
P2P experimentations with SPLAY: from idea to deployment results in 30 min.∗

Lorenzo Leonini† Étienne Rivière‡ Pascal Felber

University of Neuchâtel, Switzerland

Abstract

SPLAY is an integrated system that facilitates the com-

plete chain of distributed systems evaluation, from design

and implementation to deployment and experiments con-

trol. Algorithms are expressed in a concise, yet very effi-

cient, language based on Lua. Implementations in SPLAY

are highly similar to the pseudo-code usually found in re-

search papers. SPLAY eases the use of any kind of testbeds,

e.g., PlanetLab, ModelNet clusters, or non-dedicated plat-

forms such as networks of workstations. Using SPLAY and

PlanetLab, this demonstration highlights a complete eval-

uation chain of an epidemic protocol and a churn-driven

experiment using the Pastry DHT.

1 Introduction

Evaluating large-scale distributed applications is a higly

complex, time-consuming and error-prone task. One of the

main difficulties stems from the lack of appropriate tools for

quickly prototyping, deploying and evaluating algorithms

in real settings. Several dedicated testbeds are available

that can be leveraged for better evaluations of these sys-

tems: PlanetLab [2], Everlab [8], or network emulators such

as ModelNet [13] or Emulab [15]. Meanwhile, non dedi-

cated testbeds such as networks of idle workstations usually

found in research labs or schools, are difficult to use for dis-

tributed systems experiments, as one usually require access

rights that are not easily granted by the admistrators.

All these testbeds are appealing as they allow real or re-

alistic experiments to be conducted, but they are not used

as systematically as they should. Indeed, strong techni-

cal skills are typically necessary to develop, deploy, exe-

cute and monitor applications for such testbeds. The learn-

ing curve is also usually slow. Technical difficulties are

even higher if one wants to deploy an experiment on sev-

eral testbeds at the same time, for instance a population of

peers on adversial testbeds such as PlanetLab and another

population of peers on a local ModelNet cluster.

∗This work is supported in part by the Swiss National Foundation under

agreement number 102819.
†Contact author: lorenzo.leonini@unine.ch
‡This work was carried out during the tenure of an ERCIM “Alain Ben-

soussan” Fellowship Programme.

A side effect of these difficulties is that the performance

of evaluated systems is greatly impacted by the technical

quality of their implementation, overshadowing the under-

lying algorithm’s intrinsic qualities. This may in turn make

comparisons unsound or irrelevant.

All these observations call for novel development-

deployment systems that would straightforwardly exploit

these testbeds and bridge the gap between algorithmic spec-

ifications and live systems. Researchers could use such

a system for real evaluations instead of simulations, and

teachers to focus their lab work on the core of distributed

programming, i.e., algorithms and protocols, letting stu-

dents experience distributed systems implementation in real

settings.

Related work. There were a number of proposals in the

litterature for evaluation or deployment frameworks. The

former includes systems such as Mace [9] (C++ extension)

or P2 [10] (dedicated declarative language) that allow de-

velopers to express algorithms in a high-level language, hid-

ing most of the complexity. These languages, however, do

not provide any support for deploying the applications or

controling the behavior of an execution. The latter include

deployment tools such as Plush [1] or Weevil [14]. Both

allows the creation of deployment scripts for testbeds such

as PlanetLab. Using the user’s description of the experi-

ment, they instantiate the applications on the testbed or cre-

ate scripts for this task. Nonetheless, these systems do not

allow deployment on non-dedicated testbeds. They do not

allow either for complex deployment, for instance involving

multiple testbeds or complex network scenarios, that SPLAY

allows natively and without efforts.

2 SPLAY architecture

A SPLAY infrastructure is composed of a controller, dae-

mons and sandboxed application processes:
controls instantiates

splay::app

splay::app

splay::app

splayctl splayd

The controller is a trusted entity that manages the de-

ployment and execution of SPLAY application. Lightweight



daemons processes (splayd) are responsible for instanti-

ating sandboxed applications processes, as instructed by the

controller. A splayd can run multiple sandboxed applica-

tion instances. Sandboxing is a primary feature of SPLAY;

it allows the administrator who deploy the daemons to re-

strict the usage of local resources (memory, disk, network).

Applications instances have absolutely no direct access to

the hosting system.

Language and libraries. SPLAY is based on Lua [7], a

highly efficient scripting language. A dedicated language

is needed for several reasons. First, as we need to support

non dedicated testbeds, sandboxing is a sound basis. Lua

support for scoping and first-order functions allows us to

redefine all standard library functions to impose boundaries

on resource usage. This allows us to ensure that buggy or

ill-behaved code will not harm the system hosting the ap-

plication. Second, it is necessary to support a large number

of application processes on a single host. Our tests have

shown that Lua for SPLAY is able to run more than 1,250

instances of Pastry [11] on a single dual-core machine with

2GB of memory. The others reasons include the possibil-

ity to run applications on any hardware or host OS, and the

performance of the libraries.

We provide an extensive set of libraries for developping

distributed applications with SPLAY, including: networking

libraries with sandboxed RPCs and message passing with

UDP or TCP (including automatic serialization); a sand-

boxed virtual filesystem; threading based on coroutines and

event-based programming; a logging library to seamlessly

report statistics about running applications.

events/threads

crypto*

io (fs)*

sb_fs

misc

sb_stdlib

stdlib*

log rpc

json*llenc

socketeventssb_socket

luasocket*

splay::app

* : main dependencies: third−party and lua libraries

An important goal of SPLAY is to allow application de-

velopers to write concise, readable code that highly re-

semble pseudo-code found in research papers. During this

demonstration, we will code a self-contained epidemic dif-

fusion protocol. We did implement a set of distributed sys-

tems using SPLAY. The Chord [12] and Pastry [11] DHTs

are respectively 101 and 265 lines (including fault toler-

ance and initialization). Middleware using Pastry such as

Scribe [5] and Splitstream [6] are 79 and 58 lines, respec-

tively.

Controlling deployments. SPLAY provides either a com-

mand line or Web-based interface. It allows to select the

daemons that will host an experiment based on geographical

location, performance, load, resource limitations, etc. An

interesting feature is the churn management module. To al-

low fair comparison of systems under the same conditions,

and since the natural churn in PlanetLab is not always suffi-

cient to derive a protocol’s behavior, SPLAY can reproduce

the dynamics of a system, either from a synthetic descrip-

tion (for instance, creating massive churn, steady increase,

etc.) or from a real trace (e.g., [3]).

3 Demo overview

This demo will present an overview of the key compo-

nents of SPLAY, from development to deployment. We will

develop interactively, and within minutes, an epidemic dif-

fusion protocol [4], highlighting key libraries and features.

Using both command-line and Web-based interfaces, we

will explore several node selection criterias. We will then

deploy the live protocol on PlanetLab, and process the re-

sults, which we will compare with results from [4]. This

complete tool chain will help to illustrate the simplicity of

P2P systems evaluation permitted by SPLAY, and that we

believe to be of great interest to the community. Finally, us-

ing a complete, fault-tolerant implementation of Pastry [11]

we will present the use of one of the high end features of

SPLAY, churn management. We will run Pastry on Planet-

Lab using the trace from [3], and observe key results such

as distribution of delays and route failure ratios. SPLAY

is available at http://www.splay-project.org.

This website provides facilities for trying SPLAY, includ-

ing an access to a PlanetLab deployment of SPLAY, a non-

restricted “SplayGround” emulating a network of 1,000

machines on a single host, and offers to download a live

CD that allows to try SPLAY without installing anything.

References

[1] J. Albrecht, et al. Remote Control: Distributed Application Configu-

ration, Management, and Visualization with Plush. In LISA’07.

[2] A. Bavier, et al. Operating system support for planetary-scale net-

work services. In NSDI’04.

[3] R. Bhagwan, et al. Understanding availability. In IPTPS’03.

[4] K. P. Birman, et al. Bimodal multicast. ACM TOCS, 17(2):41, 1999.

[5] M. Castro, et al. SCRIBE: A large-scale and decentralized publish-

subscribe infrastructure. IEEE J. Sel. Areas Commun., 2002.

[6] M. Castro, et al. SplitStream: High-bandwidth multicast in a coop-

erative environment. In Proc. of 19th SOSP, October 2003.

[7] R. Ierusalimschy, et al. The Implementation of Lua 5.0. Journal of

Universal Computer Science, 11(7):1159, 2005.

[8] E. Jaffe, et al. Everlab: a production platform for research in network

experimentation and computation. In LISA’07, pages 1–11.

[9] C. E. Killian, et al. Mace: language support for building distributed

systems. In Proc. of PLDI ’07, pages 179–188.

[10] B. T. Loo, et al. Implementing declarative overlays. In SOSP’05.

[11] A. Rowstron et al. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In Middleware’01.

[12] I. Stoica, et al. Chord: a scalable peer-to-peer lookup protocol for

internet applications. IEEE/ACM Trans. Netw., 11(1):17, 2003.

[13] A. Vahdat, et al. Scalability and accuracy in a large-scale network

emulator. In Proc. of OSDI, pages 271–284, 2002.

[14] Y. Wang, et al. Automating Experimentation on Distributed Testbeds.

In Proc. 20th ASE. Long Beach, California, November 2005.

[15] B. White, et al. An Integrated Experimental Environment for Dis-

tributed Systems and Networks. In Proc. of OSDI, 2002.


