
Self-organization in Cooperative Content Distribution Networks

Marc Schiely, Lars Renfer, Pascal Felber

Computer Science Department, University of Neuchâtel

CH-2007, Neuchâtel, Switzerland

{marc.schiely, lars.renfer, pascal.felber}@unine.ch

Abstract

Traditional client-server content distribution techniques

usually suffer from scalability problems when dealing with

large client population or sizable content. The advent of

peer-to-peer (P2P) network offers the technical means to

efficiently distribute data to millions of clients simultane-

ously with very low infrastructural cost. Previous studies of

content distribution architectures have primarily focused on

homogeneous systems, where the bandwidth capacities of

all peers are similar. In this paper, we address the problem

of heterogeneity and we propose mechanisms to improve

content distribution efficiency by dynamically reorganizing

the P2P network based on the effective bandwidth of the

peers. Our techniques have been designed to be efficient in

heterogeneous settings, adaptive so as to tolerate runtime

changes like bandwidth fluctuations, and practical enough

to be implementable in real systems. We analyze their ef-

fectiveness by the means of simulations and experimental

evaluation.

1. Introduction

Peer-to-peer (P2P) systems, in which peer computers

form a cooperative network and share their resources (stor-

age, CPU, bandwidth), have attracted a lot of interest lately.

After the apparition of the first truly successful P2P sys-

tems (e.g., Napster, Gnutella) and the significant amount of

research conducted in Academia and in the Industry, most

researchers now agree that P2P systems are more than just

a fashion phenomenon. They offer great potential for build-

ing cooperative networks that are self-organizing, efficient,

scalable, and reliable.

Research in P2P networks has so far mainly focused on

content storage and lookup, but little work has been done

about its actual distribution. By capitalizing the bandwidth

of peer nodes, P2P architectures address some of the most

challenging issue of todays Internet: the cost-effective dis-

tribution of bandwidth-intensive content to thousands of si-

multaneous users and the resilience to “flash crowds” (a

huge and sudden surge of request traffic that usually leads

to the collapse of the affected server). Indeed, as the client

population and the size of the distributed content grow, the

source quickly becomes a bottleneck.

Solutions based on content delivery networks (CDNs)

are prohibitively expensive and rather static in nature, while

protocols like IP multicast suffer from several flaws and

are not widely deployed. In contrast, P2P networks have

low cost and are inherently scalable; they can leverage the

bandwidth of many peers, those receiving part of the con-

tent providing it to other peers, and thus reduce the load of

the primary servers.

In this paper, we study the problem of the distribution

of some (possible streaming) content from a single source

to a large number of clients using P2P mechanisms. All

interested clients start receiving the content at the same time

and they cooperate with each other in order to maximize the

distribution efficiency. The main metric we consider is the

average time for each of the clients to receive the complete

content. Earlier studies [1, 10] have developed analytical

models and indicated theoretical limits for this problem, but

they only considered homogeneous scenarios where all the

peers have identical bandwidth. In particular, a comparison

of several distribution architectures based on linear chains,

trees, and parallel trees, has indicated that performance can

be maximized if all the peers can use their upload capacity

and the content is split in enough small blocks so that the

peers are all active at the same time.

In contrast, in this research, we aim at providing tech-

niques that are efficient in heterogeneous settings, adaptive

so as to tolerate runtime changes like bandwidth fluctua-

tions, and practical enough to be implementable in real sys-

tems. For the sake of simplicity, our study mostly focuses

on architectures with binary trees; the principles and algo-

rithms presented here do, however, also apply to other ar-

chitectures, as will be discussed later in the paper.

Our contributions are as follows: We first analyze the

problem of cooperative distribution of content from a sin-

gle source to a large number of heterogeneous clients and

we identify the limitations of existing solutions. We pro-

pose techniques and algorithms that dynamically optimize

the distribution network, based on the observed effective

bandwidth capacities, in order to avoid bottlenecks and im-

prove global throughput. These algorithms have several de-

sirable features. Most notably, they are fully decentralized

and work by only performing local reorganizations; as such,

they might stop short of producing an optimal configuration,

but perform extremely well under the aforementioned con-

straints. We analyze the properties of our algorithms and

we evaluate them by the means of simulations, as well as

experimentally in a LAN and in the Internet using the Plan-

etLab [8] testbed.

The rest of this paper is organized as follows: We first

discuss related work in Section 2. We then present classical

tree-based distribution architectures and analyze their short-

comings in Section 3. Section 4 introduces the principles,

mechanisms, and algorithms proposed to dynamically im-

prove the efficiency of tree-based content distribution. Sec-

tion 5 presents results from simulations and experimental

evaluation, and Section 6 concludes the paper.

2. Related Work

Many architectures for content distribution have been

proposed. Most of these systems build an overlay network

that is kept throughout the distribution process. Links are

only changed if either a neighbor fails or the performance

heavily degrades. Affected nodes then simply rejoin the tree

starting at the root. Most architectures do not actively re-

configure links before a degradation occurs.

CollectCast [5] is an example of such a passive system.

The authors propose an architecture that works on two dif-

ferent sets of nodes for media streaming. From a set of

potential senders the best ones are taken and form the active

set. The other potential senders are kept in a standby set.

During the streaming process peers do passively measure

bandwidth and latency. If the quality of the media stream-

ing falls below a threshold, a peer from the active set is ex-

changed with one from the standby set. A similar exchange

technique has been proposed in GnuStream [7] for use with

the Gnutella system.

Other systems like Scattercast [3] try to construct near-

optimal distribution trees in advance. A set of agents is de-

ployed across the network. The agents together provide a

multicast service. The number of clients that join an agent

is limited by its bandwidth capacity. The goal of Scattercast

is to construct a degree-constrained spanning tree across all

agents and keeping the average delay between the source

and all destinations at a minimum. This problem is known

to be NP-hard.

One system which dynamically adapts to the network

conditions was presented with TMesh [9]. The architec-

ture aims at reducing latencies between nodes in a multicast

group. Based on a set of heuristics, new links are added to

the existing tree or mesh. If the new link reduces the overall

latency then it is kept; otherwise, it is dropped.

We believe that the limiting factor in a content distrib-

ution system is not latency but bandwidth, more precisely

upload bandwidth. Therefore our first goal is to optimize

bandwidth usage rather than minimize the latency between

the nodes. To the best of our knowledge, no other research

has explicitly studied the problem of decentralized algo-

rithms for dynamic reorganization of P2P content distribu-

tion networks with the goal of optimizing bandwidth usage

in heterogeneous settings.

3. P2P Content Distribution

Tree-based Architectures. Different architectures have

been developed for organizing clients in a P2P fashion for

cooperatively distributing content, e.g., a large file. The key

idea is to have clients that have already downloaded the file

help redistribute it to other clients, instead of relying on a

single source. The time necessary to send the file to all

peers is not anymore proportional to the number of peers

in the network as for classical client-server distribution, but

proportional to the logarithm of the number of peers.

As an example, consider the situation where a server

must replicate a critical file, e.g., an antivirus update, to

all 100, 000 machines of a large company. Given a file

size of 4 MB and a server (client) bandwidth capacity of

100 Mb/s (10 Mb/s) with 90% link utilization, a classical

client/server distribution protocol would distribute the file

by iteratively serving groups of 10 simultaneous clients in

u = 32 Mb
9 Mb/s

= 3.55 seconds. Updating 100, 000 clients

would thus necessitate 100,000
10 u, i.e., almost 10 hours.

In contrast, cooperative distribution leverages the band-

width of the nodes that have already obtained the file, thus

dynamically increasing the service capacity of the system

as the file propagates to the clients. As each client that has

already received the file can serve another client while the

server updates 10 new clients, we can compute the number

of clients updated at time t as n(t) = 2n(t − u) + 10 =
2⌊t/u⌋10 − 10. Updating 100, 000 clients would thus ne-

cessitate less than 1 minute. The exponential increase of

the number of served peers provides a sharp contrast with

the linear progression of traditional client/server distribu-

tion (see [4] for a more detailed analysis).

The simplest architecture for cooperative content distrib-

ution consists in forming a chain (or pipeline) in which each

client downloads the file from one peer and uploads it to an-

other peer. The file is divided into small blocks of a given

size that can be transmitted independently from each other:

as soon as a block is received at one peer, it is forwarded to

2

the next peer. This architecture leads to impressively short

distribution times in high speed networks with full duplex

connectivity. The total distribution time is essentially the

time to send the whole file to the first node plus the delay

for the first block to reach the last node.

If each peer serves more than one other peer, we obtain

trees instead of linear chains. As the bandwidths of upload

connections have to be shared between several download-

ers, such architectures are best adapted in settings where

peers (especially those close to the source) have large up-

load capacities.

Chains and tree architectures have the disadvantage that

the failure of a node adversely impacts the whole subtree

rooted at that node. Indeed, once the only link to the sub-

tree is broken, no data can flow to any of its peers. To ad-

dress this problem, one can organize the peers into multiple

spanning trees, with each peer belonging to all the trees and

being interior node of at most one of them, and have the

source send distinct blocks to each tree. Such architectures

based on parallel trees have been used in SplitStream [2] to

improve bandwidth efficiency and increase robustness. Ob-

viously, the failure of a peer will affect at most one of the

distribution trees and leave the rest operational. Analytical

models and analysis of these architectures in homogeneous

settings can be found in [1]. We shall primarily focus on

architectures based on a single binary tree in the rest of the

paper, although we shall briefly discuss extensions for n-ary

and parallel trees.

Dealing with Heterogeneity. The performance of content

distribution using a single tree composed of peers with het-

erogeneous bandwidth directly depends on the organization

of the nodes in the tree. One slow peer ps can increase the

average reception time of all the peers in the subtree rooted

at ps, even if they have more bandwidth and computational

power than ps.

To show the effect of a single slow peer ps in a balanced

binary distribution tree of n nodes, we compute the average

reception time depending on the height of ps in the tree. We

assume a symmetric bandwidth of Bf for the fast peers and

the source S, and Bs <
Bf

2 for the slow peer. To distribute

a file of size F , we divide it into blocks and send them along

the tree as a continuous stream of data. We shall neglect the

delay of the first block to reach the bottom of the tree, as its

impact on the average reception time of the file by the peers

is negligible. We also assume that each peer stores the file

locally and, hence, does not need to buffer communication

flows. If we construct a tree composed only of fast nodes,

each of them downloads the file in time:

T =
2F

Bf

Distribution occurs at half the available bandwidth be-

cause each peer has to serve two other peers on a single

link. T , in this case, also corresponds to the average down-

load time T among all the peers.

S

h

0

1

Figure 1. Positions of a slow node in the bi

nary tree.

If we have now one slow peer at the bottom of the tree

(node surrounded by a circle in Figure 1), then T becomes:

T (n) =
n − 2

n

2F

Bf
+

1

n

F

Bf − Bs
+

1

n

F

Bs

The first term in the equation refers to the peers which

are not affected by the bandwidth limitation of the slow

peer. The second and the third term correspond to the down-

load times of the sibling of the slow peer and the slow peer,

respectively.

If the slow peer is at the second level from the bottom of

the tree (node surrounded by a square in Figure 1), T now

becomes:

T (n) =
n − 4

n

2F

Bf
+

1

n

F

Bf − Bs
+

1

n

F

Bs
+

2

n

2F

Bs

Again, we have the unaffected peers in the first term, and

the second and third terms refer to the sibling of the slow

peer and the slow peer itself. The last term corresponds to

the download time for the children of the slow peer.

If we generalize the average download time per peer de-

pending on the height h (from the bottom of the tree) of the

slow peer, we get the following expression for T :

T (n, h) =
F

n

(

(n − 2h+1)2

Bf
+

1

Bf − Bs
+

1

Bs
+

(2h+1 − 2)2

Bs

)

As previously mentioned, the download time can be im-

proved when using parallel trees, with each peer being in-

terior node of at most one of the trees (only one peer can

be a leaf of all trees). In such architectures, the position as

interior node of the slow peer will also affect the average

3

performance of file distribution. With a parallel binary tree

configuration, half of the file is sent in parallel to each tree

and the download performance is obviously limited by the

tree in which the slow peer is an interior node, i.e., has the

highest position. In that case, we can compute the average

download time as:

T ‖(n, h) =
F

n

(

n − 2h+1 + 1

Bf
+

2h+1 − 1

Bs

)

In Figure 2 we can see the effect in binary tree configu-

rations of one or two slow peers depending on their height.

Computations were performed with Bf = 100 Mb/s, Bs =
10 Mb/s and 1 Mb/s, F = 650 MB, and n = 217 − 1 peers

(including the source). In settings with two slow peers, each

of them was in a different subtree from the source. Figure 2

shows a clear exponential increase in the average reception

time T , both with single and parallel trees, after the height

of the slow nodes reaches approximately half the depth of

the tree. This clearly demonstrates the necessity of dynami-

cally reorganizing distribution trees to adapt to the effective

bandwidth of the peers.

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

A
v
e

ra
g

e
 r

e
c
e

p
ti
o

n
 t

im
e

 (
s
)

Height h of the slow node(s)

1 tree, 2 slow nodes (1Mb/s)
1 tree, 1 slow node (1Mb/s)
1 tree, 2 slow nodes (10Mb/s)
1 tree, 1 slow node (10Mb/s)
2 parallel trees, 1 slow node (1Mb/s)
2 parallel trees, 1 slow node (10Mb/s)

Figure 2. Average reception time depending

on the height of slow nodes.

4. Dynamic Reorganization Algorithm

Motivations and Design Guidelines. In the previous sec-

tion we have shown that, in heterogeneous settings, slow

nodes should be located as deep as possible in tree-based

content distribution architectures. Indeed, a slow node is

a bottleneck for its whole subtree and the higher the slow

node is, the more peers its subtree contains.

Therefore, our goal is to design an algorithm that dynam-

ically optimizes the distribution tree by reorganizing peers

according to their effective bandwidth. This directly raises

the problem of estimating bandwidth capacities and moving

peers at runtime in a practical and efficient manner.

Our algorithm was designed according to several guide-

lines: it should be fully distributed and symmetric, and not

rely on a centralized entity (besides the data source that has

a specific role); all operations and reorganizations should

be performed locally or in the close neighborhood of a

peer; decisions should be based on local information and

no global knowledge should be necessary; the algorithm

should be able to adapt dynamically to changes in the net-

work; and the complexity and overhead should remain as

low as possible.

These guidelines comply with the P2P design philoso-

phy and are key to achieve high scalability. A consequence

of the constraints they impose is that our algorithm may

not yield an optimal configuration, which would necessitate

non-local information and operations, as we shall discuss

shortly.

Bandwidth Measurements. The limiting factor in most

file distribution networks is the upload capacity of the

nodes, which is typically lower than their download capac-

ity (e.g., ADSL). Therefore we based our algorithm on the

upload capacities of the nodes and we reorganize the peers

when we detect nodes that have lower upload capacities

than some of their children.

Each peer p must be able to estimate its upload capacity

u. To that end, a node actively or passively measures the

throughput ui achieved when uploading data only to child

i, and the throughput un obtained when uploading data si-

multaneously to all m children (see Figure 3). Further, let

di > 0 be the download capacity of child i.
Based on these measurements, we can distinguish two

cases:

1. un <
∑m

i=1 ui with uj = un for some nodes j and

uk < un for some nodes k

2. un =
∑m

i=1 ui

p

1 2

u21u

un

Figure 3. Throughput measured to estimate

effective bandwidth.

In case 1 the transfer bandwidth is limited by the upload

capacity of peer p. The upload capacity to all nodes un is

not higher than the upload rate to a subset of its children.

4

We estimate the upload rate of p to be u = un. We also

know that each child j has a download rate of dj ≥ uj and

each child k has a download rate of dk = uk .

Case 2 occurs if the upload capacity u of p is not the

limiting factor. The children are all downloading at their

limits. We have u ≥ un and we know that each child i has

a download rate of di = ui.

Based on these estimations, a peer can easily compare

its upload capacity with that of its direct neighbors to deter-

mine whether local reorganizations are necessary.

The HeapTop Algorithm. HeapTop is remotely inspired

from the well-known HeapSort algorithm, where the nodes

of a tree are reorganized by exchanging selected father-child

pairs. The goal is to move the nodes with highest bandwidth

closest to the root of the tree. The property maintained by

our algorithm is that, for every node p other than the root

and every child c of p, we have up ≥ uc (with up and uc

being the effective upload bandwidth of p and c, respec-

tively).

As we only want to perform local operations, the only

way we can reorganize the tree is by exchanging the posi-

tion of a node with its parent. This operation can be eas-

ily implemented because both nodes are directly connected

with each other and they essentially have to exchange their

respective neighbors.

The algorithm starts with a random initial tree. We as-

sume that all nodes in the tree can estimate their bandwidth

capacity and that of their parent, as previously discussed.

Algorithm 1 HeapTop algorithm at peer p
1: loop

2: q ← Parent(p)
3: if q 6= root and Bandwidth(q) < Bandwidth(p) then

4: Exchange positions of p and q
5: end if

6: end loop

Each node continuously executes the trivial operations

shown in Algorithm 1. Peer p periodically compares its

bandwidth capacity with that of its parent. If p’s band-

width is strictly bigger than its parent’s bandwidth, then

they switch positions, i.e., they exchange their neighbors.

This operation can be performed efficiently as it is essen-

tially local to p and its parent. The algorithm preserves the

structure of the initial tree (even if it is not balanced), but

the position of the nodes evolves over time.

For avoiding pairwise exchanges resulting from short

bandwidth fluctuations, the estimations are based on a

weighted moving average computed using the following

formula:

u(t) = (1 − α) · u(t − 1) + α · u

The average bandwidth at time t is obtained by combin-

ing the latest sample u with the previous average value. The

constant α ≤ 1 (typically 1
8) is a smoothing factor that puts

more weight on recent samples than on old samples and

smooths out important variations.

In addition, in order to prevent unnecessary reorganiza-

tions of peers with similar bandwidth capacities, we shall

only exchange the position of a peer p and its parent q if

uq < β · up, with β ≤ 1 (typically 9
10).

Note there is no synchronization between the peers (ex-

cept between pairs of neighbors when positions need to be

exchanged). This implies that nodes can move upward or

downward the tree at different speeds, and distinct configu-

rations can be obtained from the same initial tree. Figure 5

shows a possible configuration obtained from the execution

of the algorithm on the tree in Figure 4 (the numbers indi-

cate the bandwidth capacities of the peers: large numbers

correspond to high bandwidth).

13

s

10 3

2

4

7 9

5

1

11

6

8

14

12

Figure 4. Original
distribution tree

(larger numbers
mean more band

width).

13

s

14

10

9 11

7 54 36

8

2 1

12

Figure 5. One
possible config

uration obtained
from executing

the algorithm.

Given the special role of the root node, it appears clearly

that the peers cannot move from one 1st-level subtree to an-

other 1st-level subtree. Further, within any subtree, a node

in one branch may be further from the root than some other

node with less bandwidth in another branch (see nodes 9

and 10 in Figure 5). As such, the resulting distribution

tree may be slightly sub-optimal but performing further

optimizations would necessitate non-local operations and

higher complexity.

If there is no bandwidth fluctuation, the tree will quickly

reach a stable configuration. In the worst case, a node lo-

cated at depth d ≥ 1 (the root is at depth 0) can initiate

d − 1 exchanges. The actual number of exchanges depends

on both the initial configuration of the tree and the order in

which exchanges are performed.

Note that this algorithm can also be used with architec-

tures based on parallel trees. Node exchanges are performed

concurrently in each of the trees. If one wishes to meet the

robustness property that a peer should be interior node of at

most one tree, we lose some flexibility in the way the trees

5

can be organized: exchanges can only be performed if the

robustness property still holds after the operation (only inte-

rior nodes can be freely exchanged). Although the resulting

architecture provides better resilience to failures, it will be

sub-optimal in terms of bandwidth efficiency.

5. Evaluation

Simulation Setup. For evaluating the behavior of Heap-

Top in different environments, we implemented a Java sim-

ulator that faithfully reproduces the operations of the algo-

rithm and evaluates its efficiency. The main criterion con-

sidered is the average upload bandwidth capacity using the

tree generated by HeapTop, as compared with that of the

initial randomly generated tree and of an optimal tree.

We have simulated three main classes of peers, chosen

to match the observations we have made of real-world pop-

ulations in an earlier study of the BitTorrent protocol [6].

These classes represent effective connection throughputs

frequently encountered in the Internet:

• F : fast nodes with 1024 Kbit/s upload bandwidth.

• M : medium-speed nodes with 512 Kbit/s upload

bandwidth.

• S: slow nodes with 128 Kbit/s upload bandwidth.

As previously mentioned, the upload bandwidth is the

limiting factor and we do not explicitly take into account

download capacities (peers of classes M and S typically

have asymmetric bandwidth).

Each peer has a given probability to fall in one of the

considered classes. Binary trees are constructed by itera-

tively adding each node at a valid position, chosen by tra-

versing the tree from the root until a leaf or a node with a

single child is encountered. We experimented with both un-

balanced and balanced trees. As the differences in the mea-

surements were negligible, we only show results for bal-

anced trees and note that they are also valid for unbalanced

trees.

For comparison with an optimal configuration, a tree was

constructed by organizing the nodes from root to leaf in de-

creasing order of upload capacity. Each result is the average

of 50 executions.

Simulation Results. We have first evaluated the improve-

ment factor of HeapTop with different population sizes and

various proportions of nodes in each class. To that end, we

have used the class distributions shown in Table 1.

The improvement factor f is defined as the ratio of the

average bandwidth BHT of the tree generated by HeapTop

to the average bandwidth BR of the random initial tree: f =
BHT /BR.

Class F Class M Class S
D1 90% 5% 5%
D2 60% 30% 10%
D3 50% 25% 25%
D4 30% 60% 10%
D5 25% 25% 50%
D6 5% 90% 5%
D7 5% 5% 90%

Table 1. Distributions of peer classes for the
simulations.

Figure 6 shows that the improvement factor is signifi-

cant, with HeapTop being as much as 6 times more efficient

than the initial tree. Further, it increases with a logarith-

mic behavior as the number of nodes grows. This can be

explained by the analysis of Section 3, which showed that

with a single slow node located at height h, the performance

of the whole network degrades as a function of 2h. As the

height of a binary tree composed of n peers is proportional

to log(n), the logarithmic shape of the improvement factor

is not surprising.

One can also observe that the difference between Heap-

Top and the initial tree decreases when there are many slow

peers, as there is less room for optimization (some slow

peers must end up as interior nodes).

Another desirable property of HeapTop is to maintain the

average number of exchanges per node as small as possible.

As one can see in Figure 7, this value mostly depends on the

class distribution and is not higher than 1.2 exchanges per

node. The size of the peer population, i.e., the tree depth,

has little impact on that metric.

As discussed in Section 4, HeapTop does not generate

optimal trees because it only performs local reorganiza-

tions. Figure 8 shows that the constructed trees are ex-

tremely close to the optimum (more that 0.95 for most con-

figurations) and do not depend much on the size of the peer

population. Taking into account the simplicity and effi-

ciency of the algorithm, this is clearly an acceptable approx-

imation of the optimal tree.

We also simulated HeapTop with an architecture based

on parallel binary trees. As in SplitStream, we enforced

each peer to be inner node of at most one of the trees. After

generating both trees, HeapTop was run on the inner nodes

of each tree. Figure 9 shows the improvement factor for dif-

ferent population sizes and various class distributions. One

can observe that the gain is still significant (up to almost

400%). Further, the relative performance of the class dis-

tributions is different than for a single tree because only

interior nodes can be reorganized. Figure 10 shows the

best improvement factor observed during the simulations

(up to 750%) and gives a measure of the potential benefits

of HeapTop for parallel trees.

6

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500 3000

Im
p
ro

v
e
m

e
n
t
F

a
c
to

r

Number of Nodes

D1
D2
D3
D4
D5
D6
D7

Figure 6. Average im

provement factor for dif
ferent population sizes

and various class distrib
utions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
E

x
c
h
a
n
g
e
s
 p

e
r

N
o
d
e

Number of Nodes

D1
D2
D3
D4
D5
D6
D7

Figure 7. Average number

of exchanges per node for
different population sizes

and various class distribu
tions.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500 3000

C
a
p
a
c
it
y
 H

e
a
p
T

o
p
 /
 C

a
p
a
c
it
y
 O

p
ti
m

a
l
T

re
e

Number of Nodes

D1
D2
D3
D4
D5
D6
D7

Figure 8. Bandwidth ca

pacity of the HeapTop tree
vs. an optimal binary

tree for different popu
lation sizes and various

class distributions.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

Im
p
ro

v
e
m

e
n
t
F

a
c
to

r

Number of Nodes

D1
D2
D3
D4
D5
D6
D7

Figure 9. Average im

provement factor with two
parallel trees for different

population sizes and vari

ous class distributions.

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

Im
p
ro

v
e
m

e
n
t
F

a
c
to

r

Number of Nodes

D1
D2
D3
D4
D5
D6
D7

Figure 10. Best case im

provement factor for two
parallel trees for different

population sizes and vari

ous class distributions.

C4

F F F F

F S

F S S S S S

Source

F F F

F F

F S S S SS

S

Source

F F F S

F F

F S S S S S

Source

F F F F

F F

S S S S S S

Source

C1 C2

C3

Figure 11. Configurations

for average reception time
tests with crcp.

Experimental Setup. To evaluate experimentally the ef-

fect of the HeapTop algorithm, we have developed a content

distribution tool called crcp (cooperative remote copy)

that implements P2P replication of files to large populations

of hosts. Each file is split in blocks that are sent indepen-

dently on encrypted connections. The current version of

crcp supports linear chain and tree architectures, which

are dynamically constructed by the source when initiating

file replication.

Experimental Results. We have first evaluated our mech-

anisms in a local area network (LAN), with 13 Linux com-

puters connected to a switch, one of them acting as the

source and the rest as clients. Six of the client peers had net-

work cards configured at 10 Mb/s, the other 6 and the source

at 100 Mb/s. The file to distribute had a size of 564 MB.

To demonstrate the efficiency of the HeapTop algorithm the

file was distributed on trees according to the four configura-

tions on Figure 11, where a slow node moves down the tree

to improve distribution efficiency.

The average reception times are shown in Figure 12. As

expected, file distribution becomes more efficient when the

slow node is deep in the tree. This confirms that the Heap-

Top algorithm achieves better performance for file distribu-

tion than a fixed tree construction by moving slow nodes far

from the source.

We have then performed large-scale experiments with

crcp on 25 hosts of the PlanetLab infrastructure and com-

pared the performance of initial random trees and the trees

obtained using the HeapTop algorithm. Although we ob-

served some variance in the experiments, due to load fluc-

tuations in the network and at the nodes, HeapTop produced

trees that were systematically faster than the initial config-

urations, with an average improvement factor of 1.55 and

peaks of over 1.70.

A careful look at the reception times of each of the nodes

helps us to understand the reason for this improvement. Fig-

ures 13 and 14 show the performance of individual peers,

7

C4C1 C2 C3

A
v
e
ra

g
e
 R

e
c
e
p
ti
o
n
 T

im
e
 (

s
)

p
e
r

N
o
d
e

1200

1000

800

600

400

200

0

Figure 12. Average recep

tion times with a slow node
at different positions.

average

a
v
e

ra
g

e
 r

e
c
e

p
ti
o

n
 t

im
e

 (
s
)

Nodes (sorted by reception time)

0

12e3

10e3

8e3

6e3

4e3

20151050

2e3

Figure 13. Reception times

of the peers for the initial
random binary tree.

average

a
v
e

ra
g

e
 r

e
c
e

p
ti
o

n
 t

im
e

 (
s
)

Nodes (sorted by reception time)

0

4e3

6e3

8e3

10e3

12e3

0 5 10 15 20

2e3

Figure 14. Reception times

of the peers for the HeapTop

binary tree.

sorted by reception times, when sending a 29 MB file to 22
hosts, for the initial and HeapTop trees respectively. We can

observe that, in the former case, low-bandwidth peers slow

down their descendant, which produces clear steps in the

figure. Such bottlenecks do not appear in the latter case, as

many of the peers can download the file with no speed lim-

itations besides their own bandwidth. Further study would

be necessary to observe how HeapTop dynamically adapts

to the bandwidth fluctuations and unpredictability of the In-

ternet, and how it could be extended to explicitly deal with

failures.

6. Conclusion

P2P content distribution architectures are expected to

play a big role in future distributed systems because of

their impressive scalability, remarkable performance, and

low cost. In this paper, we have studied the limitation of

classical tree-based architectures when peers have different

bandwidth capacities. We have proposed simple and effi-

cient algorithms to dynamically reorganize the peers so as

to optimize distribution efficiency. These mechanisms are

adaptive, decentralized, and only perform local reorganiza-

tions; as such, they follow the P2P design philosophy and

are extremely scalable. We have extensively studied their

effectiveness by the means of simulations and experimen-

tations and we have observed significant efficiency gains

(up to more than 600%) depending on the number of peers

and their respective bandwidth. These results demonstrate

the importance of explicitly taking into account bandwidth

limitations and fluctuations in P2P content distribution ar-

chitectures, in order to avoid wasting the most essential re-

sources of the network—the service capacity of the peers.

Acknowledgements. This work is supported in part by

the Swiss National Foundation Grant 102819.

References

[1] E. Biersack, P. Rodriguez, and P. Felber. Performance analy-

sis of peer-to-peer networks for file distribution. In Proceed-

ings of the 5th International Workshop on Quality of future

Internet Services (QofIS’04), pages 1–10, Sept. 2004.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. SplitStream: High-bandwidth

multicast in a cooperative environment. In Proceedings

of the ACM Symposium on Operating Systems Principles

(SOSP), Oct. 2003.

[3] Y. Chawathe. Scattercast: An adaptable broadcast distribu-

tion framework. Multimedia Systems, 9(1):104–118, 2003.

[4] P. Felber and E. Biersack. O. Babaoglu, M. Jelasity, A.

Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, M. van

Steen (Eds.): Self-Star Properties in Complex Information

Systems, chapter Cooperative Content Distribution: Scala-

bility through Self-Organization, pages 343–357. Springer-

Verlag, 2005.

[5] M. Hefeeda, A. Habib, B. Boyan, D. Xu, and B. Bhargava.

PROMISE: peer-to-peer media streaming using CollectCast.

In Proceedings of ACM Multimedia 2003, Nov. 2003.

[6] M. Izal, E. Biersack, P. Felber, G. Urvoy-Keller, A. A.

Hamra, and L. Garces-Erice. Dissecting BitTorrent: Four

months in a torrent’s lifetime. In Proceedings of the 5th

Passive and Active Measurement Workshop, Apr. 2004.

[7] X. Jiang, Y. Dong, D. Xu, and B. Bhargava. Gnustream:

A P2P media streaming system prototype. In Proceedings

of the International Conference on Multimedia and Expo

(ICME),, July 2003.

[8] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A blue-

print for introducing disruptive technology into the Internet.

In Proceedings of HotNets-I, October 2002.

[9] W. Wang, D. A. Helder, S. Jamin, and L. Zhang. Overlay

optimizations for end-host multicast. In Proceedings of the

International Workshop on Networked Group Communica-

tions (NGC), Oct. 2002.

[10] X. Yang and G. de Veciana. Service capacity of peer-to-peer

networks. In Proceedings of IEEE INFOCOM, Mar. 2004.

8

