chapter 4.

?
? ?
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Summary

The Object Group Service (OGS) is a service that provides group communication
facilities in a CORBA environment. It has a modular, component-oriented archi-
tecture that complies with the CORBA design guidelines. All the OGS components
are specified in terms of IDL interfaces, and are integrated together to provide group
support. Individual components may be modified without the knowledge of the ap-
plications that use them, and they may be reused in different contexts unrelated
with groups.

The OGS group model defines the notions of object group, group behavior, and
group reference. These notions are different in the context of groups than with
individual objects. Groups can be configured to encapsulate plurality and behavior,
by giving the illusion to a client that it deals with a single object.

The aim of group transparency is to hide groups from the application. Transparency
may be classified according to the point of view of the application that benefits from
it (client-side, server-side, or member’s group transparency), or according to its
role in the architecture (plurality, type, or behavior transparency). Transparency
is achieved using mechanisms that map a single request to multiple requests and
multiple responses to a single response, that manage dynamically-typed requests,
and that ensure system correctness by maintaining a consistent ordering of requests
in the group. The main benefits from transparency are ease of use and reusability
of existing code.

Like most group communication toolkits, the OGS components provide facilities
for group multicast, group membership, agreement protocols, failure detection, and
reliable messaging. These components are packaged as CORBA services, and are
independent from each other; their dependencies only appear at the implementation
level.



53

Chapter 3

The Object Group Service:
Architecture

A complex system that works is invariably found to have evolved
from a simple system that works.

J. Gall

This chapter presents the architecture and design of the different components of
the OGS environment, using a top-down approach. Each of these components is
described in isolation, and the sections that present them may be read indepen-
dently. For each of them we discuss and justify the design choices we made, describe
the semantics of the service, and present its IDL interfaces. The formalism used
for representing the interfaces and their interactions is based on the OMT nota-
tion [RBP+91].

?
? ?



54 Chapter 3. The Object Group Service: Architecture

3.1 The Group Service

The group service is the core of the OGS environment. It is the service that actually
provides object group support, and which the application programmer has to deal
with. It implements two functionalities:

• Group membership manages the life cycle of object groups. It maintains the
updated list of all correct group members. It provides support for joining
and leaving groups, view change notification, and state transfer. A group
membership service is generally associated with a failure detection mechanism
for detecting group member failures.

• Group multicast provides support for sending multicast invocations to all the
members of a group, with various reliability and ordering guarantees.

The group multicast and group membership services interact closely. In particular,
multicast operations are defined on object groups rather than on sets of unrelated
objects, thus involving group membership. Therefore, both services are contained
in the set of interfaces forming the group service. Group membership and group
multicast are presented separately in the next two sections, prior to the complete
description of the group service.

3.1.1 Group Membership

The role of a group membership service is to manage memberships in a distributed
system on behalf of the processes that compose it. OGS supports dynamic groups,
i.e., the composition of the groups can change over time. New members can join
an existing group, explicitly leave it, or may be implicitly removed from the group
because of a failure. Objects that wish to join a group do so by contacting the
membership service, which updates the list of group members. Once admitted to
the group, an object may interact with other group members. Finally, if the object
fails or leaves the group, the membership service will again update the list of group
members. Dynamic group membership involves two kinds of protocols:

• A view change protocol is run each time the composition of a group changes.
It ensures that every correct member of the group receives a view change
notification, indicating the new composition of the group as a list of group
members with mutually consistent rankings. View changes are totally ordered
with each other.

• A state transfer protocol is an atomic operation that happens during view
change, when a new member joins an existing group. It consists in obtaining
the state from a current group member, and giving it to the new member.
This protocol ensures that the state of all group members is kept consistent
upon membership changes. The view change protocol can terminate only after
a state transfer is completed.
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The group membership interfaces define how OGS and group members interact.
They are essentially composed of two types of objects (Figure 3.6): (1) service-
specific group administrator objects that enable group members to change their
status in the group (e.g., join and leave the group); and (2) application-specific
groupable objects that enable OGS to call back to the application for view change
and state transfer protocols. The GroupAdministrator interface is implemented by
the service, and is used as a black box by the application. A group administrator is
assigned to a single group at creation time, but there may be several group admin-
istrators on the same host or in the same process. The Groupable interface must
be implemented by application objects that need to be members of a group. These
interfaces are described in the rest of this section.

IDL Interfaces

1 // IDL
2 // The object is not member of the group .
3 exception NotMember {} ;
4 // The object is already member of the group .
5 exception AlreadyMember {} ;
6

7 // Composition of a group at a speci f ic time .
8 struct GroupView {
9 // Group composition .

10 sequence<Groupable> composition ;
11 // View ident i f i e r .
12 unsigned long version ;
13 } ;
14

15 // Service ’ s view of group members.
16 interface Groupable {
17 // Invoked upon view change .
18 void view change ( in GroupView view );
19 // Invoked upon state transfer on a current member.
20 any get state () ;
21 // Invoked upon state transfer on a new member.
22 void set state ( in any state ) ;
23 } ;
24

25 // Server−side group representative .
26 interface GroupAdministrator {
27 // Join the group .
28 void join group ( in Groupable member)
29 raises (AlreadyMember) ;
30 // Leave the group .
31 void leave group ( in Groupable member)
32 raises (NotMember) ;
33 } ;

Figure 3.1: IDL Interfaces for Group Membership

The group membership service defines interfaces and operations for dynamic group
management and for state transfer (Figure 3.1). The group management operations
include the ability of group members to join a group and to explicitly leave a group
using the join group() and leave group() operations (lines 28–32) of group ad-
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ministrators. In addition, OGS can notify the group members of a view change using
the view change() operation (line 18) of groupable objects.

The GroupView structure (lines 8–13) represents a stable view of a group at a given
time. Group views have version numbers that are incremented every time the com-
position of the group changes. A group view is passed to the application upon view
change.

The state transfer is defined by two operations on group members: get state() and
set state() (lines 20–22). The state is transferred using a value of type any, which
can contain any kind of application-specific data. In the current version of OGS, the
state is transferred in a single message. This is inadequate if the data representing
the state is large. In this situation, the interface should be modified so that state
data is split into several parts which are sent separately. The get state() operation
would then return part of the state. The service could either invoke this operation
successively on a current group member, or perform load sharing by invoking the
operation on several group members. The set state() operation would be then
invoked multiple times on a new member.

Notice that the state transfer operations are necessary because the state of a group
can contain implementation-specific data. If the state of the servers were only ex-
pressed in terms of IDL attributes accessible at runtime by the group service, the
state transfer operations would be unnecessary.

Groupable

view_change()

GroupAdministrator

join_group()
get_state()
set_state()

leave_group()

Has references to

Figure 3.2: Class Diagram of Group Membership Interfaces

Interfaces and operations related to group membership are illustrated in the class
diagram of Figure 3.2. Group administrators hold references to the groupable objects
of a group, and invoke them asynchronously upon view change and state transfer.
The Groupable interface is abstract (italicized in the figure), in the sense that the
application has to inherit from it and implement its functionality.

Group

Admin. A

Groupable

Object A

1 join_group()

view_change()2

State transfer

protocol

Group

Admin. B

Groupable

Object B

3 join_group()

view_change()6

Host A Host B

get_state()4

view_change()6

set_state()5

Figure 3.3: Interaction Diagram of View Change and State Transfer
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The interaction diagram of Figure 3.3 illustrates the view change and state transfer
mechanisms on two members. Initially, the group is empty. A first member ob-
ject joins the group (1), and receives the new view (2). A second member object
joins the group (3), which is not empty anymore, leading to both a state transfer
protocol (4, 5), and a view change notification (6).

3.1.2 Group Multicast

Group multicast provides primitives for sending invocations to groups instead of
singleton objects. OGS provides a rich set of group multicast primitives, adapted
to various types of applications. OGS implements groups as open structures (see
Section 1.2), and allows non-member objects to issue multicast invocations to groups.
Multicast primitives can be classified according to their degree of reliability and their
ordering guarantees. In addition, OGS provides two communication models: untyped
and typed invocations.

Multicast Reliability

Reliable multicast is a key mechanism for developing replicated and parallel appli-
cations. In the context of group communication, it means that all correct group
members deliver the same set of messages (agreement), that this set includes all
messages multicast to the group by correct objects (validity), and that no spurious
messages are ever delivered (integrity) [HT93].

OGS provides both unreliable and reliable multicast primitives. The unreliable
primitives may be useful for read-only operations, but should be used with caution,
since it may corrupt the state of the group if all messages are not received by every
member. Reliable multicast, in itself, does not ensure that group consistency is
preserved; it is generally combined with an ordering guarantee.

Multicast Ordering

In addition to reliability, message ordering is an important concern when dealing
with one-to-many communication. The state of an object generally depends on the
order in which it receives requests, as illustrated by Figure 5.7 in Chapter 5. There
are various types of ordered multicasts:

• A First-In First-Out (FIFO) multicast guarantees that the reliable multicasts
sent by the same object are delivered in the same order.

• A totally ordered (atomic) multicast guarantees that reliable multicasts are
delivered in the same order to all target objects.

• A causally ordered multicast ensures that a message is not delivered until all
the causally preceding messages have been delivered.
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The current version of OGS provides unordered, FIFO, and totally ordered multicast
primitives.

Multicast Replies

Just as an invocation to a singleton object may return a value, a multicast invocation
may return a set of values (one from each target object). The client may want to
wait only for the first reply, for several replies, or even for no replies. Since the
composition of a group may change at any time, it is generally not wise to wait for
an absolute number of replies; for instance, if the group contains n members, waiting
for exactly n replies would lead the client to block if a member fails before having
sent its reply. Therefore, in OGS, the number of replies expected by the client are
defined in terms of values relative to the view composition:

• All-replies multicast invocations wait for replies from all group members.

• Majority-of-replies multicast invocations wait for a majority of replies from the
group members.

• One-reply multicast invocations wait for the first reply from any group member.

• Zero-reply (synchronous) multicast invocations wait for the operation to com-
plete on one group member, but does not return any reply to the client.

• One-way multicast invocations do not wait for any reply from the group mem-
bers, and do not block the client’s execution thread.

With either majority-of-replies or all-replies multicast invocations, OGS might need
to modify the expected number of replies if a server crashes while the invocation is
processed. The zero-reply synchronous invocation style is useful for flow control to
avoid the object group becoming congested; it blocks the sender until the message
is processed, allowing the receivers time to decongest.

Untyped Interfaces and Explicit Invocations

The untyped invocation interface of OGS allows us to send untyped messages to
group members. An object that wishes to send a multicast to an object group must
explicitly pack the data of the message into a value of type any, and pass it to OGS
which will perform the multicast. On the server side, OGS delivers this message by
passing the any value to group members through their deliver() operation.

This invocation interface is flexible since the client can place any kind of data in
the message, and can easily specify the semantics associated with the multicast
invocation and the expected number of replies. The drawback of this model is that
the application programmer must explicitly pack all parameters associated with the
server’s invocation in a message (marshaling), and extract these parameters on the
server side (unmarshaling), which is a painful and error-prone task. In addition, this
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untyped invocation interface exposes group communication to the client application,
while a common goal to most group-based systems is to hide groups from clients.

Typed Interfaces and Transparent Invocations

The typed invocation interface of OGS provides group transparency to clients, which
can issue invocations to object groups as if they were invoking singleton objects. The
client directly invokes operations of the server’s interface using static stubs, and OGS
delivers multicasts by directly invoking the relevant operation of the server, using
static skeletons. OGS transparently filters messages and returns a single reply to
the client. Of course, typed communication does require that all servers implement
the same IDL interface.

Although less flexible than the untyped invocation interface, this model is much
easier to use. The application developer does not need to perform the marshaling
and unmarshaling of the request (these operations are performed transparently by
OGS), and can benefit from the type safety of CORBA’s static invocation interface.
The client cannot specify the semantics to associate with a multicast invocation
but, as we will see in the next section, this may be advantageously replaced by
server-specified invocation semantics.

Server-Specified Invocation Semantics

As mentioned in Section 2.4, OGS provides server-specified invocation semantics:
the server may associate specific semantics to each individual operation of its inter-
face when using the typed version of OGS.1 For instance, if an operation does not
change the state of the server (read-only operation), the server may decide to deliver
the invocation without ensuring total order. Since the server implements the oper-
ations, it knows their properties and the client does not need to be aware of them.
Furthermore, the server can optimize client requests based on their semantics; for
instance, two update operations do not have to be totally ordered with each other
if they are commutative (e.g., they modify disjoint parts of the server’s state). This
approach is an improvement over the traditional model where a client asks for the
strongest ordering guarantees for a message when it is unsure of the exact semantics
of the associated operation.

IDL Interfaces

The interfaces and operations related to group multicast are shown in Figure 3.4.
They introduce two types of objects: (1) service-specific group accessor objects that
define how clients can issue multicast invocations through OGS; and (2) application-
specific invocable objects used by OGS to deliver multicast invocations to the appli-
cation.

1By default, OGS uses a total order multicast for invocations with unspecified semantics.
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1 // IDL
2 // A sequence of anys for multicast return values .
3 typedef sequence<any> AnySeq;
4

5 // Number of rep l ies to wait for .
6 enum NumReplies { ONEWAY, ZERO, ONE, MAJORITY, ALL } ;
7 // Request semantics ( not an enum for ex t ens i b i l i t y ).
8 typedef short Semantics ;
9 const Semantics UNRELIABLE = 0;

10 const Semantics RELIABLE = 1;
11 const Semantics FIFO = 2;
12 const Semantics TOTALORDER = 3;
13

14 // Service ’ s view of multicast target objects .
15 interface Invocable {
16 // Invoked upon message delivery .
17 any del iver ( in any msg);
18 } ;
19

20 // Client−side group representative .
21 interface GroupAccessor {
22 // Issue a multicast to the group .
23 AnySeq multicast ( in any msg,
24 in NumReplies rep l i e s ,
25 in Semantics sem);
26 // Return a typed group accessor .
27 Object cast ( in CORBA: : InterfaceDef id ) ;
28 } ;

Figure 3.4: IDL Interfaces for Group Multicast

Group accessors are the client-side equivalent of group administrators. They are
used by clients to multicast data (contained in a value of type any) to specific
groups, using the multicast() operation (lines 23–25). This operation allows us
to specify the number of expected replies and the semantics associated with the
invocation. These semantics are not defined as an enumeration, but as an integer
value, so that implementations of OGS can add and support new types of semantics
without modifying the interface definitions.

Each group accessor is associated with a single group at creation time. The cast()2

operation (line 27) may be used to obtain a reference to a typed group accessor that
supports the same interface as the group members, for transparent group invocation.
Once a message has been multicast to a group, OGS invokes the deliver() oper-
ation (line 17) of each group member, defined in the abstract Invocable interface.
Figure 3.5 illustrates these interfaces and operations in a class diagram.

3.1.3 The Complete Group Service

In the previous sections, we have introduced group membership and group multicast
as two separate components. In OGS, both problems are addressed by the same

2cast() has no relationship with multicast(), although both operation names sound similar.
Its name comes from type cast, which transforms one type to another.
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Invocable

deliver()

GroupAccessor

multicast()
cast()

Has references to

Figure 3.5: Class Diagram of Group Multicast Interfaces

service, although they are semantically distinct. This is due to the fact that both
components have to interact very closely at the architectural level. This section
presents the complete OGS specification, which comprises and extends the interfaces
previously introduced.

OGS Components and Interactions

OGS combines support for group membership (see Section 3.1.1) and group multicast
(see Section 3.1.2) in a single set of interfaces. Figure 3.6 presents a simplified high-
level view of OGS components. OGS interfaces are classified according to three
categories, associated with the different views of the service:
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Figure 3.6: OGS Components Overview

1. Client interfaces (GroupAccessor) allow clients to interact with object groups.

2. Member interfaces (GroupAdministrator) are a superset of client interfaces,
and allow servers to manage the group’s life cycle (e.g., join and leave groups).

3. Service interfaces (Groupable) define interfaces that the member objects must
implement for OGS to issue callbacks to them.

Group accessors and administrators are service objects. Performing a multicast to
the group initiates a distributed protocol between group accessors and administra-
tors, which ensures that messages are delivered to the members according to some
condition (e.g., total order). The Groupable interface must be implemented by
application objects.
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OGS Group References

In OGS, group accessors and administrators act as group references (see Section 2.3).
Similarly to an object reference, a client that holds one of these objects can issue
invocations to the group designated by the reference, without having to know the
location or identity of the objects that compose the group. However, unlike object
references, a group reference is a pure CORBA object.

The drawback of this approach is that group references are created and managed
explicitly by the application, whereas object references are created and managed by
the ORB. In OGS, the application deals with object references pointing to group
references (group accessors and administrators), leading to an extra indirection. In
addition, it is currently not possible to pass a group reference by value3 to another
object.

On the other hand, considering group references as values would require the ORB to
know about object groups and thus to extend the core CORBA specification, which
is outside the scope of this thesis. Adding group support in the ORB core would
also overload it with complex mechanisms that are only necessary for a limited
set of applications. In addition, group references are semantically different from
object references: an object reference reliably designates a unique object, while
group references designate a set of objects whose membership changes over time,
and that may even be empty. Group references are thus not self-contained; they
require an intermediary agent to determine the group’s current composition.

OGS IDL Interfaces

The full set of OGS interfaces, with their inheritance relationships, are presented
in Figures 3.7 and 3.8. OGS interfaces are defined in two modules: the first one,
mGroupAccess, is used by group clients and defines operations to communicate with
object groups; the second module, mGroupAdmin, is used by group members and de-
fines operations for administrating object groups. Interfaces from the mGroupAdmin
module inherit from interfaces defined in mGroupAccess. Inheritance is used be-
cause the client depends on less functionality than the full interface offers (see sec-
tion 2.2.1).

The mGroupAccess Module. The Invocable interface (lines 32–35) defines a
limited view of groupable objects for the clients. A group view may be obtained
from the group accessors, and is composed of a list of invocable objects. It differs
from the view delivered to group members, in that there is no guarantee that this
view is fully up-to-date on the client side. Although clients may directly invoke
individual group members using the deliver() operation (line 34) of the Invocable
interface, this facility must be used with care since group consistency will be broken
by modifying the state of individual group members.

A group accessor is created using an object factory (lines 56–60), which permits the

3The next CORBA revision will support passing objects by value.
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1 // IDL
2 // Client ’ s view of OGS.
3 module mGroupAccess {
4 // A sequence of anys for multicast return values .
5 typedef sequence<any> AnySeq;
6

7 // Number of rep l ies to wait for .
8 enum NumReplies { ONEWAY, ZERO, ONE, MAJORITY, ALL } ;
9 // Request semantics ( not an enum for ex t ens i b i l i t y ).

10 typedef short Semantics ;
11 const Semantics UNRELIABLE = 0;
12 const Semantics RELIABLE = 1;
13 const Semantics FIFO = 2;
14 const Semantics TOTALORDER = 3;
15

16 // Forward reference .
17 interface Groupable ;
18

19 // Composition of a group at a speci f ic time .
20 struct GroupView {
21 // Group composition .
22 sequence<Groupable> composition ;
23 // View ident i f i e r .
24 unsigned long version ;
25 } ;
26

27 // Error while performing an operation on the group .
28 exception GroupError { string description ; } ;
29 // Error while performing an operation on a non−existent group .
30 exception NoGroup {} ;
31 // Invalid group name ( e . g . , containing invalid characters ).
32 exception InvalidGroupName {} ;
33

34 // Client ’ s view of group members.
35 interface Invocable {
36 // Invoked upon message delivery .
37 any del iver ( in any msg);
38 } ;
39

40 // Client−side group representative .
41 interface GroupAccessor {
42 // Issue a multicast to the group .
43 AnySeq multicast ( in any msg,
44 in NumReplies rep l i e s ,
45 in Semantics sem)
46 raises (GroupError ) ;
47 // Return a typed group accessor .
48 Object cast ( in CORBA: : InterfaceDef id )
49 raises (GroupError ) ;
50 // Get the la tes t group view ( possib ly not up−to−date ).
51 GroupView get view ()
52 raises (GroupError ) ;
53 // Destroy the group accessor .
54 void destroy ()
55 raises (GroupError ) ;
56 } ;
57

58 // Factory for creating group accessors .
59 interface GroupAccessorFactory {
60 // Create a group accessor .
61 GroupAccessor create ( in string group name)
62 raises (GroupError , NoGroup, InvalidGroupName );
63 } ;
64 } ;

Figure 3.7: IDL Interfaces of the mGroupAccess Module
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creation of objects in a remote address space. The destruction of a group accessor
is performed using its destroy() operation (lines 51–52). Each group accessor is
associated to a single group at creation time. This association is performed by
passing a group name as parameter of the create() operation (lines 58–59). A
group name is a system-wide unique identifier that can have the form of a Uniform
Resource Locator (URL), such as ogs://banks.ch/accounts/John.Smith.

1 // IDL
2 // Server ’ s and service ’ s view of OGS.
3 module mGroupAdmin {
4 // The object is not member of the group .
5 exception NotMember {} ;
6 // The object is already member of the group .
7 exception AlreadyMember {} ;
8

9 // Semantics associated to an operation .
10 struct OperationSemantics {
11 // Operation name.
12 CORBA: : Ident i f i e r name ;
13 // Operation semantics .
14 mGroupAccess : : Semantics semantics ;
15 } ;
16 // Set of operations commutative with each other .
17 typedef sequence<CORBA: : Ident i f i e r > CommutativeOperations ;
18 // Semantics associated to the operations of an interface .
19 struct InterfaceSemantics {
20 // Default semantics for operations .
21 mGroupAccess : : Semantics default semantics ;
22 // Semantics associated to speci f ic operations .
23 sequence<OperationSemantics> operation semantics ;
24 // Sets of operations commutative with each other .
25 sequence<CommutativeOperations> commutative operations ;
26 } ;
27

28 // Service ’ s view of group members.
29 interface Groupable : mGroupAccess : : Invocable {
30 // Invoked upon view change .
31 void view change ( in mGroupAccess : : GroupView view );
32 // Invoked upon state transfer on a current member.
33 any get state () ;
34 // Invoked upon state transfer on a new member.
35 void set state ( in any state ) ;
36 } ;
37

38 // Server−side group representative .
39 interface GroupAdministrator : mGroupAccess : : GroupAccessor {
40 // Join the group .
41 void join group ( in Groupable member,
42 in InterfaceSemantics semantics )
43 raises (mGroupAccess : : GroupError , AlreadyMember) ;
44 // Leave the group .
45 void leave group ( in Groupable member)
46 raises (mGroupAccess : : GroupError , NotMember) ;
47 } ;
48

49 // Factory for creating group administrators .
50 interface GroupAdministratorFactory {
51 // Create a group administrator .
52 GroupAdministrator create ( in string group name)
53 raises (mGroupAccess : : GroupError , mGroupAccess : : InvalidGroupName );
54 } ;
55 } ;

Figure 3.8: IDL Interfaces of the mGroupAdmin Module
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The mGroupAdmin Module. The mGroupAdmin module is used only by group mem-
bers and defines operations for administrating object groups. Group members can
issue multicasts into their own groups, and thus the GroupAdministrator interface
(lines 39–50) inherits from the GroupAccessor interface defined in the mGroupAccess
module.

When joining a group, a member object may specify the semantics associated with
each of its operations. To do this, it must pass a structure of type InterfaceSeman-
tics (lines 10–26) to the join group() operation (lines 41–43). This structure
includes the default semantics for the operations of the group member (line 21), a
list of operations with their associated semantics (line 23), and a list containing sets
of commutative operations (line 25) that may be used by the implementation to
optimize protocols when ordering concurrent requests.
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Figure 3.9: Class Diagram of OGS Interfaces

Figure 3.9 illustrates the interfaces and operations of the complete OGS speci-
fication in a class diagram. Inheritance relationships clearly show that server-side
interfaces inherit from client-side interfaces. An application-specific group member
must inherit from the abstract Groupable interface.

3.1.4 OGS Extensions for Replication Support

Group communication is well adapted to object replication. Nevertheless, not all
replication models can be used transparently with the group interfaces previously
described. This section gives an overview of the architectural differences between
the active and primary-backup replication models, discusses the different approaches
for dealing with these replication models, and presents the required extensions to
the group service interfaces.
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OGS and Active Replication

The active replication model is symmetrical: all group members have the same
behavior, which is to accept a request, handle it, and optionally return a reply. It is
easy to actively replicate an existing application (assuming that it has deterministic
behavior) without having to re-implement its operations, by simply inheriting from
the OGS Groupable interface. For the code that implements application-specific
operations, replication is transparent : OGS directly invokes the target operation and
request processing is performed the same way whether the object is replicated or
not. Therefore, no extra support is required from the group service for implementing
actively replicated servers.

OGS and Primary-Backup Replication

Primary-backup replication distinguishes between the primary object, which pro-
cesses the requests, and the replicas, which only receive updates from the primary.
The update mechanism handles the reply sent to the client and the update infor-
mation sent to the backups quite differently. The latter contains the modifications
that the processing of the request has induced in the state of the primary, while the
former may contain completely unrelated data.

These different roles of primaries and backups require some support interfaces to be
added to the group service. This support may be implemented in different ways:

1. Limit the use of primary-backup replication to the untyped version of OGS,
and adapt the OGS interfaces to deal with transmission of updates from the
primary to the backups.

2. Restrict primary-backup replication to untyped communication as well, but
without modification to the OGS interfaces. Since the deliver() operation of
groupable objects returns a value of type any, the primary server could return
both the reply and the update information in this value using a well-specified
format. Similarly, the any value passed to deliver() could contain a regular
message or an update from the primary, and could be checked at runtime
using the type-safe extraction mechanisms of CORBA. OGS would update the
backups using these properties.

3. Enforce the programmer of the primary server to explicitly deal with primary-
backup replication in his implementation. This approach has been adopted
by Orbix+Isis in their so-called coordinator-cohort model: in the implemen-
tation of each operation, the application has to call a function that indicates
whether the server is the primary or a backup, and must process the request
accordingly; the update is transmitted by calling another Orbix+Isis-specific
function. The drawback of this approach is that there is no group member’s
transparency (see Section 2.4), and it makes it impossible to replicate existing
applications without extensive modifications of the implementation.
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4. Use the state transfer mechanism for updates. If the state is very small (e.g.,
a single value), it may seem reasonable to use the state transfer mechanism to
update the backups in a transparent way after processing each request. This
approach is of course not viable if the state is large, and it tends to generate
unnecessary state transfers for operations that do not modify the state.

In OGS, we have adopted the first approach. We have subclassed the interfaces of the
group service to deal with primary-backup replication. The resulting module, shown
in Figure 3.10, defines a new type of communication semantics: PRIMARY BACKUP
(line 5). This constant may be given to an OGS implementation that supports
primary-backup replication when multicasting a message.

1 // IDL
2 // Primary−backup support for OGS.
3 module mPrimaryBackup {
4 // New semantics for primary−backup communication .
5 const mGroupAccess : : Semantics PRIMARYBACKUP = 4;
6

7 // Structure to hold the reply and update information .
8 struct ReplyAndUpdate {
9 // Reply for the c l ient .

10 any reply ;
11 // Update for the backups .
12 any update ;
13 } ;
14

15 // Service ’ s view of group members.
16 interface PrimaryBackupGroupable : mGroupAdmin: : Groupable {
17 // Invoked upon primary message delivery .
18 ReplyAndUpdate deliver primary ( in any msg);
19 // Invoked upon primary message delivery .
20 void update backup ( in any update ) ;
21 } ;
22 } ;

Figure 3.10: IDL Interfaces for Primary-Backup Replication

To deal with the transmission of updates, we have defined a structure, ReplyAnd-
Update (lines 8–13), that contains both the reply for the client and the update
information for the backups. This structure is returned by the deliver primary()
operation (line 18), invoked on the primary copy. The backups receive the update in-
formation through their update backup() operation (line 20). Objects that support
primary-backup replication must implement the PrimaryBackupGroupable interface
(lines 16–21), which inherits from Groupable. In doing this, a member object may
use active and primary-backup replication at the same time with a group service im-
plementation that supports both models. Notice that group member’s transparency
is not possible with primary-backup replication because the server objects have to
implement explicit update support for each of their operations.
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3.1.5 Applicability of the Service

The interfaces of the group service are designed for group communication in gen-
eral, and can thus be used in contexts where the notion of object groups is a suitable
paradigm. In particular, application domains such as high availability, fault toler-
ance, parallel processing, or collaborative work make extensive use of object groups.
Examples of applications that use OGS are given in Chapter 5.

In addition, the group service may be used as the base for other services. For
instance, a replication service could provide high-level facilities for replicating objects
without exposing groups to the application. Such a service could use the group
service for implementing replication support.

The group service could also be used for fault tolerant and highly available imple-
mentations of CORBA services, such as replicated event channels or a fault tolerant
naming service. A similar approach has been adopted by Electra for the implemen-
tation of its fault tolerant naming service [Maf96].

?
? ?
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3.2 The Consensus Service

The Object Consensus Service is a CORBA service that allows a set of application
objects to solve the so-called distributed consensus problem [BMD93]. This service
is a generic building block, useful for all kinds of applications where distributed
agreement problems have to be solved. In this section, we explore the distributed
consensus problem and present how it can be expressed in terms of interactions
between distributed components. We then describe the design of the CORBA con-
sensus service and its IDL interfaces. This service is architecturally unrelated to the
group service interfaces presented in the previous section, although dependencies
exist at the implementation level. These dependencies are described in the section
dedicated to the OGS implementation, together with the protocol for solving the
consensus problem.

3.2.1 The Consensus Problem

Informally, a consensus allows several processing elements to reach a common deci-
sion, according to their initial values, despite the crash of some of them [BMD93].
The consensus problem is a central abstraction for solving various agreement prob-
lems (atomic commitment, total order, membership) [GS96], and thus for achieving
fault tolerance in distributed systems. Agreement problems are present in many
distributed systems, such as systems based on virtual synchrony, transactions, or
replication, and are generally implemented using ad hoc protocols.

The consensus problem can be defined in terms of two primitives: propose(v) and
decide(v), where v is a value. All correct participants propose an initial value,
and must agree on some final value related to the proposed values. The consensus
problem between a set of processes is specified as follows [CT96]:

• Termination: every correct process eventually decides some value.

• Uniform integrity: every process decides at most once.

• Agreement: no two correct processes decide differently.

• Uniform validity: if a process decides v, then v was proposed by some process.

Instead of using ad hoc solutions for implementing the agreement protocols necessary
to implement group communication, we propose a generic consensus service that may
be used to solve these various agreement protocols. In addition to its modularity,
this approach enables efficient implementations of the protocols as well as precise
characterization of their liveness [GS96]. Consensus is provided at the object level
rather than at the process level. The consensus service is entirely defined in terms
of IDL interfaces, and is usable between heterogeneous objects.
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3.2.2 Architecture

Consensus Components and Interactions

The consensus service is essentially composed of two categories of objects (Fig-
ure 3.11):
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Figure 3.11: Object Consensus Service Components Overview

• Consensus managers are service-specific objects that implement the consensus
protocol and reach agreement with each other. The consensus manager acts as
a black box, and its implementation is provided by the service. The underlying
consensus protocol is not exposed to the application and may be changed
without impact on the clients of the service.

• Consensus participants are application-specific objects that are only involved
in the consensus for proposing an initial value and receiving the decision. They
are implemented by the application and allow the customization of the consen-
sus for particular tasks. They provide the generic dimension of the consensus.

Consensus managers and participants interact in two situations: (1) Initially, con-
sensus participants propose their estimate to consensus managers; and (2) once a
decision has been taken, the consensus managers deliver it to the consensus partici-
pants.

Decision delivery is a typical situation where a callback interface (see Section 2.2.1)
is useful. The service can asynchronously notify the application that the consensus
has been solved and that a decision value is available. Without a callback interface,
the client would be blocked during the consensus execution, or would need to poll
for the decision value. In addition, the callback interface allows us to clearly define
how the application participates in the service. The proposition of an initial value
impacts on the consensus instantiation model, and is discussed in next section.

Consensus Instantiation

When initiating a consensus, participants must give their initial value to consensus
managers. For doing this, two alternatives are available: (1) either the participant
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gives its initial value as a parameter to the operation that launches the consensus,
or (2) the consensus manager calls back to the participant to obtain this value.
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Figure 3.12: Explicit Consensus Instantiation

The first alternative has the advantage in that it conforms exactly to the model of
Chandra and Toueg’s consensus algorithm used in OGS (see Section 4.3.2). The
participant gives its initial value to the consensus manager as parameter of the
operation that initiates a consensus. This model requires that every participant
explicitly invokes this operation on the consensus manager in order to launch the
consensus protocol (explicit instantiation). Figure 3.12 illustrates this mechanism:
each participant initiates a consensus by invoking propose() on a consensus man-
ager (1), which launches the consensus protocol (2) and delivers the decision to the
participant (3).

Consensus

Manager A

Consensus

Participant A

1

decide()4

2 Consensus

protocol

Initial value

Consensus

Manager B

Consensus

Participant B

decide()4

Initial value

Host A Host B

get_estimate()3 get_estimate()3

launch()

Figure 3.13: Implicit Consensus Instantiation

The second alternative consists in having the consensus managers asynchronously
obtain the initial value from the participants, after the consensus has been launched.
It is a more general model since all participants do not need to explicitly launch the
consensus for the consensus protocol to be run. Objects may participate passively
in the consensus protocol (implicit instantiation). Notice that implicit instantiation
requires a participant to be attached to each consensus manager prior to consensus
instantiation. Figure 3.13 illustrates this mechanism: at least one participant ini-
tiates a consensus by invoking launch() on a consensus manager (1), which starts
the consensus protocol (2); each manager gets the initial value from its partici-
pant (3), executes the consensus protocol, and finally delivers the decision to the
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participant (4).

The choice of the model to adopt can thus be summarized in one question: do all
participants need to explicitly instantiate a consensus for the protocol to be run? We
believe that the choice depends on the application and the consensus algorithm,
and that this decision should appear at implementation level, not in the interface.
Therefore, we adopted the second alternative in OGS since it can be used for both
implicit and explicit consensus instantiation, and thus provides for more implemen-
tation flexibility.

3.2.3 Design

In addition to the design goals common to all CORBA services, such as simplicity,
orthogonality, flexibility, genericity, and reusability, other goals have guided the
design of the consensus service:

• A consensus is generic; it decides on application-specific data.

• The protocol used for solving the consensus is implementation-specific, and
should not be exposed to the application.

• The instantiation model of the consensus is an implementation characteristic
(see Section 3.2.2).

• Consensus instances are independent; two instances may involve distinct sets
of consensus managers and participants.

• Several consensus instances may execute in parallel, if the implementation
supports it.

• Efficiency is a major concern; interfaces must ensure that efficient implemen-
tations are possible.

The interfaces of the object consensus service take these design goals and principles
into account. In particular, as discussed below, some design choices have been made
to maximize implementation efficiency.

Service Interfaces

The interfaces of the consensus service are presented in Figure 3.14. The service uses
untyped any variables for proposition and decision values, so that a consensus can
decide on application-specific data. Before using the consensus service, an applica-
tion must create a ConsensusManager object (lines 28–36). This is performed using
a consensus manager factory (lines 39–42). Upon creation, each consensus manager
is associated for its entire lifetime with a ConsensusParticipant object (lines 19–
25). Several consensus managers can be located in the same process or on the same
host, and a participant may be associated with several consensus managers.
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1 // IDL
2 module mConsensus {
3 // Forward declaration .
4 interface ConsensusManager ;
5

6 // A consensus ident i f i e r .
7 typedef long ConsensusId ;
8

9 // A sequence of consensus managers .
10 typedef sequence<ConsensusManager> ConsensusManagerSeq ;
11

12 // Object that represents a set of consensus managers .
13 interface ConsensusView {
14 // Destroy a consensus view .
15 void destroy () ;
16 } ;
17

18 // Object that can participate to a consensus .
19 interface ConsensusParticipant {
20 // Return the participant ’ s estimate .
21 any get estimate ( in ConsensusId cid ) ;
22 // Give the decision to the participant .
23 void decide ( in ConsensusId cid ,
24 in any decision ) ;
25 } ;
26

27 // Object that can launch and execute a consensus .
28 interface ConsensusManager {
29 // Create a new consensus view .
30 ConsensusView create view ( in ConsensusManagerSeq cms);
31 // Launch a new consensus and return .
32 oneway void launch ( in ConsensusId cid ,
33 in ConsensusView view );
34 // Destroy the consensus manager.
35 void destroy () ;
36 } ;
37

38 // Factory for creating consensus managers .
39 interface ConsensusManagerFactory {
40 // Create a consensus manager.
41 ConsensusManager create ( in ConsensusParticipant cp );
42 } ;
43 } ;

Figure 3.14: IDL Interfaces of the Object Consensus Service

An application can launch a consensus by invoking the launch() operation (lines
32–33) of a consensus manager. This operation expects a unique identifier and a
consensus view — i.e., the list of participating consensus managers — as parameters.
Once a consensus has been launched, each manager gets the estimate of its associated
participant by invoking its get estimate() operation (line 21). Then, the consen-
sus protocol is executed between all participating consensus managers. When the
decision is reached, the consensus managers give it to the participants through their
decide() operation (lines 23–24). Since the estimate is obtained asynchronously
from the participant, it is possible for a third party to launch a consensus protocol,
while ensuring that the estimate is actually proposed by the participant.
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Each independent consensus can be run with a different set of participants. This
set is specified through a parameter of type ConsensusView (lines 13–16) given to
the consensus manager upon consensus initiation. A consensus view is defined as
an object rather than as a structure for efficiency reasons. Indeed, in our imple-
mentation of the consensus service, consensus managers use the monitoring service
(see Section 3.3) to monitor each other. If a consensus view were defined as a struc-
ture, consensus managers would have to be added to the list of monitored objects
each time a new consensus is initiated, and removed upon its termination. These
operations are costly in terms of performance, and are unnecessary when several
consensus instances are launched with the same set of participants. Using an object
as a consensus view gives a chance to perform these addition and removal operations
only once upon object creation and deletion.
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Figure 3.15: Class Diagram of the Object Consensus Service Interfaces

Figure 3.15 illustrates the interfaces and operations of the complete consensus service
specification in a class diagram. Applications adapt the generic consensus protocol
to their needs by inheriting from the abstract ConsensusParticipant interface.

3.2.4 Applicability of the Service

The consensus service may be used by any distributed system that needs to conciliate
or synchronize its components. Application domains that benefit from distributed
agreement are numerous. For instance, the consensus service may be used for allo-
cating distributed resources (e.g., printers) or for synchronizing parallel tasks.

In addition, the consensus service may be used at a lower level for the implementation
of distributed protocols, such as atomic commitment, total order, and membership.
It constitutes thus a basic building block for distributed protocol support.

?
? ?
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3.3 The Monitoring Service

The Object Monitoring Service is a service that provides failure detection mecha-
nisms in CORBA. It can be used by any application that requires knowledge about
remote component failures. It targets large systems where thousands of objects are
monitored, and allows a reduction of remote invocations between failure detectors
and the objects being monitored. In the following, the terms monitoring and failure
detection are considered equivalent.

In this section, we present the failure detection problem and architectural solutions
to address this problem. We do not focus only on a single architecture; instead,
we present and compare several different architectural approaches to provide object
monitoring, and we show how they can be expressed in terms of IDL interfaces.
We point out the advantages and disadvantages of each, and finally we end up by
describing the generic monitoring service that was adopted for the OGS environment.

3.3.1 The Failure Detection Problem

Many of today’s distributed applications have requirements for high availability and
fault tolerance. These applications are based on protocols that take into account
component failures. Unfortunately, agreement problems such as distributed con-
sensus, atomic commitment, total order, and group membership, are not solvable
with deterministic algorithms in an asynchronous system if one single process may
crash [FLP85]. This impossibility is caused by the difficulty of distinguishing a “very
slow” process from a crashed one.

Chandra and Toueg propose a way to circumvent this impossibility [CT96], by aug-
menting asynchronous systems with a failure detection mechanism that can make
mistakes. In particular, they introduce the concept of unreliable failure detectors
for systems with crash failures. The underlying idea is to reduce the asynchrony
of the system by augmenting it with knowledge about component failures (which
may be imperfect), making it possible to solve many problems that are otherwise
unsolvable.

A Failure Detector (FD) is a service, usually local to each process, that provides
information about component failures. It monitors a subset of the components in the
system, and maintains a list of those it currently suspects to have crashed. In order
to solve agreement problems, a failure detector must satisfy the following properties
in an asynchronous system with a majority of correct processes4 [CHT96]:

• Eventual weak completeness: there is a time after which every process that
crashes is always suspected by some correct process.

• Eventual weak accuracy: there is a time after which some correct process is
never suspected by any correct process.

4The standard formalism for describing concepts and algorithms in distributed systems specifies
interactions between processes. When applying these concepts to OGS, we consider interactions
between objects or components.
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While the completeness property is not difficult to achieve, no algorithm can sat-
isfy eventual weak accuracy in an asynchronous system. In most practical situ-
ations, however, it is sufficient if a failure detector satisfies this property “long
enough” [GS97].

Failure detector implementations are generally based on timeout mechanisms. The
choice of timeout values is crucial for the failure detector’s ability to respect accuracy
and completeness. Short timeouts allow a process to detect failures quickly but
increase the number of false suspicions, with a risk of violating accuracy. Hence,
there is a trade-off between latency (short timeouts) and accuracy (long timeouts).
As soon as a system involves more than one Local Area Network (LAN), the optimal
timeout value between two objects depends on both their respective locations in the
system and on the characteristics of the underlying network.

3.3.2 Architecture

Monitoring Components and Interactions

A system that provides monitoring facilities involves different kinds of objects.
Clients use the monitoring facilities provided by these objects through well-defined
interfaces. In addition to clients, there are generally three categories of objects in a
monitoring system:

• Monitors (or failure detectors) are the objects that collect information about
component failures. In many systems, monitoring mechanisms are directly
implemented in the client’s code, and they do not appear as separate objects.

• Monitorable objects are objects that may be monitored, i.e., the failure of
which may be detected by the failure detection system.

• Notifiable objects are objects that can be registered by the monitoring service,
and that are asynchronously notified about object failures. Not all monitoring
systems provide asynchronous failure notifications, and thus do not provide
notifiable objects.

Monitorable and notifiable objects are generally application-specific, while monitors
are implemented by the service. There are two types of interactions between these
components:

• Monitor ↔ client, monitor ↔ notifiable object: this interaction allows the
application to obtain information about component failures.

• Monitor ↔ monitorable objects: this interaction is performed by the monitor-
ing service to continuously keep track of the status of monitorable objects.

Figure 3.16 illustrates the components and interactions of an object monitoring
system. This sample configuration comprises a client, a notifiable object, a monitor,
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Figure 3.16: Components and Interactions of an Object Monitoring System

and two monitorable objects M1 and M2. The monitor keeps track of component
failures. The client explicitly asks the monitor about the status of monitorable
objects. Upon the crash of a monitored object, the monitor asynchronously informs
the notifiable object of the failure.

Monitoring Models

Several models can be used for object monitoring. These models differ depending
on the way the information about component failures is propagated in the system,
i.e., the flow policy. There are two basic forms of unidirectional flow, push and pull,
plus several variants. These flow policies are outlined in the rest of this section.

Push Model. In the push model, the direction of control flow matches the di-
rection of information flow. With this model, monitored objects are active. They
periodically send heartbeat messages to inform other objects that they are still alive.
If a failure detector does not receive the heartbeat from a monitored object within
specific time bounds, it starts suspecting the object. This method is efficient since
only one-way messages are sent in the system, and it may be implemented with
hardware multicast facilities if several failure detectors are monitoring the same
objects.

push

("I am alive!")

Monitorable

ObjectsMonitorClient

push

("It is alive!")

Figure 3.17: The Push Model for Object Monitoring

Figure 3.17 illustrates how the push model is used for monitoring objects. Notice
that the messages exchanged between the monitor and the client are different from
the heartbeat messages sent by monitored objects. The monitor generally notifies
the client only when a monitored object changes its status (i.e., becomes suspected
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or is no longer suspected), while heartbeat messages are sent continuously.
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Figure 3.18: Monitoring Messages with the Push Model

The messages exchanged between the monitor and the monitorable object with the
push model are shown in Figure 3.18. The monitorable object periodically sends
heartbeat messages to the monitor. Upon message reception, the monitor sets a
timer that triggers a suspicion if it expires before the reception of a new heartbeat
message from the same object.

Pull Model. In the pull model, information flows in the opposite direction of
control flow, i.e., only when requested by consumers. With this model, monitored
objects are passive. The failure detectors periodically send liveness requests to moni-
tored objects. If a monitored object replies, it means that it is alive. This model may
be less efficient than the push model since two-way messages are sent to monitored
objects, but it is easier to use for the application developer since the monitored ob-
jects are passive, and do not need to have any time knowledge (i.e., they do not have
to know the frequency at which the failure detector expects to receive messages).
Figure 3.19 illustrates how the pull model is used for monitoring objects.

pull

("Are you alive?")

Monitorable

ObjectsMonitorClient

pull

("Is it alive?")

Yes Yes

Figure 3.19: The Pull Model for Object Monitoring

The messages exchanged between the monitor and the monitorable object with the
pull model are shown in Figure 3.20. The monitor sends periodically a liveness
request to the monitorable objects, and waits for a reply. If it does not get the
reply, a timeout triggers a suspicion.

Dual Model. To provide more flexibility to the monitoring system, we introduce
an extension of the previous models, called the dual model, in which both the push
and pull models can be used at the same time with the same set of objects. The basic
idea is to use two kinds of one-way messages for monitoring objects. The failure
detector sends a one-way liveness request to a monitorable object (pull model), and
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Figure 3.20: Monitoring Messages with the Pull Model

the latter replies with a one-way liveness message (push model). The monitorable
object may also send a liveness message without having been requested to; in this
case, we have a plain push model. The failure detector sends a liveness request
only if the monitorable did not send a liveness message within some specific time
bounds. This model works with any type of monitorable objects, without requiring
the monitor to know which model is supported by every single object.
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Figure 3.21: Monitoring Messages with the Dual Model

Figure 3.21 illustrates object monitoring with the dual model. In this example, two
objects are being monitored. The first object, M1 is push-aware, i.e., it is active
and periodically sends liveness messages (heartbeats). The second one, M2, is not
push-aware, i.e., it only sends liveness messages when it is asked to. The monitor
uses two timeout periods T1 and T2. It expects liveness messages of push-aware
monitorable objects during T1. After T1, the monitor sends a liveness request to
each monitorable object from which it did not receive a liveness message, expecting
a reply during T2. After T2, the monitor suspects every process from which it did
not receive a message. In this example, M1 sends a liveness message during T1 in
the first phase, and crashes soon after. In the second phase, the monitor sends a
liveness request to M1, but does not get a liveness message before the end of T2.
Thus, it starts suspecting M1 to have crashed.

Evaluation of the Monitoring Models. The interaction between monitors and
monitorable objects seems to favor pull communication: with the pull model, the
failure detector parameters (e.g., timeouts, which may need dynamical adjustment)
need only reside in the failure detector and are not distributed in all the monitorable
objects. Heartbeat messages generated by a large number of monitorable objects
may also inadvertently flood the network, while this situation is easier to detect and
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avoid if the messages are sent from less sources.

On the other hand, using push style communication between monitors and moni-
torable objects is more efficient and may reduce the number of messages generated
when using hardware multicast facilities (such as IP multicast) if several monitors
are listening to the heartbeats.

The type of interaction to use between monitors and clients depends on the ap-
plication itself, and on the admissible latency of failure information. If the client
application has to be notified immediately upon component failure, the push commu-
nication paradigm is better. This scheme reduces the number of messages delivered
(the number is even minimal, as only state changes are pushed), since the client
does not have to poll for changes in the status of monitored objects. In addition, an
event-driven application may need to be asynchronously notified about suspicions,
which are considered as incoming events.

Conversely, if the client only needs to check the monitorable status at specific points
in time, pull communication may be more appropriate, since push communication
could generate unnecessary messages. In addition, the push model imposes a server
role on the client, and introduces the risk that a notification may not arrive at the
client, e.g., if there is a network partition between the client and the monitor (this
is minor problem with the pull model, because a client can consider an object as
suspected if it is not able to communicate with the failure detector that monitors
the object).

Notice that both types of interactions can be used at the same time between mon-
itors and clients: the client can check synchronously for the status of a monitored
object, while being registered by the monitor for asynchronous notifications of status
changes.

The dual approach combines the advantages of both approaches and provides more
flexibility by letting monitorable objects use the better suited approach. The trade-
off is the slightly increased complexity of the implementation.

Object Monitoring as a Specialization of Event Channels. Another ar-
chitectural approach to object monitoring consists in reusing the CORBA event
service (see Section 1.5.4), which provides the two basic push and pull interaction
models. Failure detectors would be specific implementations of event channels, and
monitorable objects would be consumers or suppliers depending on the monitoring
model. Although some mechanisms of the event service may be directly reused, this
approach requires extending the event channel interface to match the failure detec-
tion problem (e.g., to support inquiries about the status of monitored object). We
did not follow this approach because the event service has been standardized by the
OMG and modifying its specification conflicts with our goals.
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3.3.3 Design

This section presents the monitoring service design. We describe two different ap-
proaches to illustrate how object monitoring can be provided in a CORBA environ-
ment. The first one is a simple pull-style service, which was used in early versions
of OGS, while the second one is a more comprehensive and flexible service based
on the dual model, used in the current version of OGS. Both illustrate interesting
aspects of object monitoring, and they can be used interchangeably in OGS.

Similarly to the other OGS components, several concerns have influenced the design
of the monitoring service. In addition to the goals common to all services, such
as simplicity, orthogonality, or modularity, our design has been guided by several
concerns related to object monitoring:

• Reduced network usage (in number of messages).

• Latency of state propagation.

• Encapsulation of failure detector parameters (e.g., timeouts).

• Scalability (to a large number of clients or monitorable objects), and applica-
bility in geographically dispersed environments.

• Adaptability to different network configurations and qualities of service.

• Design genericity, such that different monitoring models are implementable
with few design changes.

• Granularity: the monitoring service should monitor objects rather than pro-
cesses or hosts. The programmer can choose to install one or several moni-
torable objects per host or per process depending on the requirements of the
application.

These design goals and principle have been taken into account during the specifica-
tion of the monitoring service. In particular, scalability has been a major concern
when designing the service interfaces, as discussed below.

Approach 1: A Simple Pull-Style Monitoring Service

This section presents the design and architecture of a simple pull-style monitoring
service. The interfaces are intentionally minimal to illustrate the underlying concepts
in a simple way.

Basic Service Interfaces. When working with distributed objects, one has to
define methods that can be invoked remotely. In contrast with a local invoca-
tion, a remote invocation can fail because of a communication failure. Therefore,
a straightforward way to implement a failure detector using the pull model is to
have monitored objects support a specific operation (e.g., are you alive()) which
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is invoked periodically by the failure detector. If the monitored object is alive and
there is no communication failure, the invocation succeeds. If the invocation fails,
the failure detector suspects the monitored object. This model corresponds to the
IDL interfaces of Figure 3.22.

1 // IDL
2 enum Status { SUSPECTED, ALIVE, DONTKNOW } ;
3

4 interface Monitorable {
5 boolean are you alive () ;
6 } ;
7

8 interface Monitor {
9 void start monitoring ( in Monitorable mon);

10 void stop monitoring ( in Monitorable mon);
11 Status i s i t a l i v e ( in Monitorable mon);
12 } ;

Figure 3.22: IDL Interfaces for the Simple Pull-Style Monitoring Service

To check if an object is alive, the failure detector invokes the are you alive()
operation (line 5) of each monitorable object. If the invocation succeeds and returns
true, the object is considered as alive; otherwise, it is suspected. The monitored
object may also return false to simulate a failure (e.g., for debugging purpose).
This invocation may be performed:

• On demand (lazy evaluation): the monitorable object is checked on client
demand (i.e., when the client asks the monitor for the status of an object). This
makes the system less reactive since the client has to wait for the invocation
to return before knowing the object’s status.

• In background: the failure detector periodically checks if the object is alive,
and stores this information in a local table. The failure detector acts as a cache
of suspicion information. This information may have a time-to-live which tells
when to invalidate and re-evaluate the suspicion information.

A client asks the failure detector to start and stop monitoring an object by invok-
ing the start monitoring() and stop monitoring() operations (lines 9–10), and
obtains the status of an object by invoking the is it alive() operation (line 11).
A monitored object can have one of three states:

• SUSPECTED means that the object is suspected by the failure detector.

• ALIVE means that the object is considered as alive by the failure detector.

• DONT KNOW means that the failure detector is not monitoring the object.



3.3. The Monitoring Service 83

A Hierarchical Configuration. The problem of scalability is a major concern
for a monitoring service that has do deal with large systems. A traditional approach
to failure detection is to augment each entity participating in a distributed protocol
with a local failure detector that provides it with suspicion information. However,
this architecture raises efficiency and scalability problems with complex distributed
applications, in which a large number of participants are involved. In fact, if each
participant monitors the others using point-to-point communication, the complexity
of the number of messages is O(n2) for n participants. Wide area communication is
especially costly and increases the latency of the whole system. Therefore, it is very
important to reduce the amount of data exchanged across distant hosts.

A typical network configuration consists of several Local Area Networks (LANs),
with gateways connecting them, and the participating hosts distributed over all
these LANs. Inter-LAN communication is more costly (in terms of resources and
performance) and generally less reliable than intra-LAN communication. Therefore,
it is sometimes preferable to install only two or three failure detectors5 in each LAN,
independent of the number of objects they monitor.

The simple interfaces of our pull-style monitoring service make it easy to config-
ure the monitoring system in a hierarchy, as shown in Figure 3.23. The hierarchy
is arranged in a Directed Acyclic Graph (DAG). In a LAN, one or several failure
detectors can keep track of the state of all local monitorable objects, and trans-
mit status information to remote failure detectors in other LANs, thus reducing
the number of costly inter-LAN requests. The hierarchical configuration permits a
better adaptation of failure detector parameters (such as timeouts) to the topology
of the network or to the distance of monitored objects, and reduces the number of
messages exchanged in the system between distant hosts. A failure detector located
in a LAN can adapt to the network characteristics and provide a specific quality
of service. The reduction of network traffic, especially when a lot of monitorable
objects and clients are involved, is the main reason for the good scalability of this
hierarchical approach. On the other side, the latency of the state propagation may
increase with the indirections caused by the hierarchical configuration.

In the hierarchical configuration of Figure 3.23, two groups of objects (M3 and
M3′) are both being monitored by two distinct monitors (FD3 and FD3′) in a
LAN (LAN3). Two clients (C1 and C1′) are located in another LAN (LAN1), and
monitor the former objects indirectly through a local monitor (FD1). There are two
distinct paths between FD1 and the monitorable objects, making the failure of FD3
or FD3′ transparent to the clients. However, there is no redundancy in LAN1, and
the failure of FD1 would prevent clients from getting liveness information about
M3 and M3′. This configuration example reduces inter-LAN communication, when
compared to a traditional approach with one local monitor per client, and messages
exchanged between each monitor and monitorable object.

Since a link may break anywhere in the hierarchy, a set of simple rules for hierarchical
invocations helps determining if a particular object is suspected or not:

5This redundancy is necessary for a fault tolerant system.
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Figure 3.23: A Typical Hierarchical Configuration

• If a monitor says that a monitorable object is alive, this object was actually
alive some time before.

• If an invocation to a monitor fails when asking for the status of a monitorable
object, the invoker must assume that the object is suspected by the monitor.

• If there is more than one path leading to a monitorable object, and this object
is not suspected by the monitors of at least one path, it must be considered as
alive.

Providing a hierarchical configuration requires adding management operations for
linking and unlinking monitors, finding invocation paths between clients and mon-
itorable objects, etc. Describing these management functions is not relevant in the
context of this dissertation.

Monitorable as a Specialization of Monitor. With this simple pull model
and its hierarchical configuration, it is possible to provide a clean and orthogonal
design in which monitorable objects are a specialization of monitor objects. In fact,
a monitorable object can be viewed as a monitor object that only monitors itself,
and that never suspects itself. A call to mon->are you alive() would be replaced
by mon->is it alive(mon). This change has no impact on the previously presented
architecture, assuming that the rules for hierarchical invocations are respected. The
new interfaces would be simpler, since there would be no monitorable object. We
will not detail this approach further, but it has a big advantage of providing a simple,
clean, and orthogonal view of object monitoring.

Adding Asynchronous Suspicion Notifications. Although most applications
need to invoke the failure detector synchronously at specific points during protocol
execution, it may be sometimes useful to receive asynchronous notifications when
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the state of an object changes. Figure 3.24 presents the interfaces of the simple
pull-style monitoring service, extended with asynchronous notifications support. An
extra parameter has been added to the start monitoring() operation (lines 14–
15), that allows us to register an object with the Notifiable interface (lines 8–11).
The failure detector invokes the notify suspicion() operation (lines 9–10) of each
registered notifiable object when the status of a monitored object changes. The
client may still pass a null reference as notifiable object if it is not interested in
asynchronous notifications.

1 // IDL
2 enum Status { SUSPECTED, ALIVE, DONTKNOW } ;
3

4 interface Monitorable {
5 boolean are you alive () ;
6 } ;
7

8 interface Notif iable {
9 void noti fy suspic ion ( in Monitorable mon,

10 in boolean suspected ) ;
11 } ;
12

13 interface Monitor {
14 void start monitoring ( in Monitorable mon,
15 in Notif iable not ) ;
16 void stop monitoring ( in Monitorable mon,
17 in Notif iable not ) ;
18 Status i s i t a l i v e ( in Monitorable mon);
19 } ;

Figure 3.24: IDL Interfaces for Asynchronous Suspicion Notifications

Approach 2: An Extended Multi-Style Monitoring Service

This section presents the interfaces of the OGS monitoring service that supports the
dual model, i.e., a combination of the push-style and pull-style monitoring models
(Figure 3.25). It reuses some of the interfaces presented in Section 3.3.3.

Push-style monitoring is performed via a pair of one-way operations, i am alive()
and are you alive() (lines 24 and 31), instead of a single two-way operation. While
this has little impact on the implementation, it allows us to combine the push and
pull model in a clean interface hierarchy. Notice that CORBA one-way invocations
provide only best effort semantics. A better solution would be to use OMG’s future
messaging service [BEI+98], which will provide various qualities of service such as
asynchronous reliable communication.

The client interfaces to the monitoring service, defined by the Monitorable, Notifi-
able and Monitor base interfaces (lines 4–20), abstract the flow model used for
object monitoring. The client does not need to know which model is supported
and implemented by the monitoring service. The push and pull models are defined
by subtyping client interfaces and adding operations for monitoring objects (lines
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1 // IDL
2 module mMonitoring {
3 // Client interfaces for a l l flow models
4 enum Status { SUSPECTED, ALIVE, DONTKNOW } ;
5

6 interface Monitorable {
7 } ;
8

9 interface Notif iable {
10 void noti fy suspic ion ( in Monitorable mon,
11 in boolean suspected ) ;
12 } ;
13

14 interface Monitor {
15 void start monitoring ( in Monitorable mon,
16 in Notif iable not ) ;
17 void stop monitoring ( in Monitorable mon,
18 in Notif iable not ) ;
19 Status i s i t a l i v e ( in Monitorable mon);
20 } ;
21

22 // Interfaces for a l l flow models
23 interface HeartbeatMonitor : Monitor {
24 oneway void i am alive ( in Monitorable mon);
25 } ;
26

27 // Pull model
28 interface PullMonitor : HeartbeatMonitor {} ;
29

30 interface PullMonitorable : Monitorable {
31 oneway void are you alive () ;
32 } ;
33

34 // Push model
35 interface PushMonitor : HeartbeatMonitor {} ;
36

37 interface PushMonitorable : Monitorable {
38 void send heartbeats ( in PushMonitor mon,
39 in long frequency );
40 } ;
41

42 // Dual model
43 interface DualMonitor : PullMonitor ,
44 PushMonitor {} ;
45

46 interface DualMonitorable : PullMonitorable ,
47 PushMonitorable {} ;
48 } ;

Figure 3.25: IDL Interfaces for the Extended Multi-style Monitoring Service

23–40). The dual model is defined in a clean way by simply inheriting from the push
and pull models (lines 43–47).

The class diagram of Figure 3.26 illustrates the interfaces and operations of the com-
plete object monitoring service specification in a class diagram. Client applications
that use the service for monitoring remote objects have a limited view of the service,
restricted to the three topmost interfaces. Application-specific servers that imple-
ment monitorable objects may choose to inherit from any of the PullMonitorable,
PushMonitorable, or DualMonitorable interfaces.
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Figure 3.26: Class Diagram of the Object Monitoring Service Interfaces

3.3.4 Applicability of the Service

The monitoring service is useful for numerous application domains. For instance,
supervision and control systems must continuously monitor the status of the com-
ponents in the system and react to the failure of one of them. Garbage collecting
of distributed resources requires monitoring facilities as well (e.g., a distributed lock
must be released if the entity that holds it has failed).

Similarly to the consensus service, the monitoring service may also be used as a
building block for the implementation of distributed protocols. In fact, several dis-
tributed algorithms are based on the asynchronous system model augmented with an
unreliable failure detector; the monitoring service provides failures detection mech-
anisms that may be directly reused in this context.

?
? ?
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3.4 The Messaging Service

An environment like OGS that provides support for reliable distributed computing
requires reliable communication channels. Reliable communication between two
objects may be defined as follows:

If both the source and the target objects do not fail, then the message will be
eventually delivered to the target object.

This definition requires potential link failures between the source and target objects
to be eventually repaired. In addition to reliability, the protocols used for reliable
computing generally require the communication primitives to be asynchronous, i.e.,
the client is not blocked while the invocation is processed.

Application Objects

ORB

Group Service

Messaging

Service

Figure 3.27: The Messaging Service

These two requirements cause several group communication systems to use propri-
etary communication mechanisms based on datagram protocols, instead of connection-
oriented protocols such as TCP/IP. Standard CORBA invocation mechanisms do
not provide the required degree of reliability and asynchrony. For this reason, we
have encapsulated the problem of asynchronous reliable communication in one com-
ponent: the Object Messaging Service (Figure 3.27). This service sits close to the
ORB, and is used by OGS for communication between remote components. This
section presents the problems related to asynchronous reliable communication and
the solutions adopted in the OGS environment.

3.4.1 Standard CORBA Invocation Mechanisms

CORBA remote object invocations are based on RPC-like mechanisms and are, by
default, synchronous, i.e., the client is blocked until the invocation returns. This
behavior is convenient for many applications, but is unsuitable when, for instance, a
client has to perform several invocations to different servers, and the servers or the
links are slow; in this situation, the client should issue all requests at once and let
them execute in parallel while waiting for replies.
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In addition to synchronous invocations, the CORBA specification allows the declara-
tion of one-way operations: the operation does not return any value and the client is
not interested in waiting for the completion of the invocation. The specification also
defines primitives for sending deferred synchronous invocations: the client thread
continues processing, subsequently polling to see if results are available. Currently,
this model is only available when using the Dynamic Invocation Interface (DII).

Nevertheless, one-way invocations are not really asynchronous.6 The term one-
way specifies that the client will not wait for the completion of the operation on the
server side (which can last a long time depending on the application), but it does not
require the ORB to use non-blocking communication channels; thus, a one-way call
can block “forever” at the transport level, which can block in turn the application.
For instance, an Internet Inter-ORB Protocol (IIOP) one-way invocation can block
the entire process on a one-way call just because a TCP/IP buffer fills up. According
to the CORBA specification [OMG98a], given TCP/IP’s flow control mechanism, it
is possible to create deadlock situations between clients and servers [...] ORBs are
free to adopt any desired implementation strategy, but should provide robust behavior.
Although an ORB implementation could detect a possible deadlock when performing
an IIOP call, this behavior is not guaranteed by the CORBA standard.

Concerning reliability, the semantics of standard CORBA invocation mechanisms
have been kept (intentionally) vague in the specification. Two styles of execution
semantics are defined by the object model [OMG98a]:

• Exactly once or at-most-once: if a two-way operation request returns success-
fully, it was performed exactly once; if it returns an exception indication, it
was performed at-most-once.

• Best-effort: a best-effort operation is a request-only operation, i.e., it cannot
return any result and the requester never synchronizes with the completion, if
any, of the request.

The second execution style does not provide any guarantee. A compliant ORB can
just send the invocation message once, or even discard it. If the message is sent
more than once, this can result in multiple invocations on the server and lead to
consistency problems with non-idempotent operations. Furthermore, the CORBA
specification is completely silent on what happens in case of a link failure, if the
network is congested, or if the server is extremely busy. Since this behavior is not
specified, there is no way to handle it portably.

3.4.2 Overcoming Limitations of Standard CORBA Invocations

In order to overcome the limitations of the standard CORBA invocation model,
we have defined an object messaging service that provides basic mechanisms for

6In the CORBA terminology, asynchronous means that the client ORB does not synchronously
invoke the target to obtain a reply. Some other agent is required to separate the client ORB from
the target.
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managing asynchronous point-to-point messages. Its main purpose is to (1) allow
clients to invoke servers without blocking the client execution thread, and (2) allow
clients to specify the required quality of service for sending a message. Qualities of
service include unreliable, reliable, and FIFO communication. The messaging ser-
vice isolates the semantic requirements of OGS concerning remote communication.
These requirements will be fulfilled by the OMG’s future messaging service (see
Chapter 41), and we intend to use this service in OGS as soon as implementations
become available.

3.4.3 Support for Reliable Multicast

In addition to reliable point-to-point communication, group communication systems
require reliable multicast facilities. Reliable multicast may be defined as follows:

If the source object does not fail or if one correct target object delivers the
message, then the message is eventually delivered by all correct target objects.

Multicast primitives have been defined in the messaging service to allow provision
of one-to-many communication primitives using highly-efficient protocols based on
hardware multicast facilities. Using multiple point-to-point invocations is slower
than with hardware multicast when there are a large number of destinations and does
not scale well to hundreds of destinations. The multicast facilities of the messaging
service abstract the underlying communication mechanisms used for implementing
reliable multicast. These primitives can easily be implemented using simple protocols
based on point-to-point messages or using hardware multicast facilities,7 without
impact on the other OGS components.

Qualities of service provided for multicast include unreliable and reliable multicast,
with FIFO channels between the source and the target objects, but without ordering
guarantee for concurrent multicasts to the same target objects. The messaging
service does not know about object groups; group multicast is provided in the group
service with various ordering guarantees (see Section 3.1).8

?
? ?

7This choice is implementation dependent. Notice that using hardware multicast does not comply
with the IIOP standard, and prevents applications from interoperating with ORBs that are not
adapted to use the hardware multicast.

8Note that OMG’s future messaging service does not define multicast communication primitives.
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Summary

The OGS architecture defines several distinct services that are used to provide group
communication facilities in a CORBA environment. These services are specified in
terms of IDL interfaces, and are independent of one another.

The group service is the core of the OGS environment. It implements essentially
two functionalities: group membership manages the life cycle of object groups, and
group multicast provides support for sending requests to all members of a group
with various guarantees. The group service offers several levels of transparency and
reliability. Unlike traditional group communication toolkits, OGS lets the server
specify the semantics associated with each client request.

The consensus service allows a set of CORBA objects to solve the distributed con-
sensus problem. The consensus problem is a central abstraction that can be used to
solve various distributed problems, and in particular to implement group communi-
cation protocols. The consensus service defines IDL interfaces for running consensus
protocols (i.e., to instantiate a consensus, to propose an initial value, and to receive
a decision), independently of the algorithm used to solve consensus.

The monitoring service defines interfaces for detecting remote component failures.
Several models can be used for object monitoring. The most common ones are the
push and the pull models, which can be combined in a single, generic model: the
dual model. In addition, the objects of the monitoring service can be organized in
a runtime hierarchy that reduces the number of messages exchanged in the system
by the failure detection mechanisms.

Finally, the messaging service is a component that isolates the requirements of OGS
concerning remote communication. It will be replaced by OMG’s future object
messaging service.
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Chapter 4

The Object Group Service:
Implementation Issues

If a series of events can go wrong, it will do so
in the worst possible sequence.

The extended Murphy’s law

An implementation of OGS has been developed in the context of this thesis. It was
first developed in C++ using Orbix 2.xMT [ION97], and then ported to VisiBroker
for C++ 3.x [Vis98a]. A Java prototype has also been implemented with VisiBroker
for Java 3.x [Vis98b].

This chapter presents the current implementation of the services composing the OGS
environment. We present the system model, and the general principle adopted by
OGS for distributed protocol support. We give an overview of the implementation
dependencies between the OGS components, and describe the different algorithms
used by these components. We present implementation issues, such as transparency
support and group naming, and we discuss some of our experiences when imple-
menting and porting OGS. These experiences illustrate several shortcomings of the
current CORBA specification. Finally, we present performance measurements of the
OGS implementation.

4.1 System Model

When dealing with distributed systems, it is useful to distinguish between asyn-
chronous and synchronous computing systems [Sch93b]. In the asynchronous model,
no assumption is made about the speed of the communication system and the pro-
cesses in the network. There is no bound on the time that it may take for a message
to reach its destination process.
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On the other hand, the synchronous model assumes bounds on communication de-
lays and on the relative speed of processes. In practice, postulating that a system
is synchronous introduces strong constraints on how processes and communication
channels are implemented. Fully synchronous systems have severe limitations re-
garding the nature, the location, and the number of the machines that compose the
system. Since the asynchronous model makes fewer assumptions about the under-
lying system, a protocol designed for use in an asynchronous system can be used in
a synchronous one. Therefore, only the more general asynchronous model has been
be considered in the context of this work.

Fischer, Lynch, and Paterson demonstrated that the consensus problem cannot be
solved in fully asynchronous systems if only one participant of the consensus protocol
fails [FLP85]. Later, Chandra and Toueg have proposed a protocol that solves the
consensus in an asynchronous system augmented with an unreliable failure detection
mechanism [CT96]. In OGS, we use the monitoring service (see Section 3.3) together
with the protocol of Chandra and Toueg to solve distributed agreement problems.

4.2 Distributed Protocol Support in OGS

The entities that participate in a distributed algorithm must communicate with
each other, as part of a distributed protocol. The term “protocol” is used to refer
to a set of precisely-defined rules and conventions used for communication between
distributed components [CD88]. OGS components execute distributed protocols by
issuing remote invocations to one another.

CORBA does not differentiate between local and remote invocations issued to IDL-
specified operations. As a matter of fact, stubs and skeletons hide the distribution
from the application programmer, and allow both local and remote implementations.
Although this programming model bears many advantages, the developer of fault
tolerant services has to deal with link failures and independent component crashes;
these events have effects on the behavior of the system depending on whether the
components are remote or local.

In the OGS implementation, we make assumptions about the locality of some service-
specific objects. For instance, the consensus manager, the monitorable object, and
the group administrator which are associated with each group member are located
in the same process. Local invocations are reliable, and we assume that independent
failures of co-located objects do not occur.1

To deal with the problem of remote invocations and failures, we have introduced
an abstract messaging service that defines better quality of service than standard
CORBA remote invocations (see Section 3.4). This service appears at the architec-
tural level, but it is not defined in terms of IDL interfaces and is not implemented
in the OGS prototype. We plan to use OMG’s messaging service for this purpose
as soon as it becomes available. In our current implementation, we assume that the
ORB communication primitives use reliable channels, and that only crash failures

1Deadlocks in a multi-threaded application may have a behavior similar to independent failures.
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may prevent an object from receiving a message. In other words, we expect links to
be reliable. Since the IIOP protocol used by the ORB implementation is based on
TCP/IP, this assumption is reasonable in LANs.

Reliable Communication in Spite of Link Failures

As just mentioned, OGS does not implement reliable mechanisms for remote invoca-
tions; instead, it uses the primitives provided by the ORB as a temporary substitute
for OMG’s future messaging service. However, it is possible to implement reliable
non-blocking communication using existing CORBA mechanisms, in spite of link
failures.

A simple solution to reliable non-blocking communication is to use multi-threading
on the client side, with a separate thread for each invocation. Each time a remote
invocation has to be issued, the client forks a new thread, and uses a standard
CORBA synchronous invocation. If the invocation fails, the client re-issues it until
the invocation succeeds or the server is considered to be failed. Depending on the
exception returned to the client upon remote invocation failure, there may be no
possibilities to tell whether the server actually received the invocation or not; in
such a situation, at-most-once semantics can be guaranteed by adding a sequence
number to each invocation.

Although this algorithm implements reliable non-blocking communication, the use
of threads considerably increases the application’s complexity and the probability of
programming errors, by adding resource and synchronization problems. In addition,
the price to pay in terms of lost efficiency is tremendous. Therefore, we avoided this
solution in the context of OGS.

Public Interfaces vs. Protocol Interfaces

The OGS components exhibit well defined interfaces (see Chapter 3) through which
applications may request services. Since OGS components have to run distributed
protocols without the knowledge of the application, they must have some private
way to communicate with each other. For this purpose, we introduce the notion
of protocol interfaces which are private, implementation-specific interfaces known
only by the service, that are not accessible to the application. OGS components
use these interfaces to exchange the messages required for executing distributed
protocols, while public interfaces offer application-specific services.

Figure 4.1 illustrates public and protocol interfaces in the context of the group
service. The GroupAccessor and GroupAdministrator interfaces are public and
exported to the application, while the GroupAccessorProtocol and GroupAdminis-
tratorProtocol interfaces are private and used by the group service to execute its
distributed protocols. The same model has been adopted for the implementation of
the other services.

In the current implementation of the OGS components, the protocol interfaces are
subclasses of the public component interfaces. Alternatively, the use of multiple
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Figure 4.1: Public and Protocol Interfaces of the Group Service

inheritance from public and protocol interfaces would have been possible.

Component Dependencies

Although OGS is not organized in a layered architecture, there are dependencies
between its components that are very much like inter-layer relationships. These
dependencies are implementation-specific, and do not appear in the IDL interfaces
of the services. The relationships between the different components are illustrated
in Figure 4.2:

Group Multicast

Group Membership

Consensus

Monitoring

Messaging

Object Request Broker

Figure 4.2: Dependencies between OGS Components

• The messaging service defines OGS’ requirements concerning reliable point-to-
point and multicast communication.
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• The monitoring service uses reliable communication for detecting object fail-
ures.

• The consensus service uses failure detection and reliable communication mech-
anisms to solve the distributed consensus problem in an asynchronous envi-
ronment augmented with failure detectors.

• Group membership uses failure detection mechanisms to monitor group mem-
bers and a consensus protocol to agree on new views.

• Group multicast uses reliable communication, consensus, and group member-
ship for atomic message delivery to all members of a group.

Protocol Dependencies

Protocol interfaces reflect the dependencies between the different OGS components,
by supporting operations of several components. As an example, the GroupAdmin-
istratorProtocol interface plays a central role in OGS. The objects implementing
that interface are responsible for all the group communication support on the server
side. They combine the functionalities of all OGS components by inheriting from
interfaces defined by these components (Figure 4.3): they execute the group mul-
ticast and group membership protocols (group accessor and group administrator),
they monitor each other in order to detect member failures (monitorable and notifi-
able), and they participate in the consensus protocols (consensus participant). The
resulting protocol interface is used internally in the OGS implementation. The same
implementation principle applies to the other protocol classes of OGS.

GroupAccessor

multicast()
cast()

GroupAdministrator

join_group()
leave_group()

get_view()
destroy()

ConsParticipant

get_estimate()
decide()

Notifiable

notify_suspicion()

Monitorable

PullMonitorable

are_you_alive()

PushMonitorable

send_heartbeats()

DualMonitorable

Inherits

from

GroupAdministratorProtocol

Protocol-specific operations...

Figure 4.3: Class Diagram of a Protocol Interface

4.3 Group Communication Algorithms

This section presents the algorithms and protocols used in OGS to implement group
communication. The algorithms are expressed in terms of interactions between sets
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of processes, although OGS considers interactions between sets of objects. No formal
proof is given here: most of the proofs are obvious, or may be found in the referenced
papers.

In the algorithms, we assume that for each message m, there is a function sender(m)
that returns the sender of the message. In addition, unlike the formal specification
of the algorithms, the implementation uses message identifiers extensively (instead
of messages) to reduce network utilization to the minimum.

4.3.1 Failure Detection

The protocol used in OGS to implement failure detection is based on adaptive time-
out mechanisms. Although OGS provides two versions of the monitoring service —
one based on the pull model and the other on the dual model, which combines the
push and pull models (see Section 3.3.2) — the current implementation uses only
pull-style communication. Failure detectors periodically check monitorable objects
by sending them requests, and suspect them if they do not receive a reply within
specific time bounds. Although this protocol does not ensure eventually weak accu-
racy in a truly asynchronous system,2 it is adequate in practice, when the timeouts
are appropriately defined.

4.3.2 Consensus

The implementation of the OGS consensus service is based on the algorithm of Chan-
dra and Toueg [CT96]. This algorithm solves the consensus problem in an asyn-
chronous system augmented by an unreliable failure detection mechanism (called
♦S) under the condition that a majority of the participating processes do not fail.

The algorithm, described in [CT96], is based on the rotating coordinator paradigm,
and proceeds in asynchronous rounds. In every round, a different process plays the
role of the coordinator. A round consists of four sequential phases:

I. Every process sends its current estimate to the current coordinator. In the first
round, the estimate is the initial value of the process.3

II. The coordinator of the current round waits for a majority of estimates and
selects one with the highest timestamp (the timestamp represents the last round
in which a process changed its estimate). That estimate is sent to all processes.

III. Every process waits for the new estimate proposed by the current coordinator.
Once a process receives the new estimate, it sends back an acknowledgement
message (ACK) to the coordinator. However, if the process does not receive the
estimate and the coordinator is suspected by the failure detector, a negative
acknowledgement (NACK) is returned to the coordinator.

2No protocol can ensure eventually weak accuracy in a truly asynchronous system.
3A simple optimization of the consensus algorithm consists in skipping the first phase of the first

round, and having the first coordinator directly propose its estimate to all processes.
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IV. The coordinator waits for the acknowledgements from a majority of processes.
If none of those acknowledgements is a NACK, the coordinator decides its
current estimate and reliably broadcasts the decision to all processes.

A good run (i.e., without crash or failure suspicion) of the algorithm with three
participating processes is depicted in Figure 4.4.4

Propose

Ack

Decide

Reliable

multicast

Estimate

P1

P2

P3

Figure 4.4: Good Run of the Consensus Algorithm

The implementation of the OGS consensus service is fully event-driven. It is imple-
mented using a state-machine approach, and reacts to two types of events: message
receptions and suspicion notifications. The different states correspond to the differ-
ent phases of the algorithm. The implementation allows multiple parallel executions
of the consensus. A participant finishes the algorithm once it has decided on some
value. Parallel or consecutive consensus instances may be run with completely dis-
joint sets of participants.

Extended Consensus

In order to fulfill the requirements of the view membership algorithm presented in
Section 26, we have extended Chandra and Toueg’s consensus algorithm so that it
can optionally decide on a non-empty set composed of a majority of initial estimates,
instead of a single estimate. To reflect this new property, the original algorithm
has been modified as follows: in the second phase of the consensus algorithm, the
coordinator proposes a list of all the estimates received from the other participants,
if all these estimates have a timestamp of zero; otherwise, it selects one estimate
with the highest timestamp, as in the original algorithm. The validity rule of the
consensus problem (see Section 3.2.1) must be changed as follows:

• List Validity: If a process decides V , then V is a non-empty list containing a
majority of initial values, each of which has been proposed by some process.

4.3.3 Reliable Group Multicast

The algorithm used by OGS for reliable multicast is based on the reliable broadcast
algorithm proposed by Chandra and Toueg in [CT96]. This algorithm uses message

4Notice that the coordinator also sends messages to itself in each phase, although they are not
depicted in the figure.
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re-diffusion to ensure that every correct destination process actually receives the
message.

The idea of this algorithm is the following: when a process receives a reliable multi-
cast message for the first time, it relays the message to all other destination processes,
and then delivers it to the application. Although not very efficient, this mechanism
ensures that all correct processes deliver every message. The algorithm is defined
in terms of two primitives: R-multicast, invoked by the issuer of the multicast, and
R-deliver, invoked asynchronously on the receivers. It is formally described in Fig-
ure 4.5 (in the context of group communication, dsts designates a group instead of
a set of processes).

1: {Protocol of the client}
2: procedure R-multicast (m, dsts)
3: send (m, dsts) to dsts {dsts is a set of processes (or a group)}

4: {Protocol of the server (code of process p)}
5: when receive (m, dsts) for the first time
6: if sender(m) 6= p then
7: send (m, dsts) to dsts\{p, sender(m)}
8: R-deliver (m)

Figure 4.5: Reliable Multicast Algorithm [CT96]

A variation of this algorithm, more efficient in terms of resource consumption, con-
sists in re-diffusing a message only if the message has not been stabilized after some
time: stabilization information can be piggybacked on subsequent messages to the
same group. This optimization is not implemented in the current prototype of OGS.

4.3.4 Group Membership and Total Order Multicast

OGS uses the consensus service for implementing group multicast and group mem-
bership. The role of the consensus is to agree on the respective ordering of the events
received by group members. These events are messages and view changes. Hence,
each consensus instance decides on:

• An ordered set of messages to deliver.

• A set of suspected members to remove from the current view (i.e., the compo-
sition of the next view). This set can be empty, in which case there is no view
change.

The consensus algorithm ensures that all correct participants eventually decide on
the same value, and thus that every group member delivers the same set of messages
and view changes in the same order. Totally ordered messages are reliably multicast
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1: {Protocol of the client}
2: procedure TO-multicast (m, dsts) {Issue total order multicast}
3: R-multicast (m, dsts) to dsts {dsts is a set of processes (or a group)}

4: {Protocol of the server (code of process p)}
5: Initialization:
6: deliveredp ← ∅ {Messages already TO-delivered}
7: unorderedp ← ∅ {Messages not yet ordered}
8: suspectedp ← ∅ {Suspected members from the current view}
9: cidp ← 0 {Consensus identifier}

10: when R-deliver (m) {Receive total order message}
11: if m 6∈ deliveredp then
12: unorderedp ← unorderedp ∪ {m}

13: when suspect (q) {Suspect a group member}
14: suspectedp ← suspectedp ∪ {q}

15: when unsuspect (q) {Trust a group member again}
16: suspectedp ← suspectedp\{q}

17: when unorderedp 6= ∅ or suspectedp 6= ∅ {Order messages and views}
18: k ← cidp

19: propose (k, {unorderedp, suspectedp}) {Launch consensus}
20: wait until decide (k, {unorderedk, suspectedk})
21: atomically TO-deliver all messages in unorderedk in some deterministic order
22: deliveredp ← deliveredp ∪ unorderedk

23: if suspectedk 6= ∅ then
24: install new view without the processes from suspectedk

25: unorderedp ← unorderedp\unorderedk

26: suspectedp ← suspectedp\suspectedk

27: cidp ← cidp + 1

Figure 4.6: Total Order and View Membership Algorithm

in the group before being ordered by the consensus algorithm.5

The algorithm for total order and view membership is presented in Figure 4.6.
Similarily to the total order algorithm of [CT96], each participant maintains a set of
unordered messages (unorderedp) updated each time a message is received. The list
of the suspected members from the current view (suspectedp) is updated each time
the failure detector notifies the participant about a suspicion or an ”unsuspicion”
(i.e., a suspected participant is trusted again). The cidp variable is used as consensus
identifier to synchronize the consensus instances run by all participants. A consensus
is launched when there are messages to order, or there are members to remove from
the current view. Each participant delivers the set of messages contained in the
decision in a deterministic order that was agreed a priori by all participants.

5The reliable multicasting of the message is not necessary if the full message (instead of just the
message identifier) is included in the participants’ estimates. In addition, OGS can be configured
to reliably multicast the message only if it is not included in the decision of the following consensus,
or if it has not been delivered within some delay. This optimization has been implemented for the
performance measurements of Section 4.6.
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If the set of suspected members contained in the decision is not empty, all members
install a new view that does not include the suspected members. The process of
joining or leaving an existing group is slightly different than that of removing a failed
member. It is implemented through a totally ordered request issued by the member
joining or leaving the group. This request is processed by every group member, which
updates its view accordingly. Joining members receive service-specific information as
part of the state transfer protocol (e.g., the composition of the group, the identifier
of the next consensus to execute, etc.).
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Figure 4.7: Good Run of the Consensus Based Total Order Algorithm

Figure 4.7 ilustrates a good run of the total order algorithm with one client and
three group members, using an optimized version of the original consensus algo-
rithm of Chandra and Toueg (the first phase of the first round has been skipped,
as described in Section 4.3.2). The idea of using a consensus algorithm for group
communication was used in the Phoenix group communication toolkit [Mal96], and
has been generalized in [GS96].

Sequenciality of Consensus Executions

Although our implementation of the consensus service allows us to run several con-
sensus instances in parallel, the OGS group service serializes consensus executions.
This is required by the total order and view membership algorithm of Figure 4.6.
This restriction does not slow down the system since (1) a consensus may decide
on the ordering of several messages at once, and (2) it does not prevent non-totally
ordered messages from being delivered.

Launching the Consensus

In the OGS implementation of the consensus algorithm, a consensus must be launched
explicitly by all participants (see Section 3.2.2 for a discussion about consensus in-
stantiation). It is initiated in two situations:

1. If there are messages to order.

2. If one or several group members are suspected.
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Since all correct members of a group must start each consensus, we have to ensure
that they all receive an event leading to one of the above situations. This is ob-
viously the case with a totally ordered message, because this message is reliably
multicast in the group. Since every correct member eventually receives the message
(guaranteed by the reliable multicast algorithm), every correct member eventually
starts a consensus.
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Figure 4.8: Problem with the Consensus Algorithm upon False Suspicion

In the second situation, a false suspicion may lead a member to start a consensus
while the other members do not. In Figure 4.8, p1 incorrectly suspects p2 and starts
a consensus with an initial estimate containing its suspicion information and no
message to deliver. It then waits for the other members to start the consensus.
The consensus actually starts when the other members have messages to order or
suspicions to handle. This delay is not a problem in itself, since p1 continues to
receive and deliver unordered messages. In the figure, an incoming message m1

causes p2 and p3 to start a consensus with an initial estimate containing m1 and no
suspicion information. The consensus is run and the decision value happens to be
the initial proposition of p1, i.e., to remove p2 from the new view and to deliver no
message. This is obviously a bad decision since the removed process has not failed
and was suspected by only one group member. In addition, totally ordered messages
are not delivered to the application, even though all group members have received
them.

This unwanted behavior results from the fact that the consensus decides on one value
from any participant.6 To solve this problem, we propose a slightly extended version
of the consensus algorithm of Chandra and Toueg, which decides on a majority of
propositions (see Section 4.3.2). Each participant can then interpret this decision
value in a deterministic way:

• Deliver in a deterministic order all the messages that are included in the
propositions.

• Remove from the group all members that are included in a majority of the
propositions.7

This extension allows the delivery of more messages, and prevents taking wrong
actions in case of false suspicion. OGS lets the application developer choose between

6Actually, if there is no failure, the decision is the proposition of the first coordinator.
7A more conservative approach would be to remove the members that are included in all the

propositions, and are thus suspected by a majority of group members.
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both algorithms.

4.3.5 Optimistic Active Replication

Ordering messages using a consensus algorithm is efficient if several clients are issuing
requests concurrently. In this case indeed, one consensus execution can order several
messages. On the other hand, if a single client issues several requests sequentially,
the cost of the consensus may be considered too high.

To reduce this cost, we propose, for active replication, a new total order algorithm
based on a sequencer. We call this algorithm Optimistic Active Replication algorithm
since it includes the processing of the request by all servers (active replication),
and it is optimized for the case when no failure occurs. This algorithm makes the
assumption that a majority of processes are correct.

Informally, the algorithm works as follows: a message from a client is first reliably
multicast to all participants. Upon message reception, the sequencer — which may
be chosen arbitrarily as the first member of the group view — assigns a sequence
number to the message and sends this number to all participants. Each participant
waits for an ordering information or a suspicion of the sequencer. When a partici-
pant receives a sequence number, it delivers the message accordingly, processes the
request, and sends the reply with a positive timestamp to the client. If the sequencer
is suspected, message ordering is decided using an agreement protocol, and the par-
ticipants send a reply with a negative timestamp. The client waits for the replies
from a majority of participants that have the same positive timestamp, or for any
reply with a negative timestamp.

The agreement protocol run upon suspicion from the sequencer is the modified con-
sensus algorithm presented in Section 4.3.2. The participants propose the ordering
information that they received from the sequencer. The consensus decides on a
majority of estimates from all participants. At that point, two situations may arise:

1. The client has received a majority of replies with the same positive timestamp.
This means that a majority of participants have processed the request prior
to starting the consensus, and have thus received the ordering information
from the sequencer. In this case, the decision of the consensus contains the
ordering information for the message (because the decision contains a majority
of estimates), and all participants adopt it.

2. The client has not received a majority of replies with the same positive times-
tamp. If the decision of the consensus contains an ordering information for the
message, all participants adopt it; otherwise, they wait for a new sequencer to
order the message. The client discards the replies.

After the decision of the consensus algorithm, another sequencer is chosen — which
may be the next member in the group view. A good run of this algorithm is shown
in Figure 4.9.
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Figure 4.9: Good Run of the Optimistic Active Replication Algorithm

The tradeoff of this algorithm is that, in the worst case,8 a minority of participants
containing the first sequencer may have delivered more messages, or some messages
in a wrong order. These particiants have to resynchronize with the primary partition
in order to guarantee the correctness of the system. But this situation is extremely
unlikely, and this minority will be removed from the view by the membership proto-
col anyway. Furthermore, the client will discard the replies from this faulty minority
of participants.

In this algorithm, the message is not stabilized by the group, but by the client.
To stabilize the message in the group, a standard sequencer-based algorithm would
require the sequencer to wait for a majority of acknowledgements before sending the
reply to the client.

The full algorithm is presented in Figure 4.10. It describes the actions of the client
(lines 1–4), of the sequencer (lines 11–15), and of non-sequencer processes (lines
16–36). The initial multicasting of the message (line 3) is not necessary if the
sequencer sends the initial message together with its ordering information (instead
of just a message identifier). The participants must just ensure that the sequencer
has received the message.9 The performance measurements of Section 4.6 have been
performed with this optimization.

4.3.6 Primary-Backup Replication

OGS implements the semi-passive replication technique defined in [DSS98a], which
is close to primary-backup replication from the server’s point of view. The im-
plementation is based on the Deferred Initial Values consensus (DIVconsensus)
problem [DSS98a], which may be solved with a slightly modified version of Chandra
and Toueg’s consensus algorithm [CT96]. In contrast with the traditional consen-
sus problem, DIVconsensus participants are not required to have an initial value
defined when starting the consensus algorithm; instead, the consensus algorithm
asks the participant for its initial value when needed.10 This property allows us to

8This may happen in case of a partition, if the sequencer is in a minority partition.
9We do not use a point-to-point invocation from the client to the sequencer because the client

does not have to know which participant is the sequencer.
10Actually, the DIVconsensus algorithm proposed in [DSS98b] asks for an initial value only when

the participant is the coordinator.
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1: {Protocol of the client}
2: procedure OAR-multicast (m, dsts) {Issue request for optimistic active replication}
3: R-multicast (m, dsts) to dsts {dsts is a set of processes (or a group)}
4: wait until [for

⌈
(|dsts|+1)

2

⌉
processes q : received (replym, tsq) from q with tsq > 0

or for any process q : received (replym, tsq) from q with tsq < 0]
{The client waits for a majority of replies with the same positive timestamp,

or for any reply with a negative timestamp}

5: {Protocol of the server (code of process p)}
6: Initialization:
7: orderp ← 1 {Local message counter}
8: tsp ← 1 {Local timestamp}
9: dlvrsp ← ∅ {Messages delivered since last consensus}

10: s← sequencer {Current sequencer}

11: when p = s and R-deliver (m) {Sequencer process s orders the messages}
12: send (m, orders) to all
13: reply ← OAR-deliver (m) {Deliver and process request}
14: send (reply, tss) to sender(m) {Send reply to sender}
15: orders ← orders + 1 {Increment the local message counter}

16: when p 6= s and R-deliver (m) {Non-sequencer process p waits for ordering
information from the sequencer}

17: wait until [received (m, orderm) from s or s ∈ Dp] {Query the failure detector}
18: if [received (m, orderm) from s] then {p received ordering information from s}
19: dlvrsp ← dlvrsp ∪ {m, orderm} {dlvrsp contains ordering information of

all messages since last consensus}
20: reply ← OAR-deliver (m) {Deliver and process request}
21: send (reply, tsp) to sender(m) {Send reply to sender}
22: orderp ← orderp + 1 {Increment the local message counter}
23: else {p suspects s to have crashed}
24: propose (dlvrsp) {Launch consensus}
25: wait until decide (d)
26: while ∃n | (n, orderp) ∈ d do {Deliver messages starting from orderp,

in an order consistent with the replies sent to the client}
27: n← select one message such that (n, orderp) ∈ d {(n, orderp) has been decided

by s, and thus all messages associated to orderp are identical}
28: reply ← OAR-deliver (n) {n is the next message to deliver}
29: send (reply,−1) to sender(n) {Send reply to sender}
30: orderp ← orderp + 1 {Increment the local message counter}
31: t← largest ordern such that (n, ordern) ∈ d {t← 0 if d = ∅}
32: if t < orderp − 1 then {p has delivered more messages than those in d}
33: resynchronize with primary partition
34: dlvrsp ← ∅ {Clear dlvrsp upon consensus decision}
35: tss ← tss + 1 {Increment timestamp}
36: choose another sequencer

Figure 4.10: Optimistic Active Replication Algorithm

easily implement both active and semi-passive replication with the DIVconsensus
problem.

The interaction model of the OGS consensus service is compliant with the DIVcon-
sensus, since the consensus service calls back to the participants to obtain an initial
value (see Section 3.2.2). Therefore, no modification is required to the IDL interfaces
of the consensus service to use an algorithm based on the DIVconsensus.

Figure 4.11 illustrates a good run of the semi-passive replication algorithm given in
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Figure 4.11: Using DIVconsensus for Semi-Passive Replication

Figure 4.12 (adapted from [DSS98a]). The primary processes the request when the
consensus algorithm asks for an initial value. This processing must be performed
without modifying the object’s state (the state will be modified when processing
the update). This initial value returned by the primary contains both a reply for
the client and an update information for the backups. If there is no failure, the
DIVconsensus algorithm decides on the value from the primary, and all backups
update their state and send the replies to the client.

1: {Protocol of the client}
2: procedure SPR-multicast (m, dsts) {Issue request for semi-passive replication}
3: R-multicast (m, dsts) to dsts {dsts is a set of processes (or a group)}

4: {Protocol of the server (code of process p)}
5: Initialization:
6: handledp ← ∅ {Requests already handled}
7: unhandledp ← ∅ {Requests not yet handled}
8: cidp ← 0 {Consensus identifier}

9: when R-deliver (m) {Receive primary-backup request}
10: if m 6∈ handledp then
11: unhandledp ← unhandledp ∪ {m}

12: when getInitVal () {Return initial value for consensus}
13: m← select one request from unhandledp

14: {update, reply} ← handle(m) {Process request without updating local state}
15: return {m, update, reply}

16: when unhandledp 6= ∅ {Handle primary-backup request}
17: k ← cidp

18: DIVpropose (k, getInitV al) {Launch DIVconsensus}
19: wait until decide (k, {mk, updatek, replyk})
20: send replyk to sender(mk) {Send reply to the client}
21: update state according to updatek

22: handledp ← handledp ∪ {mk}
23: unhandledp ← unhandledp\{mk}
24: cidp ← cidp + 1

Figure 4.12: Semi-Passive Replication Algorithm [DSS98a]
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4.4 Implementation Details

Several issues related to the implementation of OGS are worth discussing in the con-
text of this dissertation. In particular, some implementation choices have been made
for typed communication, group naming, concurrency management, client multicast
protocol, and request duplication. These issues are presented in this section.

4.4.1 Typed communication

With the typed invocation interface of OGS, clients invoke operations directly on
the server’s interface, and OGS delivers multicast invocations by directly invoking
the relevant operation of the server. There are two main solutions for implementing
typed communication: smart stubs and dynamic ORB interfaces.

The first approach uses smart proxies on the client side and smart skeletons on the
server side. These stubs hide groups from the application, and redirect requests and
replies to OGS. They can be automatically generated from an IDL file. Although
this approach is type secure and efficient — it uses static typing — it requires a
special IDL compiler, and is both language and ORB dependent.

The second approach, adopted by OGS, uses two advanced features of the CORBA
specification: the Dynamic Skeleton Interface (DSI) and the Dynamic Invocation
Interface (DII). The DSI is used by the service to accept requests that actually
aim at the server interface. The DII is used to construct the invocations for the
server interface. We detail below how these features have been used to provide type
transparency.

General Principle. The OGS approach to typed communication is similar to
the CORBA request level bridging [OMG98a]. Translation from a client request
to a multicast (for a set of servers) is performed by application style code outside
the ORB. Client and servers mediate through a common protocol between distinct
execution environments (possibly different ORBs).

ORB A ORB B

Client Servers

Group Service

DSI DII

Logical operation request

1

2

3

Figure 4.13: Providing Type Transparency
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The general principle for implementing typed communication is illustrated in Fig-
ure 4.13: (1) the original request is passed to an OGS object (group accessor) in the
client ORB: this object acts as a proxy for the servers; (2) the proxy object trans-
lates the request contents to an agreed format and issues a multicast to the server
ORBs using untyped communication; (3) OGS server-side objects (group adminis-
trators) receive the multicast and invoke the required operation on the servers. Any
operation result is passed back to the client using point-to-point communication. In
comparison with untyped communication, this process requires two additional steps
(1 and 3). In the following, we describe how these steps are implemented.

Accepting Requests Using the DSI: the Client Side. OGS gives the illu-
sion to clients that they are directly invoking a server, whereas they are actually
invoking the service. This greatly simplifies client development, since the latter can
issue standard invocations to IDL-defined operations. OGS uses the DSI to accept
any operation of the server interface, although this interface is not known at com-
pile time. OGS intercepts invocations using a dynamic skeleton on the client side,
transforms them into an agreed format, and multicasts them using untyped com-
munication to all the group members. On the client side, OGS uses the CORBA
Interface Repository (IR) for getting runtime information about the IDL interface
of the replicated object.

When performing a typed multicast invocation, the service waits for a single reply
from the servers, unless the operation is explicitly declared as one-way in the server’s
IDL interface, in which case a one-way multicast invocation is used.

Constructing Requests Using the DII: the Server Side. The DII allows
an application to issue requests for any interface, even if this interface is unknown
at compile time. OGS objects on server hosts receive the details of the request to
be made as part of the multicast message sent by the client. The message contains
information on the object that must be invoked, the operation name, the parameters,
etc. OGS translates this into a DII call leading to the invocation of the requested
operation on the server interface. Once the operation returns, OGS transmits the
reply (or an exception that may have been raised by the application) back to the
client.

4.4.2 Group Naming

Since group communication in OGS provides view change notifications, objects that
are part of a group always know the current composition of their group. On the other
hand, when an object wants to access a group of which it is not a member (e.g., to
multicast a message or to join the group), OGS must first obtain a reference to the
members of the group. This is achieved using group names, which are system-wide
unique identifiers.

For managing group names, we use the CORBA Naming Service (NS) specified
in [OMG97]. This service maintains name-to-object mappings in a federated ar-
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chitecture. These name-to-object associations are called name bindings. A name
binding is defined relative to a naming context, which is a CORBA object respon-
sible for maintaining a set of bindings with unique names. Different names can be
bound to an object in the same or different contexts at the same time. Because a
context is like any other object, it can also be bound to a name in a naming context.
Binding contexts in other contexts creates a naming graph. OGS uses one context
per group, and stores references to individual group members and to service objects
(e.g., group administrators) in these contexts. Figure 4.14 shows a naming graph
with a Bank context that contains references to the two members of an object group
(the dark circles represent naming contexts).

Replicated

Account

ACC1

OGS

Bank

Root

Acc2

Diary

UsersProj

Phx OGS Bast Joe Dave Stock

Figure 4.14: Sample Naming Graph with References to an Object Group

Although the naming service is not fault tolerant in itself, existing implementations
are robust enough for our needs. In the worst case, a failure of the naming service
can hinder a client to bind a group, but it will not disrupt objects that are already
bound to the group. Alternatively, on could use a fault tolerant implementation of
the naming service, such as the one described in [Maf96].

Keeping the naming service up-to-date is a difficult task. OGS updates the informa-
tion in the naming service each time a view change occurs, but this information is
not guaranteed to be up-to-date. In particular, if the last member of a group fails,
OGS does not guarantee that the reference to the member will be removed from the
naming service.

In practice, when an object wants to access a group, OGS contacts the naming
service, retrieves the list of the group members, and contacts these members. Having
only one of them being an actual member of the group is sufficient; if this were not
the case, OGS would continue consulting the naming service until it succeeds in
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contacting a group member.

4.4.3 Client Multicast Protocol

Whereas group members always know the exact composition of their group, clients
may not have an up-to-date view of groups they are communicating with. The OGS
implementation uses the following mechanism to ensure that multicast invocations
reach all group members despite outdated client views.

Views have version numbers that are incremented every time the composition of the
group changes. Upon creation, a group accessor obtains a list of all group members
from the naming service, and stores this list in a view with a null version number.
Each time a client issues a request to a group, the group accessor sends the request
to all members of the current view, and embeds the version number of its local view
in the request. Upon message reception, the members may decide to re-issue the
request in the group depending on its semantics and the accuracy of the client’s view
(if the client view has a smaller version number than the one of the members, the
chances are that the client did not send the request to all members of the current
view). If the client’s view is outdated, the first member of the group sends a new
view to the client together with the reply.

Thus, clients have up-to-date views if they frequently send requests to a group. If
the client’s view is so outdated that no object of its view is currently a member of
the group, the group accessor has to (transparently) obtain a fresh view from the
naming service.

An interesting feature of the OGS client multicast protocol is that the client has
merely to send a request to all members of its view, without caring about the
semantics of the request. The client-side protocol is identical for all algorithms.

4.4.4 Concurrency Management

The OGS implementation assumes that it is running in a multi-threaded environ-
ment. Multi-threaded CORBA servers have the ability to process several requests at
the same time. When dealing with requests that require a long processing time (e.g.,
database queries), multi-threading support is necessary to serve incoming requests
while performing time consuming processing.

In OGS, multi-threading is especially important in one situation: when a client issues
a multicast request to a group accessor, the latter launches a distributed protocol
and waits for replies from servers before returning. In other words, multicasting
is a blocking operation that expects replies (i.e., incoming messages) while being
processed. Although this problem can be solved in a single-threaded system if the
ORB implementation supports reentrant invocations, multi-threading provides a
more general and powerful model.

Most ORB implementations provide support for forking new threads as a result
of incoming requests. The main problem related to multi-threading is mutual ex-
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clusion of shared resources. Since all threads of a process share the same data,
the programmer must ensure that two concurrent threads do not modify the same
critical resource at the same time, leading to inconsistencies. In particular, OGS
provides ordering of requests, but the threads scheduler could break this ordering
in the invokee process. In other words, an invocation i1 could be delivered to the
server object before another invocation i2, but, since they execute in two different
threads, i2 could be processed before i1. Therefore, special attention must be given
to the problem of request sequencing.

In the OGS implementation, each incoming request executes in a separate thread,
and the threads are sequenced. This scheme preserves ordering, at the price of
potentially reduced performance. Thread sequencing is implemented using locking
mechanisms based on the standard POSIX thread library (pthread) [NBF96]. Unfor-
tunately, these locking mechanisms do not ensure FIFO ordering of waiting threads:
if several threads block on some lock, the first thread to be unblocked will not nec-
essarily be the first one that blocked. This limitation forced us to deal with explicit
queues of threads, which results in a noticeable performance penalty.

4.4.5 Request Duplication

When a client invokes an actively replicated server, each replica receives the invoca-
tion, processes the requested operation, and returns a reply. There is no coordination
between the replicas which behave as if they were not replicated. Active replication
is not straightforward to achieve in an object-based environment like CORBA when
an object may alternatively play the role of client and server. In fact, a replicated
object can act as a client for another server, and so result in duplicated invocations
(see the discussion on request filtering in Section 2.4) [GFGM98].

Filtering duplicated requests is a difficult problem. If a singleton object (which is
not aware of OGS) is invoked by a client group, it is not possible to filter the request
on the server side without some support from the ORB. On the other hand, filtering
on the client side requires intercepting every outgoing request; this filtering can be
done only if the request is issued via OGS. In the OGS model, it is possible to filter
duplicated requests that are issued by a group to another group, but no support is
provided for filtering requests issued to a singleton object.

A clean solution to the problem of duplicated requests would be to transparently
associate a context — which may be a unique request identifier — to each request,
and to forward this context along through chained invocations. This context could
be used to detect duplicated requests and filter them. This solution requires some
ORB support which is not currently available. With the current version of OGS,
one would prefer to use primary-backup instead of active replication to avoid the
problem of request duplication.11

11Notice that request duplication may also happen with primary-backup replication if the primary
fails while processing a request.
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4.5 Porting Experiences

Portability is a crucial aspect in the development of large scale distributed applica-
tions that use heterogeneous components. The degree to which CORBA guarantees
portability of an application depends however on the nature of the application com-
ponents. When these components rely on some features not completely specified
by CORBA, portability may be affected. This is the case of OGS which relies on
features such as non-blocking reliable communication, dynamic invocations, multi-
threading, and predictable request scheduling.

We implemented OGS first using Orbix [ION97] and then we ported it to Visi-
Broker [Vis98a]. During this porting phase, we experienced several difficulties that
are worth mentioning, and that shed some light on whether the current CORBA
specification is mature enough to be deployed in systems that have portability re-
quirements [FGS98a]. We also discuss problems resulting from deficiencies in the
CORBA specification that are not limited to portability.

Multi-Threading

As mentioned before, OGS uses multi-threading to asynchronously wait for incom-
ing events and perform background tasks like failure detection. Multi-threading is
supported by all major operating systems but, as of version 2.1 of the CORBA
specification, thread support and management are not specified, and thus are not
portable. Although both Orbix and VisiBroker support multi-threading, they pro-
vide very different programming models. Both provide object-oriented wrappers
for threads, locks, and condition variables that allow platform independence (e.g.,
between Posix and Windows NT threads), but these wrapper classes are not com-
patible with each other. This problem did not arise with the Java version of OGS,
because Java provides language-level support for threads [Lea97].

The biggest difference between Orbix and VisiBroker threading models appears at
thread creation: Orbix provides fine control over thread creation because the pro-
grammer explicitly creates threads in so-called Filter objects invoked before request
processing. On the other hand, VisiBroker automatically and transparently starts
threads for incoming requests, without letting the programmer choose which request
has to be started in a new thread, and which does not. The VisiBroker model is
easier to use and more efficient, but less powerful. OGS uses its own wrappers for
encapsulating the differences between both models.

Server-Side Mapping

Although the CORBA specification suggests a C++ server-side mapping, it does not
enforce implementations to comply with it. In particular, two models of skeletons
are suggested: using inheritance and using delegation (TIE approach). Inheritance
requires object implementations to inherit from an IDL-generated skeleton class,
while delegation lets the skeleton forward requests to the object implementation,
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without requiring any inheritance relationship.

Orbix and VisiBroker support both models, but use a different syntax and terminol-
ogy. For instance, with the inheritance model, the skeleton class of interface M::I is
called M::IBOAImpl with Orbix, and sk M:: sk I with VisiBroker.

Another problem we faced is the generation by Orbix of an extra parameter for each
IDL operation, of type CORBA::Environment. This parameter is used principally for
signaling exceptions to the client with compilers that do not support native C++
exceptions, and is allowed by the CORBA specification. Since VisiBroker does not
add this parameter, we had to use conditional compilation for each IDL-defined
operation. In fact, much of the server-side mapping and BOA is underspecified.
Writing portable code for OGS required extensive use of preprocessor macros.

Scoped Names

The CORBA specification is loose concerning the C++ mapping of scoped names,
which can map to namespaces, nested classes, or concatenated identifiers. For in-
stance, if an interface I is defined in a module M, an implementation can map I
to a class in the M namespace, or to a nested class in the M class (M::I), or to the
unnested class M I.

This lack of precision is meaningful for compilers that do not support the latest
C++ features, but it makes user code depend on the implementation choice of ORB
vendors, and prevents developers from writing code which is portable to ORBs that
implement different mappings. OGS assumes that the ORB supports nested classes.

Multiple-Inheritance of Implementations

When an IDL interface inherits from another interface, one would like to reuse the
implementation of the base interface. In an object-oriented language like C++ that
supports multiple inheritance, the implementation of the derived IDL interface can
inherit from both the implementation of the base interface and from the skeleton of
the derived interface. This programming model works fine with Orbix, but is not
fully supported by VisiBroker. In OGS, we had to change our implementation to
use delegation instead of multiple inheritance.

Object Equivalence

Another problem relates to the lack of clear semantics concerning object reference
comparison, which is often required in a distributed application where several object
references must be checked for equality. CORBA only specifies an operation, called
is equivalent(), that compares two object references; it returns true if they des-
ignate the same object, and false if the underlying ORB cannot determine whether
the object references are equivalent or not, which often happens when dealing with
references from different ORBs. Therefore, a compliant implementation may always
return false, which is obviously useless. A workaround for this problem is to define
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an explicit operation on the objects that need to be compared, and to invoke it
for each comparison; but this involves a remote invocation for each object reference
comparison. In general, it is better to design applications so that they do not need
to test for object equality, but this is not always possible. OGS tests object equality
in rare situations, and relies on is equivalent().

Any Type Mapping

Values of type any are used intensively in OGS, but VisiBroker does not comply
with the CORBA specification concerning the C++ mapping of the any type. For
extraction of complex data types, such as structures, the specification states that the
extraction function must be prototyped for passing parameters as pointers rather
than values to increase efficiency. As VisiBroker does not use pointers, the applica-
tion developer cannot write portable code.

Dynamic Exception Handling

The typed version of OGS uses the DSI on the client side to intercept requests
performed on the server’s interface, and the DII on the server side to reconstruct
the request and invoke the servers. In between, the request is transmitted and the
reply is returned by OGS as untyped values, i.e., they are packed in CORBA any
variables. Although it is easy to insert the request’s parameters and return values
into any variables, the CORBA specification does not make it possible to pass back
all types of exceptions from the server to the client. On the client side, returning an
exception resulting from a DSI invocation requires giving an any value containing the
exception to the dynamic request object. On the server side, an exception returned
as a result from the DII invocation is a pointer to an object deriving from the
Exception class, and there is no way of packing this object into an any variable.12

This implies that the typed version of OGS does not allow the return of all types of
exceptions at the moment.

Initial Services

CORBA applications can list available services using the list initial services()
function, and they can obtain an initial reference to one of these services using the
resolve initial references() function. This makes it easy for applications to
use CORBA services in a portable way. Unfortunately, installing a new service in
the list of initial services is implementation-specific, and there is no way to add
user-defined services. Therefore, getting an initial reference to OGS is not possible
using these functions. A solution is to use the Object Trader Service, but very few
implementations of this service are currently available. The solution we adopted is
to simply register OGS in the Naming Service.

12Unless the resulting exception is of type UnknownUserException which is not supported by
Orbix.
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4.6 Performance

This section presents the performance of the OGS implementation on VisiBro-
ker [Vis98a] (some performance measurements of OGS on Orbix [ION97] may be
found in [FGS98b]).13 We focus on client multicast invocations, i.e., the cost of
invocations through OGS, from a client to a group of objects. We compute the over-
head of using OGS compared to using plain CORBA invocations, and we investigate
the sources of this overhead.

These measurements focus on OGS performance. They do not present the intrin-
sic cost of invocations going through the ORB in detail. Exhaustive performance
measurements of CORBA latency with different ORBs may be found in [GS98].

4.6.1 System Configuration

Our performance measurements have been performed with the C++ version of OGS,
compiled with VisiBroker 3.2. Testing took place on a local 10 Mbit Ethernet
network, interconnecting 13 Sun SPARCstations running Solaris 2.5.1 or 2.6, under
normal load conditions (all workstations were running X Windows, as well as several
user applications such as netscape or emacs). Among these workstations, there were
four Sun UltraSPARC 30 (250 Mhz processor, 128 MB of RAM), and nine Sun
UltraSPARC 1 (170 Mhz processor, 64 MB of RAM). For tests involving up to
four hosts, only the UltraSPARC 30 workstations were used. All the client and
server applications were located on different hosts, except the OGS daemon which
was located on the same host as the client. The tests have been run with the
TCP NODELAY option that sets all sockets to immediately send requests, instead
of buffering them and sending them in batches.

4.6.2 Test Scenarios

Our performance tests evaluate the latency of multicast invocations issued by a client
to an object group when no failure occurs. These invocations use the various seman-
tics provided by OGS: total order (consensus-based and sequencer-based), reliable,
and unreliable; and three different modes of invocations (Figure 4.15): untyped invo-
cations with the OGS library, untyped invocations with the OGS daemon, and typed
invocations with the OGS daemon (execution models are discussed in Section 5.1.1).
The group size varies from one to ten members. The client waits for a single reply
from the servers, except with the optimistic active replication algorithm, with which
the client waits for a majority of replies. The arrows in the figure represent the
invocation path followed by the requests and the replies.

The test program operates as follows: a single client executes several rounds, in each
of which it issues a fixed number of synchronous invocations (typically 100). The
client waits for a reply from each request before issuing the next invocation. The

13Due to some limitations in the current version of Orbix, we could not perform all the tests
presented in this section with the Orbix version of OGS.
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Figure 4.15: Three Test Models for Client Multicast Invocations

total time of each round is divided by the number of invocations issued during the
round to obtain the latency of a single invocation. We kept the value of the best
round. Since there is only one client, invocations are not performed concurrently
and OGS cannot benefit from its consensus-based total order algorithm that can
order several requests at once. Therefore, this test is not a good measure of the
total throughput of OGS with this algorithm. The results of the program execution
are given in Table 4.1. These results are discussed in the next section.

4.6.3 Evaluation

In Section 2.4, we have classified transparency according to three categories: be-
havior transparency, plurality transparency, and type transparency. We analyze
the costs of the OGS architecture according to this classification: we first evaluate
the cost of the various multicast primitives of OGS (behavior); then, we evaluate
how much the performance depends on the group size, and how it compares to a
single invocation through the ORB (plurality); we finally evaluate the performance
overhead induced by the use of dynamic typing facilities in OGS (type).

The Cost of Behavior

The semantics of multicast invocations depend on the behavior of an object group.
Reliability and speed are often antithetical. Figure 4.16 illustrates the cost of the dif-
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Exec. style Semantics #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Total Order 2.80 7.57 9.61 13.65 18.81 28.07 38.33 47.42 60.97 79.80
Untyped OGS Opt. Active Repl. 2.77 4.74 4.98 5.92 6.58 8.15 8.97 10.42 11.49 13.01
Library Reliable 2.70 3.03 3.36 4.72 7.82 13.28 18.22 23.00 27.83 34.60

Unreliable 2.70 2.90 3.14 3.49 4.24 5.11 5.75 6.46 7.67 8.67

Total Order 3.78 8.60 10.51 14.80 19.91 29.75 39.50 51.02 63.18 82.81
Untyped OGS Opt. Active Repl. 3.69 5.89 6.29 7.19 7.51 9.17 10.60 11.91 12.22 13.18
Daemon Reliable 3.66 4.14 4.17 6.72 9.32 14.12 19.91 24.60 28.35 36.81

Unreliable 3.69 4.01 4.05 4.89 5.29 5.90 7.07 7.86 9.11 10.05

Total Order 23.56 29.75 33.18 36.64 45.15 52.00 64.67 76.62 92.51 107.27
Typed OGS Opt. Active Repl. 23.48 24.73 29.65 31.19 32.69 33.86 37.14 42.13 45.15 49.73
Daemon Reliable 23.24 24.88 28.61 30.38 34.67 39.92 43.21 51.19 60.97 70.99

Unreliable 23.33 24.07 26.83 27.79 30.92 32.13 35.65 39.95 43.21 47.15

ORB Unreliable 0.88

Table 4.1: Performance of Multicast Invocations with Various Group Sizes and
Execution Styles (ms./inv.)

ferent OGS untyped invocation primitives, with the library execution style (mode 1
in Figure 4.15) and different group sizes.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1 2 3 4 5 6 7 8 9 10

Number of Members

La
te

nc
y 

(m
s.

/in
v.

)

Total Order
Opt. Active Repl.
Reliable
Unreliable

Figure 4.16: Comparing OGS Multicast Primitives

This figure shows that the total order and reliable multicast primitives grow faster
than the other primitives. This is due to the fact that the former primitives are
based on the simple reliable multicast algorithm of Section 4.3.3; the complexity of
the number of messages for this algorithm is O(n2) for n participants. This cost
could be reduced by using another reliable multicast algorithm (such as the one
suggested in Section 4.3.3). In contrast, the optimistic active replication algorithm
has been optimized so that is does not use a reliable multicast primitive, as described
in Section 4.3.5. Its cost grows thus linearly, similarly to unreliable multicast.
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The Cost of Plurality

In comparison to the invocation of a single object, invoking a group of objects
involves communicating with multiple objects. The plurality introduced by object
groups has a cost. Figure 4.17 compares the latency of invocations issued through
OGS, with a corresponding invocation issued directly through the ORB. It illustrates
the cost of plurality (i.e., the additional cost induced by the addition of members to
the group), as well as the cost of the service (i.e., the cost of the extra indirection,
and of parameter marshaling and unmarshaling). OGS invocations are performed
using the library execution style, with untyped invocation semantics. The invocation
sent through the ORB is a standard two-way request issued through static stubs and
skeletons.
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Figure 4.17: The Cost of Plurality in OGS

Figure 4.17 shows that the cost of passing through the service is slightly less than
2 milliseconds per invocation, and is three times higher than the cost of a standard
invocation through the ORB. This overhead is fixed and does not depend on the
number of participants: sending an unreliable request to two objects is not twice
slower than invoking a single object.

The fixed cost of OGS consists basically of the following actions: OGS accepts client
requests, and builds a message that it multicasts to all servers;14 on the server-side,
OGS extracts the data from the message, passes it to the server, gets the return
value, and builds the reply message for the client; when the first replies arrives, OGS
extracts the result and returns it to the client. With more complex communication
protocols, this cost becomes comparatively negligible.

14Notice that OGS uses one-way messages for sending unreliable requests.
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The Cost of Typing

The cost of typing appears essentially at two places in the OGS architecture: when
using the typed version of OGS, and when managing untyped values of type any.

Untyped vs. Typed Invocations. Type transparency is an important feature
of OGS because it hides groups from the application developer, and makes it possible
to reuse existing applications without having to modify the client. In the current
version of OGS, typed communication is available only for the daemon execution
style. Figure 4.18 compares the latency of untyped totally ordered requests (library
and daemon execution styles) with that of typed requests.
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Figure 4.18: Untyped vs. Typed Communication

This figure illustrates that there is a fixed overhead of about 1 millisecond for using
the daemon. This corresponds to the latency of a single two-way invocation through
the ORB. The typed version of OGS adds an overhead of about 20 milliseconds.
This overhead results from the use of the DSI and the DII for type transparency,
and is independent of the group size. This is due to the fact that the DSI and the
DII are used only once on the client and the server side.

Request Management. When profiling OGS, we noticed that a non-negligible
part of the time required for remote invocations is spent in constructing requests.
We also observed that working with untyped any values has a significant impact on
performance. Unlike other IDL types, any values are augmented by a typecode in-
formation that contains details about the actual type of the value. This information
increases the size of the messages sent on the network. Moreover, validity checks
upon data extraction slow down the remote invocation process.
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Table 4.2 presents the cost associated to the management of untyped any values with
VisiBroker, for (1) inserting simple and complex types into any variables, (2) copying
any variables, and (3) extracting simple and complex types from any variables. The
simple data type is a long variable; the complex data type is a structure composed of
a long variable, and a sequence of object references containing three elements, each
of which designates the root context of the naming service. Results are expressed in
operations per millisecond, and are the average of several thousands of executions.

Operation #op./ms.

Insertion (simple type) 401.33
Insertion (complex type) 6.37
Copy (simple type) 354.773
Copy (complex type) 7.63
Extraction (simple type) 6920.42
Extraction (complex type) 0.48

Table 4.2: Cost of Managing Untyped any Values (op./ms.)

Table 4.2 shows that operations on complex types are much more costly than those
on simple types. In particular, the extraction of a complex type costs about 2
milliseconds; this is twice that for a remote invocation through the ORB. This cost
is not negligible, and explains the price of the extra indirection through OGS.

?
? ?
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Summary

OGS has been implemented in C++ using Orbix 2.xMT [ION97], and then ported
to VisiBroker for C++ 3.x [Vis98a] and VisiBroker for Java 3.x [Vis98b]. For this
implementation, we have considered an asynchronous system augmented with an
unreliable failure detection mechanism [CT96] (the OGS monitoring service), and
we make the assumption that links are reliable. OGS uses exclusively the communi-
cation primitives provided by the ORB as a temporary substitute for OMG’s future
messaging service.

OGS uses protocol interfaces to exchange the messages required for executing dis-
tributed protocols. These interfaces are implementation-specific and are not acces-
sible by the application. They reflect the dependencies between the different OGS
components, by inheriting from interfaces of several components.

OGS implements several algorithms for group communication and membership. The
consensus is based on the algorithm of Chandra and Toueg [CT96], and is used
essentially for group membership. Reliable multicast is performed using a simple
diffusion-based algorithm. Total ordering of messages is achieved by two distinct
algorithms: the first one is based on the consensus service and is combined with the
group membership algorithm; the second one is a new optimistic algorithm for active
replication. Primary-backup replication is implemented using a consensus algorithm
based on deferred initial values [DSS98a].

OGS implements typed communication using CORBA dynamic interface mecha-
nisms: the Dynamic Skeleton Interface (DSI), the Dynamic Invocation Interface
(DII), and the Interface Repository (IR). Group naming is implemented using the
standard CORBA naming service [OMG97], which maintains name-to-object map-
pings in a federated architecture. Concurrency management is achieved using system-
specific mechanisms (POSIX threads [NBF96]), because the CORBA specification
does not standardize thread support.

When implementing and porting OGS, we discovered several limitations of the cur-
rent CORBA specification. In particular, portability is a crucial aspect in the devel-
opment of heterogeneous distributed applications; however, we could not develop a
fully portable implementation of OGS due to deficiencies in the CORBA standard.
Similarly, several issues are underspecified in the current CORBA specification, such
as multi-threading, server-side mapping, multiple-inheritance of implementations,
object equivalence, any type mapping, and dynamic exception handling.

Performance measurements of OGS show that the throughput for a single client
is 100 group invocations per second with three members and total order multicast
(based on the consensus algorithm), and 12 invocations per second with ten mem-
bers. With the optimistic algorithm for active replication, the throughput is 200
invocation per second with three members and 75 with ten members. There is a
fixed price to pay (about 20 milliseconds) when issuing a typed invocation.
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Chapter 5

Programming with OGS

Which road do I take? she asked.
Where do you want to go? was his response.

L. Carroll

Many applications can benefit from group communication. Among them are ap-
plications that have fault tolerance and high-availability requirements (e.g., power
plant control, financial applications), applications that need to preserve consistency
between several components and to share information (e.g., collaborative author-
ing), applications that perform parallel request processing (e.g., database lookup,
time-consuming computations), software life cycle, etc. Depending on the appli-
cation and how it uses group communication, the interface and behavior of group
members can be identical or different:

• Same interface, same behavior: active replication requires that all group mem-
bers have the same interface, and that they have a deterministic behavior. All
members perform the same task and handle all requests.

• Same interface, different behavior: with primary-backup replication or load-
balancing, all members have the same interface, but perform different tasks.
Only one member handles a request.

• Different interfaces, same behavior: groups can be used for multi-versioning.
Members perform the same task, but do not have the same interface. They only
share a common interface that provides compatibility between the different
versions.

• Different interfaces, different behavior: monitoring and control is easy to im-
plement using heterogeneous groups of objects that perform different tasks and
do not have the same interfaces. Groups are used to detect member failures,
although the tasks of individual group members are completely unrelated.
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In this chapter, we focus on four applications of different types, and show how these
applications can be implemented using OGS (with VisiBroker 3.x). For the sake of
simplicity, all error-handling code has been removed from the examples presented in
this chapter.

5.1 OGS Configuration

Invocations to object groups are performed by OGS. Clients messages are sent via
group accessor objects, and server messages are delivered via group administrator
objects. Group accessors and administrators are service objects that form the visible
part of the OGS runtime system, which is presented in this section. The application
developer can configure this runtime system in a number of ways, leading to different
degrees of flexibility, efficiency, transparency, or reliability.

5.1.1 Execution Models

To conceal efficiency and flexibility, OGS provides two execution models: a linkable
model and a daemon model. In the first model, the service objects are co-located
with application objects, i.e., they are linked with the application and they execute
in the same address space (or process). In the second model, the service objects are
located in another process — the OGSd daemon program — which may be on the
local or on a remote host.

Client

OGS Library

ORB Library

Server

OGS Library

ORB Library

Multicast Message

Figure 5.1: The Co-located Execution Model

The linkable version of OGS is provided as a C++ dynamic library (OGSl) to be
linked with C++ applications, or as a set of Java classes usable from Java appli-
cations (see Figure 5.1). This execution model is more efficient since inter-process
communications are more costly than invocations between objects located in the
same process [GFGM98]. Nevertheless, it forces the code of the application to be
written with the same programming language as the library and to support multi-
threading.

The daemon execution model, with two separate processes, has the advantage of
decoupling the service from the application, enabling several applications running
on the same host to use the same resources. It also allows user applications written in
another programming language, such as Smalltalk, to use the C++ or Java service.
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OGS DAemon

ORB Library

Remote

Invocation

Client

ORB Library

Server

OGS Library

ORB Library

Multicast Message

Figure 5.2: The Remote Execution Model

Figure 5.2 illustrates the use of the OGS daemon on the client side, while the service
is linked with the application on the server side.1

The co-located execution model benefits mainly from its efficiency, while the remote
execution model provides language heterogeneity. But the choice of the execution
model also affects reliability, as described in the next section.

5.1.2 Service Location

Whereas CORBA objects should be independent of their real location, some objects
of OGS have to be located on the client and server sites for the services to provide
the required reliability. This is more a semantic requirement than an architectural
requirement, since service objects can actually be installed anywhere.

With the co-located execution model, the application does not need to care about
potential link failures or crashes of service objects, since the service cannot fail
independently from the application. Therefore, the client sees the group as a highly
available entity, and the group accessor masks failures of individual components.

If the application and the service objects are in two separate processes located on the
same machine, only a crash of the OGS daemon process can prevent the application
from using the service.

If the application and the service objects are located on different machines, the
application must handle network, machine, and OGS daemon process failures. In
this situation, when using groups for replication, a replicated server behaves exactly
as a remote singleton object from the client’s perspective. If the group accessor fails
or a network partition occurs between the client and the group accessor, it has the
same semantics as a failure of the singleton object: the client does not know whether
the server failed before of after handling the request, and the client has to re-bind
the server. The replicated server keeps its state consistent (i.e., all copies are kept
identical) in spite of a failure of the group accessor, but the failure is not transparent
to the client.

As already mentioned, the group reference is encapsulated in the group accessor,
which acts as a client-side group representative. But this group reference can also
be shifted to the server side: since group administrators inherit from group accessors,

1Notice that the servers could also use an OGS daemon.
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the client can use a remote group administrator for invoking replicated servers. This
model is somewhat similar to using a remote group accessor: if the server to which
the client is bound fails, the client can react as in a non-replicated situation, i.e.,
try to re-bind the object. But it can also benefit from replication, and use any other
administrator from the group.

Table 5.1 summarizes the different types of failures that may occur depending on
the service location, and how the client has to react.

Fault handling Service objects Service objects are Service objects
are co-located on the same machine are remote

Service objects failures Don’t care Restart and Restart and
re-bind service re-bind service

Link failures between
application and service Don’t care Don’t care Retry invocation
objects
Member object failures Don’t care Don’t care Don’t care

Table 5.1: Fault Handling in OGS

5.1.3 Service Instantiation

A group accessor is an object that encapsulates the structure and behavior of a group
reference, and that remembers and tracks the composition of the group. Ideally, it
should be a temporary object, created on-the-fly when a group reference enters the
address space of the application. However, in OGS it is not possible to create a
group accessor implicitly without some ORB support. So the group accessor has to
be created (i.e., instantiated) explicitly.

This creation may be performed directly by the client, using an object factory. With
this approach, the client explicitly invokes the factory to create a new service object.
Figure 5.3 illustrates how a client creates a group accessor. The client first binds to
an object factory, and issues a request to create a group accessor (1, 2). The factory
returns a reference to newly created object, that the client uses to invoke the object
group (3, 4).

Client OGSOGS

Factory
create()
1 2

3 Group

Accessor

Invocation 4
Group

multicast

Figure 5.3: Explicit Service Instantiation

Creation may also be performed by a third party (such as the ogsutil program
provided with OGS). The reference to the newly created service object may be
given to the client through the naming service, for instance. Figure 5.4 presents
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implicit service instantiation. A third party first creates a group accessor using an
object factory (1, 2), and registers this accessor in the naming service (3). The client
gets the reference to the group accessor from the naming service (4), and invokes
the object group (5, 6).

Client OGS

Factory

create()
1

2

5 Group

Accessor

Invocation 6
Group

multicast

Naming

Service

Third

Party

(ogsutil)3 register()

lookup()4

Figure 5.4: Implicit Service Instantiation

Explicit service instantiation requires the client to perform an initial binding phase to
bind to the service and register with it. Once this binding phase has been performed,
the client may invoke the server through OGS. This approach makes the use of OGS
explicit, and requires the client to be aware of groups.

On the other side, implicit service instantiation does not require the client to be
aware of OGS. When using this approach in combination with the typed version of
OGS for replicating a server, the reference registered in the naming service bears
the type of the server. This means that the client completely ignores that the
server is replicated when accessing it through the reference from the naming service.
That way, full client transparency is achieved, both for service instantiation and
for replicated server’s invocation. Table 5.2 summarizes the different degrees of
transparency that the client application may achieve using OGS.

Transparency Application uses Application uses
untyped OGS typed OGS

Application creates No transparency Transparent invocation
service objects
Third party creates Transparent instantiation Full transparency
service objects

Table 5.2: Transparency in OGS

5.2 Programming Methodology

OGS provides support for gathering CORBA server objects into logical groups and
communicating atomically with them. To benefit from group communication, the
program has to interact with OGS and provide application support for object groups.
The programming methodology for OGS application development is presented in this
section.
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5.2.1 Developing without OGS

The easy way to program with object groups is to start by developing an application
without OGS. Once the interfaces have been defined and the application has been
implemented and tested without OGS, group support may be added with minor
modifications to the application’s code. An advantage of this methodology is that
it allows to reuse existing applications and turn them fault tolerant a posteriori.

If groups are not used for replication, special care has to be taken when defining the
IDL interfaces of the application. In particular, if the application wants to access all
the replies resulting from an invocation to an object group (e.g., when using groups
for parallel processing), the typed version of OGS cannot be used transparently:
transparent invocations return only one reply to the client. In this situation, though,
it is possible to preserve transparency by decoupling the application interfaces so that
requests are issued through one-way multicast invocations, and replies are returned
explicitly to the caller through point-to-point invocation (see example in Section 5.4).

5.2.2 Making Server Objects Groupable

Once the application runs well without OGS, the next step is to add group sup-
port to the server objects. This is performed by having servers inherit from the
Groupable IDL interface. This interface defines several operations that the server
objects have to implement to be member of a group. The following operations must
be implemented by the application developer:

• Support for message delivery: messages sent using the untyped version of OGS
are delivered to the server objects through their deliver() operation. If the
application uses only the typed version of OGS, this operation may be left
empty.

• Support for view change notification: when a new object joins a group, or a
member object leaves or fails, all member objects are notified through their
view change() operation. They receive an ordered list of current group mem-
bers, which may be used for instance to deterministically decide upon the role
of each object in the group.

• Support for state transfer: when a new object joins a group, it atomically
receives the shared state from the other members of the group. This is generally
required to preserve the application consistency. The state transfer mechanism
is implemented by two operations, get state() and set state(), that are
respectively invoked on a current and on the new member.

Typical implementations of these operations are given in Sections 5.3, 5.4, and 5.5.
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5.2.3 Service Instantiation: Server Side

A typical CORBA server creates one or several objects, exports them to the ORB,
and waits for incoming events. When programming with OGS and explicit service
instantiation, a few additional actions must be performed after the server object has
been created (Figure 5.5):

• Before using OGS, the server has to bind to a group administrator factory,
generally located on the same machine as the server (locality constraints are
discussed in Section 5.1.2). The initial reference to the object factory may be
obtained for instance from the CORBA naming service, or via a stringified
reference given through the command line.

• The second step consists in creating a group administrator. This is done by
invoking the create() operation of the group administrator factory, with a
group name as parameter. A group administrator is always attached to one
group.

• Finally, the groupable server object can be added to the group by invoking
the join() operation of the group administrator. This eventually leads to a
view change notification, indicating that the groupable object is now member
of the group.

1 // C++
2 int main( int argc , char ∗ argv [ ] )
3 {
4 // In i t i a l i z e the ORB
5 CORBA: : ORB var orb = CORBA: : ORB init ( argc , argv ) ;
6 CORBA: : BOA var boa = orb−>BOA init( argc , argv ) ;
7

8 // Create groupable application object
9 MyGroupable var server = new MyGroupable i ( ) ;

10 boa−>obj is ready ( server ) ;
11

12 // Service instantiation
13 // 1) Bind to a group administrator factory
14 mGroupAccess : : GroupAdministrator var gaf = . . . ;
15

16 // 2) Create a group administrator
17 mGroupAdmin: : GroupAdministrator var ga = gaf−>create ( argv [ 1 ] ) ;
18

19 // 3) Add server to the group
20 mGroupAdmin: : InterfaceSemantics sem;
21 sem. default semantics = mGroupAccess : :TOTALORDER;
22 ga−>join group ( server , sem);
23

24 // Export the server to the network
25 boa−>impl is ready () ;
26 }

Figure 5.5: Service Instantiation of a Typical OGS Server (C++)
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When joining a group, the server object can specify the semantics associated with
each operation of its interface, and that will be used by the typed version of OGS.2

This is performed by passing a structure of type InterfaceSemantics to the join()
operation. After these steps have been completed, the server application waits for
incoming events, as any other CORBA server.

5.2.4 Service Instantiation: Client Side

Unlike the server, the client application does not need to provide OGS support
through IDL interfaces. The client simply uses OGS service objects for communi-
cating with object groups. A client typically performs the following actions when
using implicit service instantiation (Figure 5.6):

1 // C++
2 int main( int argc , char ∗ argv [ ] )
3 {
4 // In i t i a l i z e the ORB
5 CORBA: : ORB var orb = CORBA: : ORB init ( argc , argv ) ;
6 CORBA: : BOA var boa = orb−>BOA init( argc , argv ) ;
7

8 // Service instantiation
9 // 1) Bind to a group accessor factory

10 mGroupAccess : : GroupAccessorFactory var gaf = . . . ;
11

12 // 2) Create a group accessor
13 mGroupAdmin: : GroupAccessor var ga = gaf−>create ( argv [ 1 ] ) ;
14

15 // 3) Cast group accessor
16 CORBA: : Contained var cv = ir−>lookup (”MyGroupable” ) ;
17 CORBA: : InterfaceDef var in def = CORBA: : InterfaceDef : : narrow (cv ) ;
18 MyGroupable var server = MyGroupable : : narrow (ga−>cast ( in def ) ) ;
19

20 // 4) Invoke server
21 server−>operation () ;
22 }

Figure 5.6: Service Instantiation of a Typical OGS Client (C++)

• The first two steps are similar to the server application. The client binds to a
group accessor factory, and creates a group accessor by invoking the create()
operation of the factory, with a group name as parameter. A group accessor
is always attached to one group.

• The client can then optionally use the cast() operation of the group accessor
to obtain a reference to a typed group accessor object that supports the same
interface as the server.

• Finally, the client can invoke the object group using typed or untyped com-
munication.

2If all servers of a group do not specify the same semantics for an operation, there is a risk of
inconsistency. OGS does not currently deal with this situation.
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Note that all these actions may be ignored when using implicit service instantiation,
as described in Section 5.1.3.

5.3 Replication with OGS

Our example of a highly available replicated application is a simplified distributed
bank account. The account maintains a current balance, and clients perform op-
erations on the account by depositing and withdrawing money. Withdrawals may
be performed only if there is enough money in the account. Some operation pairs
are commutative (e.g., deposit is commutative with itself), while others are not
(e.g., deposit and withdraw are not commutative in some situations), requiring total
ordering.

5.3.1 Design

The application is composed of two parts: the servers that perform computations
and the clients that perform operations on the replicated account. The shared state
of the servers is the account’s current balance.

Replicated

Account

Clients 1

2

3

$300.00

+500.00=$800.00

-700.00=$100.00

$300.00

-700.00= [FAIL]

+500.00=$800.00

$300.00

+500.00=$800.00

-700.00=$100.00

A

B

deposit($500.00)

withdraw($700.00)
Error

Figure 5.7: Account Example Application

Figure 5.7 presents a typical configuration with three copies of a replicated account,
and two clients accessing the account concurrently. In this scenario, client A per-
forms a deposit of $500 and another client B withdraws $700. These operations are
not commutative, and it turns out that servers 1 and 3 order the deposit before the
interest computation, while server 2 does not. The withdrawal cannot be performed
on server 2 because there is not enough money in the account. This scenario illus-
trates a loss of consistency due to wrong request ordering: the request should be
totally ordered to avoid this situation. OGS transparently preserves system consis-
tency by delivering requests in the same order to all replicas.
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5.3.2 IDL Specification

The IDL interface of the account application is given in Figure 5.8. It simply consists
of an Account interface, with one attribute and two operations. The balance at-
tribute (line 3) represents the current amount of money in the account, and should
not be modified directly; therefore, it is declared as read-only. The deposit()
and withdraw() operations (lines 5–6) modify the account’s balance and return
the amount of money that was effectively added to or removed from the account.3

The account’s interface inherits from OGS’ Groupable interface (line 2) to allow
replication.

1 // IDL
2 interface Account : mGroupAdmin: : Groupable {
3 readonly attribute float balance ;
4

5 float deposit ( in float amount) ;
6 float withdraw( in float amount) ;
7 } ;

Figure 5.8: IDL Interfaces of the Account Server

5.3.3 Server Implementation

1 // C++
2 class Account i : sk Account
3 {
4 CORBA: : Float balance ;
5

6 public :
7 Account i ( ) : balance (0 . 0) {}
8

9 // Groupable IDL operations
10 virtual CORBA: : Any∗ get state () ;
11 virtual void set state (const CORBA: : Any& state ) ;
12 // . . .
13

14 // Account IDL operations
15 virtual CORBA: : Float balance ()
16 { return balance ; }
17 virtual CORBA: : Float deposit (CORBA: : Float amount)
18 { balance += amount ; return amount; }
19 virtual CORBA: : Float withdraw(CORBA: : Float amount)
20 { i f (amount > balance ) return 0 . 0 ;
21 balance −= amount ; return amount; }
22 } ;

Figure 5.9: C++ Interfaces of the Account Server

3If a withdrawal cannot be performed because of an overdraft, withdraw() returns 0. In this
situation, a cleaner solution would be to use an exception.
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The C++ interface of the account server is shown in Figure 5.9. The implementation
of the operations are inlined in the C++ interface definition. To keep the code
simple, no check is performed for negative amounts or balance overflow. The current
balance of the account is kept in the member’s balance variable.

The account server also has to implement operations from the Groupable interface
(Figure 5.10). In particular, it has to provide support for state transfer (get state
and set state), and tell the service the semantics associated to each operation.

1 // C++
2 CORBA: : Any∗ Account i : : get state ()
3 {
4 // Pack the state into an any
5 CORBA: : Any∗ a = new CORBA: : Any() ;
6 ∗ a <<= balance ;
7 return a ;
8 }
9

10 void Account i : : set state (const CORBA: : Any& a)
11 {
12 // Extract the state from an any
13 a >>= balance ;
14 }
15

16 int main( int argc , char ∗ argv [ ] )
17 {
18 // . . .
19 // Indicate the semantics associated to each operation
20 mGroupAdmin: : InterfaceSemantics sem;
21 sem. default semantics = mGroupAccess : :TOTALORDER;
22 sem. operation semantics . length (1 ) ;
23 sem. operation semantics [ 0 ] . name = ” get balance ” ;
24 sem. operation semantics [ 0 ] . semantics = mGroupAccess : : RELIABLE;
25 sem. commutative operations . length (1 ) ;
26 sem. commutative operations [ 0 ] . length (2 ) ;
27 sem. commutative operations [ 0 ] [ 0 ] = ”deposit ” ;
28 sem. commutative operations [ 0 ] [ 1 ] = ”deposit ” ;
29 ga−>join group ( server , sem);
30 // . . .
31 }

Figure 5.10: C++ Implementation of the Account Server

Since the state of the account consists of a single floating point value, the state
transfer operations are very simple. The implementations of the get state() and
set state() operations (lines 2–14) respectively pack and unpack the current bal-
ance into and from an any variable.

As explained above, some operation pairs of the account’s interface are not com-
mutative. In particular, deposit() is not commutative with withdraw(), but is
commutative with itself. Before joining a group, we construct a structure of type
InterfaceSemantics, that defines the ordering guarantees required by all of the
account’s operations. By default, all operations require total ordering (line 21).
This choice is overridden for reading the balance attribute (corresponding to the
get balance() operation). This operation is read-only, and does not need to be
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totally ordered if the clients do not need to guarantee linearizability, and do not care
about receiving an outdated value. Therefore, we do not associate specific ordering
guarantees for this operation (lines 23–24). Finally, we specify that the deposit()
operation is commutative with itself (lines 25–28), allowing implementation opti-
mizations in case of concurrent requests.

5.4 Parallel Processing with OGS

A group of objects that have the same interfaces may be used for other purposes
than replication. In particular, a group of objects may be used to compute time-
consuming requests in parallel. The client issues a request to the group, without
having to know how many members are part of the group, and how they process
the request. The group members share the work among them, compute together the
result of the request, and return the reply to the client.

An example of such a distributed parallel application is the computation of the
Mandelbrot set. The Mandelbrot set is a fractal structure defined in the complex
plane by the following equation: zn = (zn−1)2 + z0. The set itself is the area where
limn→∞ zn < ∞.

It is demonstrated that if |zi| > 4, then zn will eventually reach ∞. An approxima-
tion of the set can be computed by iterating the formula. Points where |zi| > 2 are
not part of the set, and the remaining points may be part of the set. The resulting
set is traditionally displayed in a two-dimensional picture.

This computation is time-consuming: for each point the formula is iterated until
|zi| > 2, or a constant number of iterations have been performed. Because the
adherence of each point to the set is determined only by the point’s position, the
computation is easy to parallelize.

5.4.1 Design

In this application, we adopt a client-server approach with the server providing the
processing power while the client displays graphically the resulting set. To have
the image displayed in “real-time” and to reduce the size of messages, the server
transmits the data line by line, as soon as they are completed, to the client, which
is updated asynchronously (Figure 5.11).

In this application, OGS is used to distribute the workload among several servers.
The area of the Mandelbrot set is separated into slices, of which each is computed
on a different server. The set is subdivided into n slices, where n is the number of
members in the group. Each member uses its position in the current view to decide
which slice to compute.

OGS gives the illusion of one single server whereas the work is actually distributed
to several effective servers, making it possible to increase the parallelism degree
without the knowledge of the client (by adding new servers at runtime).
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Figure 5.11: Mandelbrot Example Application

In our application, the server is implemented in C++ and the client in Java. That
way, the computation benefits from C++ efficiency, while the client uses Java’s
graphical facilities for displaying the resulting image.

5.4.2 IDL Specification

The IDL interface of the Mandelbrot application is given in Figure 5.12. It is com-
posed of a Mandelbrot module containing two interfaces: Client (lines 7–9) and
Server (lines 11–16). The server’s interface inherits from OGS’ Groupable interface
to become replicated.4

1 // IDL
2 module Mandelbrot
3 {
4 const long LINE SIZE = 400 ;
5 typedef long Line [ LINE SIZE] ;
6

7 interface Client {
8 oneway void new line ( in long number , in Line data ) ;
9 } ;

10

11 interface Server : mGroupAdmin: : Groupable {
12 void compute( in Client c l ient ,
13 in long top , in long l e f t ,
14 in long height , in long width ,
15 in long i t er , in long zoom);
16 } ;
17 } ;

Figure 5.12: IDL Interfaces of the Mandelbrot Application

4Notice that the client does not need to care about this inheritance relationship.
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5.4.3 Client Implementation

The Mandelbrot client acts as a CORBA server and exports an object of type
Mandelbrot::Client to the ORB. This object is responsible for receiving the Man-
delbrot set computed by the servers and displaying it. The Java implementation of
the client is shown in Figure 5.13.

1 // Java
2 public class Mandelbrot Client extends Mandelbrot . ClientImplBase {
3 int [ ] matrix ;
4 int top ;
5 Imager img;
6

7 public Mandelbrot Client ( int top , int height )
8 {
9 matrix = new int [ height ∗LINE SIZE. value ] ;

10 this . top = top ;
11 img = new Imager(matrix , height , LINE SIZE. value ) ;
12 }
13

14 public void new line ( int number , int [ ] data )
15 {
16 System. out . println (”Got l ine ” + number) ;
17 int index = number − top ;
18 System. arraycopy (data , 0 , matrix , index∗LINE SIZE. value ,
19 LINE SIZE. value ) ;
20 img. RefreshLine ( index );
21 }
22 // . . .
23 }

Figure 5.13: C++ Implementation of the Mandelbrot Client

The client gets complete lines from the servers through the new line() operation
(lines 14–21), which is invoked each time a new line has been computed. The
Imager class, whose code is not given here, is used to create and display an image
corresponding to the Mandelbrot data sent by the servers. The client refreshes the
display each time it gets a new line, providing graphical feedback about the ongoing
computation. Since the area to compute is separated into slices, each of which is
managed by a different server, the user can see these slices filling up independently
at different speeds.

Notice that the new line() operation of the client interface is idempotent: invok-
ing this operation twice with the same parameters is harmless since it will simply
overwrite the current line with the same data. This property allows us to handle
the failure of a server in a simple way: non-failed servers can simply redo the com-
putation of the failed server from the beginning, possibly re-sending the same lines
to the client, as shown in Figure 5.14.5
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Figure 5.14: Redistribution of the Work upon Failure

1 // C++
2 class Mandelbrot i : sk Mandelbrot : : sk Server
3 {
4 int nb members ;
5 int posit ion ;
6

7 public :
8 Mandelbrot i ( ) : nb members (1 ) , posit ion (0) {}
9

10 // Groupable IDL operations
11 virtual void view change (const mGroupAccess : : GroupView& new view );
12 // . . .
13

14 // Mandelbrot IDL operations
15 virtual void compute(Mandelbrot : : Client ptr c l ient ,
16 CORBA: : Long top , CORBA: : Long l e f t ,
17 CORBA: : Long height , CORBA: : Long width ,
18 CORBA: : Long iter , CORBA: : Long zoom);
19 } ;

Figure 5.15: C++ Interfaces of the Mandelbrot Server

5.4.4 Server Implementation

The C++ interface of the Mandelbrot server is shown in Figure 5.15. The most
meaningful operation of the Groupable interface for the Mandelbrot server is the
view change() operation.

The information about the current view is used to decide which area of the Mandel-
brot set to compute: the Mandelbrot set is divided in the same number of horizontal
slices as there are members in the group, and each server computes the slice associ-
ated to its own position in the view. The view information is stored in the member’s
nb members and position variables and is updated in the view change() oper-
ation (lines 2–8), as shown in Figure 5.16. The C++ code used to compute the
Mandelbrot set (lines 11–24) only computes the area allocated to the local server,

5Notice that this mechanism is not implemented in the code presented in this section.
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and updates the client each time a new line is completed.

1 // C++
2 void Mandelbrot i : : view change (const mGroupAccess : : GroupView& new view)
3 {
4 nb members = new view . composition . length () ;
5 for ( posit ion = 0 ; posit ion < nb members ; posit ion ++)
6 i f ( this−> i s equivalent (new view . composition [ posit ion ] ) )
7 break;
8 }
9 // . . .

10

11 void Mandelbrot i : : compute(Mandelbrot : : Client ptr c l ient ,
12 CORBA: : Long top , CORBA: : Long l e f t ,
13 CORBA: : Long height , CORBA: : Long width ,
14 CORBA: : Long iter , CORBA: : Long zoom)
15 {
16 CORBA: : Long start = top + posit ion ∗height /nb members ;
17 CORBA: : Long end = top + ( posit ion +1)∗ height /nb members − 1 ;
18 CORBA: : Long right = le f t + width ;
19 Mandelbrot : : Line data ;
20 for ( int l ine = start ; l ine <= end ; l ine ++) {
21 // Calculate the l ine ( not shown)
22 c l i ent−>new line ( l ine , data ) ;
23 }
24 }

Figure 5.16: C++ Implementation of the Mandelbrot Server

5.5 Collaborative Work with OGS

Group communication is also appropriate for collaborative work, with applications
communicating together using totally ordered multicasts. An example is a dis-
tributed chat application, similar to the well-known Internet Relay Chat (IRC) pro-
gram, but without the centralized server that receives and forwards messages.6 It
allows participants all over the Internet to talk to one another in real-time. Users
can join chat channels and send messages to these channels. All participants listen-
ing to the channel receive the messages. Each participant has a nickname sent along
with the messages to identify the originator of the message by other users. This
distributed chat application may be seen as a simple component for collaborative
authoring.

5.5.1 Design

The distributed chat application does not have a pure client/server design. Chat
channels are mapped to groups, and participants are both clients and servers of these
groups. The member objects are not copies of a replicated object; they are distinct
entities that collaborate by exchanging messages using group communication.

6In contrast with a solution based for instance on the CORBA event service [OMG97].
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Figure 5.17: Distributed Chat Application

The general architecture of the distributed chat application is illustrated in Fig-
ure 5.17. Messages issued by a channel member are multicast to all users listening
to the channel. The programming model is symmetrical: after a message has been
multicast, the originator will receive and deliver its own message like all other group
members.

If a new participant joins a channel, it will not get previous messages sent to the
channel. Therefore, there is no need for group members to maintain a shared state.

This model does not scale well if there are hundreds of participants in the same
channel. In this situation, a better architecture would be to have a small set of
chat servers, and distinct clients that multicast and receive messages to and from
these servers. This architecture was adopted by the Isis Distributed News Ser-
vice [BCJ+90], which also provides filtering and permanent storage of messages.
This model can be implemented easily with OGS.

5.5.2 IDL Specification

The architecture of this application differs from the other examples, in that there is
only one type of object (the chat user), which is both client and server. Chat users
send messages to their own group; the messages are asynchronously delivered to all
users on the channel (including the sender) in a consistent ordering.

1 // IDL
2 interface ChatUser : mGroupAdmin: : Groupable {
3 readonly attribute string nickname ;
4

5 void post ( in string sender , in string msg);
6 } ;

Figure 5.18: IDL Interfaces of the Chat Server

The IDL interface of the chat application, shown in Figure 5.18, is composed of
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a single operation used to send a message to the current group, and a read-only
attribute that stores the nickname of the local participant.

5.5.3 Server Implementation

1 // C++
2 class ChatUser i : sk ChatUser
3 {
4 char ∗ nickname ;
5

6 public :
7 ChatUser i (char ∗nickname ) : nickname (nickname) {}
8

9 // Groupable IDL operations
10 virtual void view change (const mGroupAccess : : GroupView& new view );
11 // . . .
12

13 // ChatUser IDL operations
14 virtual char ∗nickname () ;
15 virtual void post ( in string sender , in string msg);
16 } ;

Figure 5.19: C++ Interfaces of the Chat Server

The C++ interface of the chat server is given in Figure 5.19. In this application, a
chat user object is stateless. It only receives messages, prints them to the screen, and
forgets them. The most meaningful operation of the Groupable interface is the view
change notification: each time the membership changes, the chat user displays the
list of participants, as shown in Figure 5.20. Notice that we use standard CORBA
invocations for obtaining the nickname of each user member of the channel.

1 // C++
2 void ChatUser i : : view change (const mGroupAccess : : GroupView& new view)
3 {
4 cout << ”Participants :” << endl ;
5 for ( int i = 0 ; i < new view . composition . length ( ) ; i ++) {
6 ChatUser var chat = ChatUser : : narrow (new view . composition [ i ] ) ;
7 cout << i << ”: ” << chat−>nickname() << endl ;
8 }
9 }

Figure 5.20: C++ Implementation of the Chat Server

5.6 On-Line Software Upgrade with OGS

Upgrading a continuously available application is difficult, since it requires swapping
an old version of an application with a new version, without interrupting the service
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to clients. Group communication provides solutions to this kind of problems.7 A
group can be composed of a mixture of old and new versions of the application,
as long as the new version is compatible with the old one, i.e., it can exhibit the
same behavior as the old one. This property makes it possible to upgrade a system
without stopping the service.

ver1

state transfer

ver1

ver1 ver2

ver2

ver2

state transfer

Client Server

1

2

3

4

5

Figure 5.21: Continuous Availability using Groups for Software Upgrade

Figure 5.21 illustrates the upgrade mechanism of a continuously available system.
No code is given in this section, but this mechanism may be used for any kind of
application. Initially, clients use an old version of the service (1). Then, a group is
formed with the old server (2), and some copies of the new version are added to the
group (3). The state transfer mechanism is used to update the new copies. Finally,
the remaining copies of the old version are removed (4) and the new version of the
service is in operation (5).

This mechanism requires that the states of the old version and the new version are
compatible (i.e., the new version of the application is able to construct its state
from the state of the old version), and that the new version can behave like the old
one, (i.e., it has a compatible interface). This may require to use an intermediary
version, capable of behaving like both the old and the new version, to perform the
upgrade. This intermediary version must be kept as long as there are clients for the
old version of the application in the system.

?
? ?

7Note that the upgrade mechanism described in this section requires messages to be totally
ordered with respect to view changes and state transfers.
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Summary

Many kinds of applications may benefit from OGS. OGS may be used for high
availability and fault tolerance through object replication (e.g., distributed bank
application), for parallel processing of time-consuming requests (e.g., computation
of the Mandelbrot set), for collaborative work (e.g., collaborative edition), or for
on-line software upgrades. Depending on the type of the application, groups may
be composed of objects that have the same interface and perform the same task, or
of objects that support different interfaces and have different behaviors.

OGS may be configured to offer several levels of reliability and transparency. It
provides two execution styles: a linkable model and a daemon model. The library
model is more efficient and reliable, but less transparent that the daemon model.
In addition, the OGS components may be located on the same host as the user
application, or may be accessed remotely. Finally, the service instantiation may be
implicit, allowing us to achieve full client transparency, or explicit.

OGS makes it easy for the developer to add object groups into existing applications.
If OGS is configured to provide full client transparency, the code of the client does
not need to be modified or recompiled, and only few changes are necessary on the
server side.
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Conclusions

...but each for the joy of the working, and each, in his separate star, shall
draw the thing as he sees it...

R. Kipling

Research Assessment

Distributed computing is one of the major trends in the computer industry. As
systems become more distributed, they also become more complex and have to deal
with new kinds of problems, such as partial crashes and link failures.

To answer the growing demand in distributed technologies, several middleware envi-
ronments have emerged during the last few years. These environments however lack
support for one-to-many communication primitives; such primitives greatly simplify
the development of several types of applications that have requirements for high
availability, fault tolerance, parallel processing, or collaborative work. Augment-
ing a middleware architecture by adding support for object groups will provide the
developer with powerful group primitives while preserving the key features of the
middleware environment.

Group Support in CORBA. CORBA is an object-oriented middleware envi-
ronment that provides high-level facilities for developing distributed applications
through component integration. Several approaches are available to add object
group support to CORBA. We have classified these approaches according to three
categories: the integration approach, the interception approach, and the service ap-
proach. We have evaluated these approaches and argued that the service approach
complies best with the component-based architecture of CORBA.

A Component-Oriented Approach. In this thesis, we have proposed an open
architecture for object group support in CORBA, based on a component-oriented
approach. This architecture is generic and can be applied to other middleware
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environments than CORBA. The Object Group Service (OGS) defines an object
group model and specifies a set of interfaces adapted to group communication in
middleware environments. OGS is decomposed into several components that con-
spire to provide higher-level services. This decomposition promotes modularity and
reusability, and complies with the CORBA architectural model.

The OGS Architecture. The OGS components include a group membership ser-
vice, which keeps track of the composition of object groups, a group multicast service,
which provides delivery of messages to all group members with various guarantees, a
consensus service, which allows several CORBA objects to solve distributed agree-
ment problems, and a monitoring service, which provides distributed failure de-
tection mechanisms. Each of these services is architecturally independent from the
other ones, and most of them are reusable in areas other than group communication.

OGS provides support for dynamic group membership and for group multicast
with various reliability and ordering guarantees. It defines interfaces for active and
primary-backup replication. In addition, OGS proposes several execution styles and
various levels of transparency. CORBA objects can easily be made groupable using
interface inheritance. Client applications can communicate with object groups in
the same way as they do with singleton objects.

The OGS Implementation. A prototype implementation of OGS has been de-
veloped in the context of this thesis. This implementation is available for two com-
mercial ORBs (Orbix and VisiBroker). It relies solely on the CORBA specification,
and is thus portable to any compliant ORB.

We have developed some original algorithms for implementing group communication
in OGS. Group membership and total order are implemented using a consensus
algorithm. Actively replicated objects can optionally use an efficient sequencer-
based algorithm. Primary-backup replication is based on a consensus algorithm
with deferred initial values.

Performance measurements show that the cost of OGS is not excessive, when com-
pared to direct invocations through the ORB. The overhead of OGS can be classified
according to three categories: the cost of plurality corresponds to the overhead in-
duced by the addition of members to the group; the cost of behavior designates the
individual performances of the various communication protocols that correspond to
different group behaviors; the cost of typing corresponds to the overhead of using
typed over untyped communication.

Standard Group Support for CORBA

In April 1998, the OMG issued a Request For Proposals (RFP) entitled: Fault Tol-
erant CORBA Using Entity Redundancy [OMG98b]. The goal of this RFP is to
address the need for standard CORBA mechanisms supporting fault tolerant ap-
plications. Such mechanisms include redundant copies, failure masking, and failure
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recovery.

The RFP does not specify the unit of redundancy, but uses the term “entity”. It
presents the concepts — developed in this dissertation — of entity groups, with dy-
namic group membership, and that operate in a number of ways including active
and primary-backup replication. Among the mandatory requirements of the RFP
are specification of the unit of redundancy; definition of interfaces for passive entity
groups; support for state synchronization; support for dynamic group management;
interfaces that allow entity redundancy to be transparent to clients; ability of entity
groups to determine failed members; interfaces for recovery control. In addition, the
RFP defines some optional requirements, such as support for active entity groups;
interfaces for using failure detection and notification mechanisms; support for sup-
pressing multiple responses from an entity group to a single request.

OGS vs. Fault Tolerant CORBA. While the object group service presented in
this dissertation does not address all the issues raised by the RFP, we strongly believe
that the contribution of this work and the lessons learned from our experiences can
be useful for a proposal to this RFP. As a matter of fact, OGS offers solutions to
most of the requirements specified in the RFP, and a prototype implementation is
available as a proof of concept.

One should notice that the approach developed in this research does not extend
or modify the CORBA specification at all. This is a design choice that we made
to ensure the portability of our implementation and the compliance with existing
ORB implementations. Actual responses to an RFP may specify required changes
or extensions to the existing CORBA standard. Such changes may allow better
integration of a service with the ORB and other services.

New CORBA Technologies

As mentioned in Chapter 4, the current CORBA specifications have several lim-
itations concerning code portability and Quality of Service (QoS). Some of these
limitations should be alleviated by the proposed messaging service [BEI+98] and
the new CORBA 2.2 specification [OMG98a].

OMG’s Messaging Service. The OMG is currently specifying a new messaging
service, which is not yet finalized at the time of this writing. We base the following
description on the joint revised submission to the messaging service [BEI+98].

The messaging specification will provide two truly asynchronous method invocation
models, based on callback and polling. In the first model, a callback object is regis-
tered at the time of the invocation. When the reply is available, the callback object
is invoked with the data of the reply. In the polling model, the invocation returns
an object which can be queried at any time to obtain the status of the outstanding
request. It will be possible to issue asynchronous invocations using static interfaces,
thus maintaining strong typing.
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Whereas current CORBA specifications do not address the kinds of QoS features
associated with messaging systems, the messaging specification will provide several
kinds of QoS such as delivery characteristics (lifetime of request and reply, reliability,
scope of synchronization with target) and server-side queue management or ordering
(temporal based, priority based). The messaging QoS can be used to request a
specific protocol as well as to guide the implicit protocol selection by the ORB. QoS
can be independently specified at different levels: ORB, thread, object, or object
adapter.

The messaging specification will thus circumvent the shortcomings resulting from
the lack of a truly asynchronous method invocation model in CORBA. Migration of
OGS code to this service will be easy, thanks to the definition of a messaging service
in the OGS architecture.

The CORBA Portable Object Adapter. The new CORBA 2.2 specifica-
tion [OMG98a] defines a new Portable Object Adapter (POA) meant to replace the
much criticized BOA. As suggested by its name, one of the major design goal of this
new adaptor is to allow programmers to construct object implementations that are
portable between different ORBs. The CORBA 2.2 specification also specifies how
the POA maps to programming languages. With the POA and the new mappings,
it will be possible to develop fully portable servers.

The new POA standardizes threading models. The POA supports two models of
threading when used in conjunction with multi-threaded ORB implementations:
ORB controlled and single thread behavior. The two models can be used together or
independently. The threading model associated with a POA is indicated upon POA
creation using a ThreadPolicy object. The ORB interface also defines some new
thread-related operations in the ORB interface. Although this threading support is
minimal, OGS will be able to use basic thread mechanisms in a portable way.

The POA specification now states that objects can be co-located (location trans-
parency), and that invocations to local objects will be mediated by the ORB through
the POA the same way as remote invocations. This will allow us to develop portable
components that have locality constraints, and to use CORBA dynamic typing fa-
cilities (DSI and DII) with co-located objects.8

The C++ mapping of the new CORBA specification mandates that exceptions can
be inserted in and extracted from any variables, thus allowing OGS to return back
exceptions to the client when using typed communication.

The CORBA 2.2 specification also standardizes the following features that are rel-
evant to future implementations of OGS, although they are not directly related to
problems presented in this dissertation. The new POA adds support for objects with
persistent identities. The POA is designed to allow programmers to build object im-
plementations for objects whose lifetime (from the perspective of a client holding a
reference for such an object) span multiple server lifetimes. This will be very useful
for providing recovery of crashed servers.

8OGS cannot use the DSI with co-located objects because this model is not supported by Orbix
and VisiBroker.
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The POA also allows the association of a single DSI servant9 with many CORBA
objects. This is especially interesting for applications like OGS, since a single service
object will be able to mediate requests for several replicated servers that support
different interfaces.

Another addition of the CORBA 2.2 specification is dynamic management of any
values. If an any is passed to a program that does not have any static information for
the type of the any, the object receiving the any does not have a portable method
for using it. The new specification enables traversal of the data value associated
with an any at runtime and extraction of its primitive constituents, as well as the
construction of an any at runtime without having static knowledge of its type. These
facilities are especially useful for writing powerful generic services, and OGS will
directly benefit from it (e.g., for filtering invocations, or for returning exceptions to
clients).

Finally, the addition of Interceptor objects makes development of services much
easier. An interceptor is an object interposed in the invocation and response paths
between a client and a target object. Interceptors may be of two kinds: request-level
and message-level, and several interceptors may be chained. Interceptors permit
services that stand close to the ORB to be cleanly separated. By using interceptors
OGS will be able to coexist better with other ORB services, such as the security
service.

OGS for Other Environments

Although the OGS implementation strongly depends on CORBA, the OGS system
model and architecture can be applied to other middleware environments. In par-
ticular, Microsoft’s Distributed Component Object Model (DCOM) [Ses97] has many
similarities with CORBA [CHY+98]. Both are middleware environments that allow
distributed components to communicate with each other using remote method invo-
cations. DCOM uses a purely declarative interface definition language comparable
to OMG’s IDL which provides a clean separation of interfaces and implementations.

At first glance, applying the concepts presented in the thesis to DCOM would not
present major problems. In particular, DCOM provides a data type similar to
the CORBA any type10 and dynamic invocation mechanisms that could be used
to implement both untyped and typed group communication. However, many im-
plementation details will certainly differ when adapting the OGS architecture to
DCOM.

9A servant corresponds to an object implementation.
10Actually, the Variant type of DCOM can only contain simple types, interfaces, and arrays of

these types.
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Open Issues and Future Work

OGS defines a complete framework for object group support in CORBA and a usable
prototype has been realized. However, several issues still remain open. Some ideas
of OGS extensions and applicability domains are outlined below.

OGS Extensions. As already mentioned, we decided in this thesis to rely only
on the CORBA specification, and to use off-the-shelf ORB implementations. This
design choice has some shortcomings, since better integration of OGS would be
possible with some additional support from the ORB.

For instance, similarly to request filtering, OGS does not provide a clean solution
to the problem of group members returning object references. Consider a replicated
bank application that creates accounts for its clients. The accounts are created in
the address space of the bank servers. Each of these servers returns a reference to
the newly created account object, but these references are different (as specified by
the CORBA identity model). In this situation, the correct behavior would be to
gather all the account objects in a group and to return a group reference to the
client. This group would not be named and its members would be co-located with
their respective creator; we call this type of groups anonymous shadow groups.11

Unfortunately, this mechanism cannot be implemented without some support from
the ORB.

New Components in OGS. OGS is an open environment, and new components
may be added without requiring modifications to existing ones. Some interesting
additions to the OGS environment could be:

• Replication service: this component would define high-level interfaces dedi-
cated to replication, without presenting object groups to the application. It
would provide configuration tools to specify in a simple way the replication
policy and the redundancy degree of replicated objects.

• Recovery service: this component would automate recovery of failed objects.

Fault Tolerant Services using OGS. OGS could be used to implement fault
tolerant and highly available CORBA services [OMG97]. For instance, replicated
event channels or a fault tolerant naming service could be implemented using OGS.

Interactions with Other Services. One could study the interactions of OGS
and existing services [OMG97], such as transactions, persistence, security, life cycle,
or notification. For instance, the life cycle service could be used for transferring the
state of group members, or to dynamically augment the redundancy level of an object
group. Another example is the support of replicated transactions; the interactions

11A shadow group is a group that maps exactly to another group.
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between OGS and OMG’s transaction service are complex, and supporting replicated
transactions could necessitate modifications to both services.

Protocol Extensions. New protocols can be added to OGS without impact on
the existing architecture. These protocols can use the OGS infrastructure (e.g.,
failure detection, consensus), making their development simple and fast. Therefore,
OGS offers a framework that can be easily augmented with new protocols, and that
can be used as a test environment for distributed algorithms as well.

One could also extend the internal architecture of OGS and develop an extensible
protocol framework, that would allow us to construct new protocols by composing
them. An approach similar to the Horus protocol composition framework [vRBF+95]
would be adequate in the OGS architecture.

OGS for Java. A prototype implementation of OGS has been realized in the
Java programming language. Besides binary compatibility, a major advantage of
this approach is that clients can download the OGS runtime through the Internet;
they do not need to have a local daemon or library implementation of OGS. It
would be interesting to compare the performances of this Java prototype with the
ones of the C++ implementation, and to validate OGS interoperability and language
heterogeneity with object groups composed of a mixture of Java and C++ objects.
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